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1. Introductory Remarks

Clear-air turbulence in the upper at-
mosphere is intimately associated with
the presence of density variations,
and, paradoxically, primarily with gra-
vitationally stable density variations. In
review of gravitational stability in
fluids, consider the case of a resting
liquid with a density decrease with
height, associated perhaps with a vari-
able salt content, or a variable temper-
ature field. If the fluid is disturbed
slightly, as in Fig. 1, the density lines
will oscillate up and down, but the
motions will weaken with time as fric-
tional effects come into play. The fluid
is gravitationally stable.

————

Fig. 1

The atmosphere is a compressible
fluid, and its density normally varies
with height because of two effects: (1)
Pressure and temperature normally de-
crease with height and, as revealed by
the relevant thermodynamic equations,
the density also decreases with height
except, possibly, in extremely thin lay-
ers near the ground. (2) The atmos-
phere has a variable moisture content
and, since water vapor is lighter than
dry air, the density will tend to be less
where the air is more moist.

The effect of moisture on density vari-
ations is a minor one and can be for-
mally eliminated altogether by using,
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instead of actual temperature T, a vir-
tual temperature T’ defined by

.
T =3 (1)

1-= =

8 p

where e is water-vapor pressure and p
is pressure.

The effects of temperature and pres-
sure on the density variation of air
may be considered together as fol-
lows: For the time periods involved in
clear-air turbulence problems, a suffi-
ciently accurate equation is

%E(p/pk) =0, A=1.4 (2)

which is derivable from the first law of
thermodynamics and from the assump-
tion that there is no gain or loss of
heat from radiation, conduction, etc.
Equation (2) is analogous to the ap-
proximation that density itself is con-
served in the mechanics of liquids.

The equation may be integrated to
yield p/pA = const for an individual
particle, and it is convenient to evaluate
the constant by supposing that the air
parcel is brought adiabatically to a new
reference pressure P, in which state it
assumes a new density, p If we choose
the reference pressure to be the same
for all parcels, we then speak of p in
the equation

p/ph = P/ph 3)
as the potential density. It follows that

d p/dt = 0, so that for the atmosphere p
is analogous to the density itself in a
liquid. It is easy to show that just as
a(p,-p,)/p, is the buoyancy force per
unit mass acting on a parcel of liquid

of density p, in an environment of den-
sity po. (P4 - Po)/ P, represents the
buoyancy force on a parcel of air of
potential density ;p, in an environment
of potential density p,. Thus we obtain
the basic aspects of gravitational
stability and instability in the atmos-
phere if we consider variations of

potential density. There are other
effects of compressibility, but these can
be shown to be negligible if gé/c?<1,
where g is the acceleration of gravity,
d is the vertical amplitude of the distur-
bances, and c is the speed of sound.
This number is less than 0.1 in problems
of clear-air turbulence’. In summary,

if we consider potential density varia-
tions in air instead of density variations,
we may completely neglect the com-
pressibility of air and regard the atmos-
phere as a liquid.

With this in mind, we may now
enumerate five basic causes of atmos-
pheric turbulence. (1) Mechanical stir-
ring, as in flow of air over trees and
houses. (2) Direct heating effects (pri-
marily near the ground) in which the
potential density of some of the fluid

is decreased by heating. The light par-
cels rise and are replaced by heavier
fluid from above. (3) Vertical accelera-
tions caused by buoyancy as heat is
added to a parcel by release of the la-
tent heat of condensation of water va-
por. (4) Instability caused by the mo-
tion of potentially heavy air over po-
tentially light air. This can be caused
by advection processes as layers of
heavy air move over layers of light air,
or by motions connected with the
growth or deformation of gravity
waves. (5) Instability of shear, in which
energy of mean shearing motion is
converted into turbulent energy by the
growth of wave disturbances.

The first two causes mentioned above
are not operative to any extent at high
levels in the atmosphere. The third is
relevant to turbulence in clouds and
therefore does not concern us directly
in this paper, although it may cause
disturbances in the clear air near
clouds. The remaining two causes of
turbulence, namely gravitational insta-
bility and the instability of shear, are
obviously the basic causes of clear-air
turbulence. The advection of heavy air
over lighter air is occasionally men-
tioned by meteorologists as a basic
cause of meteorological phenomena,
for example, tornadoes. It is difficult to
see, however, how this can happen,
except near the ground where, as is
well known, a «nose» of a cold front
can protrude over lighter-air below it
as the lighter air is retarded by sur-
face friction. On the other hand wave
motion in a stable atmosphere can
lead to deformations of density sur-
faces in which heavy air intrudes
above lighter air. The waves will then
break and cause turbulence. In the ab-
sence of shear, there is no local ener-
gy source to cause these deforma-
tions, and it is likely, therefore, that

' The Mach number is always very small in meteor-
ology (except possibly in tornadoes), and is not an
important criterion for judging the effects of
compressibility.



the work' done by mountains and hills
on the moving air currents is the basic
energy source. When there is shear,
kinetic energy can be supplied to the
disturbances at the expense of the
mean motion (Richardson, 1920). We
divide the discussion into two parts. In
the first we consider the turbulence in
mountain waves. In the second we
consider the interplay of shear and
density gradient.

2. Clear-Air Turbulence in Mountain
Waves

Aircraft reports show that clear-air tur-
bulence is frequent in mountainous
areas, and this suggests the basic im-
portance of the breaking of gravity
waves set up in airflow over moun-
tains. It is well known that waves are
possible in the air flowing over moun-
tains and hills because of the buoyan-
cy forces which exist in the normally
stable atmosphere. Until a few years
ago, attention given to the phenome-
non was confined to an analysis of
waves of infinitesimal amplitude. Such
an analysis is particularly unsuitable
for our problem because small disturb-
ances in a uniform current are stable
and cannot lead to the growth of tur-
bulence. More recently, however, it be-
came apparent from theory and experi-
ment (Long, 1955) that disturbances
can be sufficiently large to lead to lo-
cal gravitational instability and turbu-
lence. This comes about in one of two
days. If a mountain wave gets large
enough, it can create within itself
large vertical shears. If the shear be-
comes great enough, local disturb-
ances can become unstable and devel-
op into turbulence. The other cause of
turbulence in large mountain waves
comes from an overturning instability
as the wave amplitude gets so large
that the local density variation with
height reverses, yielding potentially
heavy air over lighter air. One occur-
rence is an S-shaped streamline pat-
tern as shown in Fig. 2 (Long, 1955).
The exact breakdown of these waves
requires more study. As indicated in
the four photographs of Fig. 3, the
breakdown into turbulence is an ex-
plosive occurrence. These pictures
were taken /16 of a second apart. Ob-
viously a careful investigation will re-
quire high-speed photography to fol-
low the process. In the atmosphere the
characteristic time is about 100 times
that of the experiment so that a similar
breakdown will take 5—10 seconds.
The turbulent velocities that occur in
the photographs are about one-third of
the speed of the stream. If the highest
stream velocities that can occur in the

2 In a coordinate system moving with the fluid.

Fig. 2

atmosphere are approximately 200 mph
in the jet stream, this leads to a maxi-
mum vertical velocity in clear-air tur-
bulence associated with mountains, of
about 75 mph or 100 fps.

In the atmosphere, perhaps the most
violent mountain waves in the world

occur over the Owens Valley in the lee
of the Sierra-Nevada Range. Observa-
tions in the UCLA project (Holmboe
and Klieforth, 1954), indicated vertical
velocities in the breaking waves with a
maximum of about 60 fps. On the basis
of the above discussion, this is a rea-
sonable figure and indicates that the
maximum figure of 100 fps will be ex-
perienced very infrequently.

The laminar waves in flow over moun-
tains are so long that present aircraft
can maintain reasonably uniform alti-
tude in flying through them. Superson-
ic aircraft, however, may have difficul-
ty, so that the wave motion itself may
become a cause for concern in the fu-
ture.




3. Turbulence in Shearing Currents
The other basic source of clear-air tur-
bulence, as mentioned above, comes
from the energy of the shear in a cur-
rent in which the velocity varies with
height. It is paradoxical that such re-
gions occur where the density3 varia-
tion with height is strongly stable. The
reason is clear, however. Shear is a
destabilizing effect in fluids. If there is
no counteracting stability, the shear
will break down immediately and dis-
appear. Strong turbulence comes
from strong shears, but strong shears
owe their existence to stable density
distributions. This reasoning is borne
out by recent radar observations by
Isadore Katz4, showing that the most
disturbed regions of the clear air are
regions of strong stability.

The quantity of basic importance in re-
lation to the interplay of shear and ro-
tation is the Richardson number

g dp
Ri = 2092
/_d_T.-T\z

dz,)

(%)

where p, is a reference density, and p
and U are the mean density and velo-
city distributions.

A review of the literature reveals that
turbulence at Richardson numbers of
order one is fairly well understood in
so far as its basic characteristics are
concerned. Then stability and shear
are of equal importance, and the tur-
bulence does not differ in a major way
from turbulence in homogeneous
fluids except for a tendency for the ed-
dies to be flattened by a numerical fac-
tor of three or four (Ellison, 1962). The
same literature reveals a general feel-
ing that motions at high values of the
Richardson number must be wavelike,
indeed, that high Richardson numbers
cannot sustain turbulence. Some
beliew, in fact, that this was

«proved» by Richardson himself in his
original work. What Richardson
showed was that the Richardson num-
ber must be less than the ratio of tur-
bulent momentum conduction to turbu-
lent heat conduction. If these two are
assumed to be equal, the result fol-
lows, but this is an assumption that is
not supported by close argument.

A second argument against turbulence
at high Richardson numbers has been
based on a theorem by Miles (1963)
that all small disturbances are stable
when the Richardson number exceeds
/4. It is well known, however, that fi-
nite waves easily become unstable
when the Richardson number is high,
for then even modest waves cause lo-
cal shears to increase considerably,
reducing the local Richardson number
and creating local instability (Philips,
1966).

There is another point. If the mean
density and velocity distributions in a
layer are such that the Richardson
number is large everywhere, it may
still happen that sublayers with strong
shear (and local Richardson number
below '/s) may form and be main-
tained for some time. These will be
unstable even to small disturbances
and therefore will tend to break up
and produce turbulence. Recent evi-
dence in the oceans (Woods, 1968) in-
dicates that the thermocline can con-
tain numerous sublayers of strong
shear that produce patches of turbu-
lence as they break up locally.

The question of turbulence at Richard-
son numbers of the order of one or
larger may also be approached by
considering an idealized experiment in
which two infinite, horizontal, parallel
flat plates move in opposite directions
and are heated above and cooled be-
low to produce a gravitationally stable,
shearing current in the fluid contained
between the plates (Fig. 4).
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Fig. 4. |dealized experiment of shearing
stratified flow between two moving plates.

For the sake of argument, we assume
that the coefficients of viscosity », and
heat diffusion K, are arbitrarily small,
whereas AU, AT and H are finite. In
our discussion it is convenient to use
Apinstead of AT as one of the funda-
mental parameters, where p is related
to the density p, and some represen-
tative density p,, by the equations

o= pot Lp (5)
g
There are three possibilities for the re-
sulting flow in this experiment if we
consider averages over arbitrarily long
periods of time. They are: (1) laminar
flow everywhere, (2) turbulent flow in
some layers and laminar flow in the
other layers, (3) turbulence every-
where. Because the Reynolds number
is arbitrarily large, we would not ex-
pect the flow to be fully laminar, al-
though it must be acknowledged that
the laminar solution is stable for all
infinitesimal disturbances. In any
event, we may create turbulence in the
vicinity of the boundaries by roughen-
ing the boundaries. We therefore dis-
miss the fully laminar motion from
consideration. If the motion is fully tur-
bulent, on the other hand, the vertical

fluxes of momentum and heat, = and

g will be independent of the molecular
coefficients and, therefore, will have fi-
nite values. Finally, let us consider the
possibility that the motion is turbulent
in the regions near the boundaries and
laminar in a layer which may occupy
part or all of the interior region. If the
laminar layer or layers have finite
thicknesses the transport of heat
through them must be by molecular
conduction ¢ so that the heat transfer,
q, will be infinitesimal in these layers.
On the other hand, for statistically
steady conditions, the heat transfer
must be the same at all levels, so that
q will be arbitrarily small in the turbu-
lent layers as well. This means that
the variation of p across the turbulent
boundary layers will be vanishingly
small. In the transition layer between
the turbulent and laminar regions,
there must be wave disturbances
caused by the turbulent agitations.
Certainly, however, some of these
waves will be breaking. This will trans-
fer heat and momentum of finite mag-
nitudes, and our supposition that q is
arbitrarily small cannot be correct. We
conclude that there cannot be layers
of finite thickness in which the motion
is completely laminar. There may,
however, be thin layers of laminar mo-
tion with large variation of Uand p
across them, such that q and = will be
finite in these thin layers and therefore
everywhere.

Let us now consider in detail the tur-
bulent flow in this experiment. We as-
sume, on the basis of the above dis-
cussion, that the transfers

qQ=wp ()
T=uw (7)
are finite. We assume also that the
quantity

e (8)

(2U)

is large. (8) is of the form of a Ri-
chardson number based on the exter-
nally imposed velocities and densities.
Although we assume (8) is large, the
case of Ri ~ 1 appears as a limiting
case.

3 For brevity we will henceforth use the word
«density» instead of «potential density».

¢ Private communication.

5 We emrloy the Boussinesq alpproximation so0 that
the acceleration of gravity, g, is eliminated as

one of the constants of the problem. The phenom-
ena of this experiment depend, therefore, only on
v,K, 4U, 4p, and H.

¢ It is possible that momentum transfer can be
effected by wave motions.



Since H is large in the sense that the
Richardson number in (8) is large, we
conclude that it is not an important
parameter in determining conditions
near the boundary. As a result, we may
write down from dimensional analysis
conditions that exist in the laminar
boundary layer? (in-the case where the
boundaries are not rough) and in the
turbulent boundary layer above.

(a) Laminar Boundary Layer.

z~v/1’é-£,

F—);= %Sl (zz), Ri = ZZ
9)
Lo~ by~ L~ By

é. o'~ 3y,
E-

3
where 1,,=12/q.

(b) Turbulent Boundary Layer.

z~ 1y
L

(10)
W visw'stE, iy, Iy~ Ay By
In writing down (9) we have assumed
that 1<Kl (v and q finite). In writing
down (10) we have made the high
Reynolds number assumption that the
molecular coefficients may be neglect-
ed. The results for the turbulent bound-
ary layer are in agreement with those
of Monin and Obukhov (1954).
The assumption (Millikan, 1938) that
the solutions in (a) and (b) have over-
lapping validity in the region
h<kz<l, leads to the logarithmic
boundary layer:

(c) Logarithmic Boundary Layer.

<<z << Ay
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The discussion of the interior region
may be based on a paper by the au-
thor (Long, 1968). It is shown that the
local time rate of change of the total
disturbance energy (kinetic energy
plus available potential energy) is giv-
en by a number of terms. One is an
energy increase from the release of
energy in the mean shear. Another is
an increase of (potential) energy equal
to the heat flux, g. A third term repre-
sents a decrease of energy and is giv-
en by the expression

- 0" Dz

R (12)
Pz

The last two terms in the energy equa-
tion are an energy loss through dissi-
pation and an energy gain (or loss) by
advection into the region in question.
If we adopt arguments used originally
by Richardson, we expect an approxi-
mate balance of the first three terms
in the energy equation. Since the first
two are positive, the term in (12) must
be negative and of equal order of
magnitude. The surprising importance
of the curvature term in the energy
balance may be explained physically.
We expect the interior region to be
one of laminar wave motion together
with turbulence, perhaps in isolated
patches, as indicated in certain obser-
vations in the oceans (Woods, 1968). If
the turbulence is caused by wave
breaking in a region, the mixing proc-
ess will cause a slight rise in the cen-
ter of gravity of the patch when the
density has a negative curvature

(Fig. 5). The patch will rise, transport-
ing heat upward. When the curvature
is negative, mixing causes the patch of
slightly cooler fluid to sink, again
yielding heat transport upward. This
appears to be the essential process,
since wave motion is incapable of
transferring heat.

. Z
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Fig. 5. A curved density profile and a linear
velocity profile.

With this model in mind, quantitative
estimates may be made of various
quantities such as heat transfer q,
momentum transfer z, the represen-
tative dimension of the patch /,, the
distance of rise (or fall) of the patch L,
the velocity of rise w,, the ratio R of the
volume of the turbulent patches to a
given volume of fluid, and other quan-
tities of interest. Some of the directly
interesting results are that the mean
velocity increases linearly above the
turbulent boundary layer, and the mean
density decreases as z3. The wave
length and amplitude of the wave
disturbances are proportional to the
Monin-Obukhov length .

4. Final Remarks

Much of the above discussion relates
to basic questions regarding turbu-
lence in stratified shearing currents,
rather than the specific problem of

clear-air turbulence. It is obvious,
however, that these basic considera-
tions are essential. The emphasis in the
discussion of turbulence in shearing
currents has been on a quasi-steady
model. There are indications, however,
especially in the oceans, that the

most severe turbulence may be asso-
ciated with the local build-up of strong
shears and their subsequent break-
down. This process may be considered
a steady one over arbitrarily long per-
iods of time, but as a practical matter
the time periods of the build-up may
be quite long. Some understanding of
the physical process involved in the
build-up of strong shears comes from
a recent paper by Booker and Brether-
ton (1967). They show that waves mov-
ing through a stratified shearing cur-
rent are strongly attenuated, when the
Richardson number is large, at critical
levels where the mean velocity equals
the horizontal component of the wave
speed. The lost wave energy goes into
the mean field and builds up the mean
velocity locally.

The problem of clear-air turbulence is
complicated by its occurrence in the
free atmosphere far from solid bound-
aries. The environmental layers are
moving in unknown ways, and the tur-
bulence problem is by no means a de-
terminate one in the sense of turbu-
lence between two moving, heated,
parallel plates, for example. Neverthe-
less, considerations contained in Sec-
tion 3 of this paper may have impor-
tant applications to the clear-air turbu-
lence problem. As an example, consid-
er the energy spectra of the waves and
turbulence. The spectrum of the waves
may be obtained by noticing that

E (k) ~ou "2k,

But u 'Nﬁfz; or u 2o p, k2, so that

E(k) ~ p,k° (13)
This agrees with a deduction by Lum-
ley (1964), although its derivation here
does not concern dissipation at all
and simply reflects that the frequency
of these waves is independent of wave
number.

The above theory may be used to ex-
plain the interesting observations in
the atmosphere by Reiter and Burns
(1966) that the kinetic energy spectrum
consists of a decrease for larger wave
numbers except for a «<hump» in the
spectrum at a wave length of 2000 ft.
Since the «bumpiness» or «cobble-
stones» seem to be associated with
large wave numbers, it is likely that
the «<humps» come from a dumping of
energy into turbulence from the wave
components in the turbulent patches.

7 For simplicity we now assume thatv = K.



The highest wave numbers should re-

veal a k-3 behavior, and this was
clearly indicated by the data. On the
other hand, the slopes of the curves
had no consistent behavior in the
wave region and a k=3 law could not
be inferred. Other data by Shur (see
Phillips, 1966) indicate a k™3 behavior

at smaller k and k-3 at larger k, but
the hump was missing. It is possible
that Shur’s data was taken at smaller
Richardson numbers than those of
Reiter and Burns.
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Zusammenfassung

Die verschiedenen Mdglichkeiten der
Erklarung von «Clear-Air Turbulence»
(CAT) werden erértert und die Leewel-
len- und Scherungsinstabilitaten als
wahrscheinlichste Ursache von CAT
bezeichnet. Der explosive Uebergang
von laminarer zu turbulenter
Leewellenstrémung wird im Experi-
ment gezeigt (Fig. 3a—d). Als wesent-
liche Eigenschaft der Scherungslabi-
litat findet der Verfasser ein
gekrimmtes Dichteprofil (in der Verti-
kalen), das zu beschrénkten Gebieten
(«patches») von CAT fiihrt und stabile
Schichtung mit vertikaler Scherung
voraussetzt. Kuettner



