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In this article we divide a sailplane’s
flight into steps, each of which consists
of an ascent in a thermal and a glide
to the next thermal (see Fig.1). We
assume that there is nd wind. The pro-
jection of one glide on the ground is
rectilinear, however the projections of
the glides of successive steps can be
inclined to one another.

Our pilot wants to fly a distance in
minimum time and maintain a constant
base level of flight, that is, every ascent
is started at the same altitude (see

Fig. 1). Generally speaking the allow-
ance of varying base level might be
necessary in finding the optimal way
of flight which absolutely minimizes
the flight time. The solution of the
problem with varying base level could
yield an optimal solution, where the
flight policy of each step would depend
on the thermal conditions of all the
steps ahead. However the pilot cannot
be fully aware of the thermal conditions
far ahead so that this kind of treatment
of the problem is not adequate. On

the other hand, if the base level is kept
constant and thermal conditions along
the course are stationary (i.e. thermals
maintain their strengths constant and
do not move, which approximations
are of course generally quite coarse)
and the thermals reach high enough,
then in order to fly the course in mini-
mum time the pilot has simply to mini-
mize the flight time of each separate
step, as we shall see. Thus the pilot
after having entered the thermal of the
i:th step on base level observes the c;
and estimates the distance to the next
thermal he will use (s;). Perhaps there
are several candidates for the next
thermal. It is impossible for the pilot

to pick up the absolutely optimal one.
At this point he has to resort to intui-
tion. This is why we are not seeking
for the absolute minimum but ‘a kind
of minimum’. The parameters c¢; and s;
as well as the gliding characteristics

of the sailplane uniquely determine

the optimal flight policy of the step. All
possible thermals that are met during
the glide are ignored. Although this
step by step optimization procedure
generally does not yield the absolute
minimum, it often however optimizes
that which in practice can be opti-
mized.

Figure 1. Steps of flight. ¢ = ascent velocity in
thermal, s = distance between two successive

thermals that are used, h = altitude increase in
thermal, v = gliding velocity, w = sinking rate,
H = base level of flight.
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1. Optimal flight

We first consider the optimal flight of
one step. Let us assume that the
sailplane’s polar equation is of the
form — or can be approximated by

w = Av3 + By,

(1)

where A and B are constants. This is a
good approximation in the region of
the ‘laminar-bucket’ and is thus valid
during gliding. If t; denotes the ascent-
time and t, = the gliding time, we
have

h = cty, s & vty, h/s &~ w/v.

(2)
From Eq. (1) and Egs. (2) we write

T=t,+t, = = (AV2+B) + — =

T (v).

The relative optimum of 7 (v) is
obtained at
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Vope Stands for the velocity that mini-
mizes the total flight time of the step.
The optimal altitude increase in the
thermal is
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where by Egs. (1) and (4)
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Eq. (4) gives the McCready-velocity
of a sailplane, whose polar is given by
Eg. (1). We can derive this analytical
result also (see Fig. 2) by dropping a
tangent from the pointv =0, w = —¢
to the polar. The derivation of Eq. (4)
in this way proceeds as follows: From
Eq. (1) we have

(5)

(6)
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Figure 2. Graph of polar. vopt = optimal gliding
velocity, which we call the McCready-velocity.
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and consequently the gradient of the
tangent is 3AvZ,,. + B. Thus the equa-
tion of the tangent that goes through
the point (o, —c) is

(8)

But the tangent goes also through the
point (Vopt, Wopt) and so we obtain

w + ¢ = (3AvZ,,. + B) v.

Av3 ., + Bvgpe tC = ©)
(Sszopt + B) Vopt-

from which the result of Eq. (4) at
once follows.

We next turn to the optimal flight of
several (n) steps. Now the total flight-
time of the i:th step
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is a function of v; only, if s; and c; are

assumed to be constants, that is

T; = T; (v;). Then the time needed to

fly through the course of n steps is

;;-l-';Ti (Vl)=T1 (V1)+...+ (11)

T, (va) =f (v, ..., Vo).

In order to minimize f (v4, ..., v,) we
write :
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In other words we have to optimize
every step separately.
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2. Distance estimation error

Up to this point we have assumed that
the pilot does not make errors in esti-
mating s. We now suppase that he
makes an error ds, which is assumed
to be normally distributed with mean
m (s) and standard deviation ¢ (s)
(mean and s.d. of ds of course depend
on the distance to be estimated).

As(ﬁ> does not depend on s [see
\ V opt

Eq. (6)], the correct glide and the
glide performed by the pilot are equally
steep, that is h,/s, = h/s (see Fig. 3).
Then obviously the altitude error

dh=(ﬂ) ds.
V /opt

It consequently follows that dh is
normally distributed with mean

(14)

(iv-) m (s) and standard deviation
V /opt
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We next suppose that having entered
the next thermal too high, as in Fig. 3
or too low the pilot starts a new step
on a new base level of flight that
differs from the preceding one by dh.
In Fig. 3 he thus starts the new ascent
.at point P and if his estimate of the
new distance were faultless, he would
finish the new optimal glide on the
level of point P. If his estimate how-
ever is erroneous, he will enter the next
thermal above or below the level of
point P. Acting in this way (no base
level corrections) his base level of
flight after n steps differs from his
initial level by

n
4h = X dh;.

i=1

(15)
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Figure 3. Erroneous step. s=distance estimated
by pilot, so = actual distance, dh = altitude error
due to distance error.

As the errors dh; are normally distributed
independent random variables, Ah is
normally distributed and its mean and
standard deviation are given by

Ah=z"(ﬁ) m (s;) =
i=1 \V opt,
; (16)
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where use has been made of Eq. (6).
We now consider a special case and
assume (1) that the distances s; are

of the same magnitude = 5 and (2)
that m (5) = O, which means that the
pilot does not make a systematic error
in estimating distances of magnitude s.
From Egs. (16) and (17) then yield

0, (18)
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Finally we give an example of the
special case mentioned above: Let
§=10km, m (8) =0, g (8) =2 km,
n=10andcy =... =cy0 = 2m/sec
and let the sailplane be Nimbus-2.

In the reference Uotila has approxi-
mated the polar of Nimbus-2 by Eq. (1).
By making the relevant dimension
changes in his coefficients we have

106 x 105 sec2/m?2,

1
0.012. (20)
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From Eqg. (19) we now compute
oan~ 220 m and by Eq. (18) ma, = 0.
Thus 4h of this example is (0,220 m)-
normally distributed. In other words:

at the end of his course of 10 steps the
pilot finds himself more than 220 m

off (above or below) the initial base
level of flight with the probability of
32%. This error is entirely due to his
distance estimation errors. As ¢ (10 km)
=2 km characterizes a pilot with quite
a good distance estimation ability, we
have by no means arrived at an ex-
ceptionally erroneous situation in the
example.

In the light of our example we see that
level corrections might be necessary
every now and then along the course
(compensation of Ah for instance in
connection with the ascent of every
fifth step) so that the base level of
flight would not get too high or low

in comparison with the altitude range
of thermals.
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