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1. Introductory Remarks

The problem of loads on gliders caused by atmospheric
turbulence can be presented in the following way:
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In this diagram, the input is a random field of turbulent
velocities 77 and the output is a random field of acceleration
of a glider center of gravity. The field } is the result of super-
position of an operator Ogiff modelling the dynamic pro-
perties of the glider structure, on the field 3} considered.

It is well known that so far the problem of loads on
gliders, treated in the above general way, is extremely diffi-
cult to solve.

This is the case because we are at the very beginning of
development of the theory of turbulence, especially the
theory of atmospheric turbulence, that would give us a
probability-based description of the field 7. On the other
hand, the similar, although slightly easier, problem exists
with respect to an operator describing the dynamical pro-
perties of a flying object. So far we know nothing about this
operator, even in the case when the influence of the sur-
rounding medium is neglected. For these reasons, it seems,
that it is almost impossible to obtain a solution of the
problem so formulated.

It seems that, in practical applications, the most important
question is: how realistic is the model actually considered ?
To give an answer to this question is the main purpose of
this paper. The closer the model is to the description of the
atmospheric turbulence, the more precisely the problem of
loads can be treated.

2. Yudin model

Since the beginnings of aeronautics, the danger of a ‘sudden
gust’ has forced us to study continuously atmospheric
turbulence. In this field there exist meteorological as well as
aeronautical aspects of the problem (see: 1). For many years
aeroplanes (and also helicopters and gliders) are used as a
tool for the systematic collection of experimental data for the
theory of atmospheric turbulence. (See: (2), (3), (4), (5)).
Among others, in the study of turbulence the measure-
ments are made of the accelerations of the centre of gravity
of the flying object. This leads to a new general problem,
being partially the reverse of the above formulated one:
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But, although the way from ] to 2 is unique, the way from
‘o to 7 is determinated only up to certain constants. In other

words, instead of the information on the whole field u> We
obtain only the information on its ‘most disturbed’ part i
To explain it, let us consider a glider flying in a steady
vertical stream (in a thermal, for example). In such a case the
accelerometer reading will be zero, and this will give us no
information about the existing up gust, in which we are
interested.

Although this gives only limited information about the
whole field 7, it gives the full information about the loads
encountered. If we could collect the necessary quantity of
data describing the field 7, we would have all the data neces-
sary to solve the problem considered. It means, that if we
were able to build an appropriate operator Ogjsr for each new
glider structure, we would have the full answer to the question
of loads, which the particular glider could meet during its
ife?

However for this, it is necessary to have good computing
facilities. (See: (6), (7).)

3. Gust model

The other way of making use of the acceleration measure-
ments (except for the qualitative estimations of the atmosphe-
ric turbulence, based on the pilots reports) is the determina-
tion of the so called ‘gust model’. Briefly, this method is
based on the idea of replacing the information on the atmos-
pheric turbulence by a single gust of appropriate ‘shape’ and
amplitude. This quantity has no real physical analogue in the
atmosphere. On the other hand—our information about
the dynamic properties of a glider is limited only to a single
parameter. It is understood, that such a description of the
field is very rough. (See: (8)).

4. Spectral gust model

Let us pay more attention to the spectral model of the
problem (see: (9), (10), (11)). For simplification of the
treatment let us reduce the random fields of turbulent velo-
cities considered to a random function of vertical components
of velocity of the “most disturbed” part of the field ;.
The problem is considered under following assumptions:
(2) The field of atmospheric turbulence is a composition of
the time-space ‘volumes’ (time and space are connected
according to Taylor’s hypothesis) having finite dimensions
inside which the turbulence is a stationary, homogeneous
and isotropic random field. Thus the description of the
random field 3}’ is reduced to the determination of a
random function, W (x) describing the changes of vertical
velocity components, along an arbitrarly chosen direction.



The time-space ‘volumes’ are distinguished from one
another by the intensity ow®.

) All the time-space ‘volumes’ have the same normalised
spectral density function of velocities with a so called
scale parameter L.

) We know the frequency of occurance of time-space
‘volumes’ with intensities g w* in the form of a probability
density function f(ow).

d) A random function of vertical component velocities W(x)

is a gaussian process.

. Kolmogoroff model

ccording to the above approach we will try to compare
sumptions of the spectral model with the appropriate
theory of atmospheric turbulence, particularly Kolmogo-
roff’s local turbulence structure theory.

We will start from Kolmogoroff’s hypothe515 (see: (12), (2))
that if turbulence is locally isotropic then for a description
of the time-space ‘region’ it is sufficient to have the mean
value :—i. e. the mean portion of energy supplied to unit
volume in unit time by the mean flow which is an infinite
source of energy (called here “energy flow rate”). The conse-
guence of the above statement is that a power spectral
density function of velocities has a form depending only on
the quantity called ‘energy flow rate’ and frequency of
turbulent fluctuations. For a so called inertial subrange—
i.e. for a wide enough range of frequency k variations 1
we will have the so called ‘law of minus five-thirds’:

- f (EF) 2620k "

Although it would seem that the quantity called ‘energy
flow rate’ has a clear physical sense, in the general case there
is no expression given for it by the theory of turbulence
(see: (2), (13)).

Certain attempts of surmounting this difficulty, having
perhaps more general value, is based on the fact that there
exists a qualitative dependence between the power spectral
density function of, in this example, the vertical velocity
component, and variation of stratification. This problem was
solved (by (14)) for the case close to the ground (between
1 and 4 m), that is in the range where the Monin-Obuchov
similanty theory is relevant.

This approach allows an easier interpretation of copious
experimental results having wide scatter. The results have
moreover shown, that in normalised spectral function, the
variation of Richardson’s number involves an appropriate
variation of the pulsation components in the spectrum. On
the base of these results it can be shown that for the unsteady
stratification (Ri < 0) the frequency of maximum power
input of the process is fmax, for the stratification of Ri = 0 it
is I, 3 fmax and for the steady stratification (RI > 0) it is
4 fma_x.

6. Comparison of the two models
Comparing the above with assumption (a) it is easy to see

that the agreement between the time-space ‘volumes’ and
the time-space ‘region’ occurs only when the unique relation

between so called ‘energy flow rate’ and intensity ow exists.
In Kolmogoroff’s concept however one value of ‘energy flow
rate” = can correspond to several values of intensity. Thus
taking of the values of intensity ow as a distinguishing para-
meter for different time-space ‘volumes’, leads to another
composition of the field, than ‘energy flow rate’ - taken as
a parameter for the time-space ‘region’.

In addition the ‘universal’ spectral functions are not the
same for the two cases considered—this bring out the
fundamental difference between Kolmogoroff’s and Press
Steiner’s models.

Detailed considerations concerning the Gaussian pro-
perties are given in ref (15). Here we discuss only one point
i. e. the number of zeros of the random function.

The simplicity of the expression used for the number is due
to the assumption, that the function is Gaussian. The simpler
assumption, that the one-dimensional distribution of the
velocity gradient should be Gaussian can be made (this is
necessary but not a sufficient condition). Whereas, from consi-
derations based on the theory of turbulence on the transport
of energy in one direction from large scale turbulence to the
small scale ones, it results that this type of transport is
possible only if the gradient distribution is non-symetric and
hence not Gaussian.

Therefore the use of the expression for the number of
zeros appears inaccurate and as is noted in paper (16) gives
always higher values.

The discussion on the spectral model can be concluded
nothing that, if Kolmogoroff’s hypothesis is retained, then
this model is no less arbitrary than the single gust model,
remembering the similar roles played by the gust shape and
the density intensity repartition in those cases.

The most developed model of Lappi (17) where the turbu-
lence scale parameter is variable with height and the turbu-
lence intensity with wind velocity and ground geometry, and
in addition the wind velocity with stratification, does not
solve the difficulties connected with relating Kolmogoroff’s
ideas and the assumptions of the spectral model.

7. Pinus model

To end these remarks about different models of turbulence I
would like to mention one more theory due to Pinus (18)
as this shows a relation between Richardson’s (stratification)
number and the large scale turbulence which is responsible
for loads on aircraft. Pinus proposes to determin the loads
due to gusts by the following expression:
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where: ¢ = (u+v?)”%—wind velocity, V—aircraft velocity,
b—constant depending on type of aeroplane, aj and bi—
constants depending on the meteorological region considered,
Ri—Richardson’s number.

8. Final Remarks

I think, that the most complete model describing aircraft
loads is the spectral model. This model takes advantage of



recent progress in mathematics and uses advanced experimen-
tal techniques, for example measurements of correlation
functions, spectral and propability distributions. All this is
of great advantage.
On the other hand I think that the relation between this
model and the basic ideas of the universal structure of turbu-
lence remain unknown.

The main aim of my paper was to call attention to these
disturbing facts, which need further clarification.
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Zusammenfassung

Es ist bekannt, dass das Problem der Belastung von Segel-
flugzeugen durch die atmosphirische Turbulenz sehr schwer:
zu 16sen ist: Die wichtigste Frage ist: Wie realistisch ist das
angenommene Modell der Turbulenz?

Der Bericht erortert das Yudin-Modell, das sogenannte
Boenmodell, das Spektralbdenmodell, das Kolmogoroff-
Modell und das Pinus-Modell sowie die Schwierigkeiten,
einige von ihnen mit den anderen in Einklang zu bringen. Der
Autor betrachtet das Spektral-Béenmodell als das voll-
standigste. Zacher
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