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Introduction

This paper is a continuation of the au-
thor's previous works (4, 5, 6) dealing
with the longitudinal stability problem
of towed gliders. In (4) the simplified
longitudinal stability of a glider towed
behind a plane of infinite mass has
been considered. In (5) the longitudi-
nal stability of a towed system, i. e.
towing plane, towing rope and towed
glider has been discussed and the re-
sults have been compared with the re-
sults of (4).

The problem of stability of kites and
gliders towed with a rope was consid-
ered in (1) by Brown and Sweeting,
but the authors in their considerations
of the lateral stability derivatives of a
rope, did not take into account the
weight of the rope and the aerodynam-
ic forces acting on it.

S. Neumark in (7) and (8) considered
the stability problems of baloons with
unstretching ropes. In (8) he derived
the aerodynamic derivatives and de-
fined the geometric configuration of a
rope, but without taking into account
the full aerodynamic load on the rope.
In the present paper the lateral stabili-
ty of a towed glider in steady horizon-
tal flight is considered. Before the dis-
turbance the glider is in the same ver-
tical plane as the direction of its flight.
The towing rope is assumed to be
ideally flexible, longitudinally elastic,
heavy, and also loaded by aerodynam-
ic forces. The influence of the rope
bending moments and the internal
damping is neglected, as for typical
towing ropes the ratio of the radius of
curvature to diameter is large and the
forces acting on the rope are small in
steady horizontal flight. The static in-
fluence of the rope is considered un-
der the assumption, that the towing
plane is of infinite weight and is in
steady, rectic linear horizontal flight.
The dynamic influence of the rope,
and the disturbances caused by the
towing plane deviating from the as-
sumed flight path, are neglected.

The problem is treated by the method

of small disturbances. The equations
of motion are of the form of ordinary
second order differential equations
with the constant coefficients. Thus,
the determination of the coefficients of
the characteristic equation, and appli-
cation of the Routh-Hurwitz stability
criteria as well as the determination of
the roots of the characteristic equation
by Bairstow’s method (9) is possible.
The problem is solved by the same
method as is commonly used in the
stability analysis of aircraft in free
flight (2, 3, 13, and 14), which makes
an easy comparison of the results ob-
tained in the free-flight and towed-
flight cases possible and makes the
analysis relatively simple.

On the basis of a numerical example,
calculated on the electronic digital
computer GIER, for a current high per-
formance glider and for a current tow-
ing plane, an analysis has been made
of stability and the influence of differ-
ent parameters of the design and han-
dling qualities.

1. Differential equations of motion

The equations of motion of a towed
glider are derived by the method of
small perturbations; this makes lineari-
zation possible and thus leads to a
simple form of solution, convenient for
further analysis and for comparison
with results obtained in the free-flight
case.

Before the disturbance the towed glid-
er is in the same vertical plane as the
direction of flight. The small perturba-
tions are related to the lateral dis-

Fig. 1. System of coordinates and geometrical
relations between them.

placement y, and the changes of angle
of yaw v and angle of bank .

y — a change of a center of gravity
position relatively to the system of
axis X1, y1, z1 connected with the
towing plane,

@ — a change of a glider bank angle,
the rotation around the glider longitu-
dinal axis x,

v — a change of a glider yaw angle,
the rotation around the glider vertical
axis z,

vi — a change of the glider velocity
component in the direction of the tow-
ing plane axis y1,

p — a change of the glider rolling an-
gular velocity,

r — a change of the glider yawing an-
gular velocity.

The equations of asymmetric motions
of towed glider relatively to the fixed
relative of the towing airplane axis xi,
yi1, z1, (figure 1) are:
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The aerodynamic derivatives Y, L,,
Ly, L Ny, N, and N, appearing in

the system of equations 1.1 are de-
rived and discussed in (3) and are not
considered here. To solve the system
1.1 it is also necessary to calculate the
derivatives Yy, Yo, Yy, Ly, Lo,

Ly, Ny, N9 and Ny, depending on

the presence of the towing rope. This
is done below.

2. Rope lateral force coefficient. Rope
aerodynamic derivative

The influence of a towing rope on the
lateral force acting on a glider is de-
rived under the assumption, of linear
dependence of the force on the dis-
placements of the rope end.
Following the same method as in the
case of aeroplane stability analysis (2,
3, 13), the rope lateral force derivative
is defined according to (4, 5) and (8)
as
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and is derived below on the base of
consideration given in (4, 6) and (8).

It is assumed that before perturbation
the glider is in steady, rectilinear hori-
zontal flight, and is in a given position
relative to the towing plane.

The infinitely short element dl of the
rope of weight g dl, loaded by the ax-
ial force Tand T + dT, at both ends
by the normal aerodynamic force n and



by the tangential aerodynamic force t,
is considered. The element of the rope
is in an airstream of velocity V in the x1
axis direction (figure 2).
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Fig. 2. System of forces acting on the rope
element.

The following eugilibrium equations of
the rope in the x1, y1 and z1 axis di-
rections are obtained:
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Following 4, 6 and 8 the rope lateral
force derivative with respect to the
lateral displacement y of the rope end
is derived.
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are derived in 4 and 6, and they are:

—casyp) PE¥
I
o . 1-tan ¥
7l C?““ ay[- 22 sty * o (Tm,,,y “‘"f)*

27

2cat’y

Bt e (5 k).
G-

where
cot2y =3, i

and, according to 4 and 6: C, = 1,15
and C, = 0,0835.

3. Rope lateral stability derivatives of a
towed glider

The rope derivatives of lateral force Y,
rolling moment L and yawing moment
N, relatively to horizontal displacement
y, angle of bank @ and angle of yaw

y are determined as follows:
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and thus a change of the lateral force
acting on the glider towing hook is:
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Fig. 3. Changes of lateral force caused by lateral
displacements, banking and yawing of a glider.

Introducing 2.2 and geometrical rela-
tions shown in figure 3, the change
of lateral force is

3.3 dY<-Yid e Yo dp - Yy
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Making the coefficients at dy, d¢ and
dy equal in 3.2 and 3.3 the rope de-
rivatives of glider lateral force

Y--r,‘
are 3.4 Y- )3 -
Y= =% ke,

Similarly the rope derivatives of glider
rolling moment are:
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and of glider yawing moment are
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is drag force of the towed glider.

Now, when we have the rope deriva-
tives 3.4, 3.5 and 3.6, we can solve the
system of equation 1.1 and analyse the
lateral stability of the towed glider.

4. Solution of the differential equations
of motion and stability analysis
Dividing the force equations in system

1.1 by 0 S1 V2 and the moment
equations by o S VZ-bZL, and making

the following substitutions:

&
‘7‘,“’7 — aerodynamic time,
.29 = ali i i
Ay = Ti96 glider relative density,
t= -% — dimensionless time,
J,(:,Z—J"i — dimensionless
@y by moment of inertia

of glider around
the longitudinal axis,

— dimensionless
moment of inertia of
glider around the

vertical axis,

Ixz = 2—‘1‘32 — dimensionless prod-
@ by uct of inertia,
V= — dimensionless velo-
V city of glider,

P—=P§" F=pf — dimensionless

angular rolling
velocity and yawing
velocity respectively.

It is assumed that direction of velocity
V agrees with the longitudinal axis of
the glider before disturbance, and that
the directions of glider axes x, y and z
are very close to the directions of glid-
er principal axis of inertia, so that it is
possible to neglect terms %-=0 and
g

Jz

Now, the system 1.1 has the following
dimensionless form:
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These dimensionless aerodynamic de-
rivatives are derived in (3).

The general solutions of the system of
second order differential equations
with constant coefficients have the
form:

1
™
o+
i
~|

it
et L ymye



After substituting the above relations
to the system 4.1, dividing by s -}\'E ,

and putting in order with respect to
Yo @, and yo, the system of homo-
geneous algebraic equations is ob-
tained. To get the non-zero values for
the solutions, the characteristic deter-
minant of the system has to be equal
to zero, which leads to the following
characteristic equation of the system:
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The coefficients of the equation 4.3
are divided into two groups: those
which correspond to free-flight Bz, Cz,
Dz and E:z (3), and those which corre-
spond to the presence of the towing

4 4 A 45
ropeC3, Dy, Ey, Fpand G

4.4

The free-flight coefficients of the char-
acteristic equation are (3):
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The rope terms of the characteristic
coefficients of the equation are:
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During the sailplanes free flight the
above terms are equal to zero and the
characteristic equation becomes a
fourth order algebraic equation of the
form
45 PR Rl G I )

If the location of the towing hook coin-
cides with the glider center gravity,

. A
distances h,, = k, 4, =0, G, =0

and the characteristic equation 4.3 be-
comes the fifth order equation:

46 A+ BA+CA+ DA+ EX+F-0.
The solution of equations 4.3 and 4.5
were obtained by Bairstow’s numerical
method (9).

The roots of the characteristic equa-
tion are of complex form:

47 A= Fe 2

where

o d — dimensionless damping

B coefficient

Pkt — dimensionless oscillation
frequency.

For a stable glider, the real parts of
4.7 have to be negative. This leads to
the following in equalities:

4.8 8,,D0, E,F, G20,
and
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The terms 4.8 and 4.9 are the same as
Lienard’s and Chipart’s criteria (11,
12).

On the base of the above considera-
tions the example numerical calcula-
tions and the analysis of the towed
glider stability have been performed
for a chosen glider.

5. Numerical results and conclusions
Numerical calculations have been per-
formed for the chosen example of a
high performance glider. The influence
of the following parameters has been
analysed: tow velocity, position of the
glider with respect to the towing aero-
plane, location of the towing hook with
respect to the glider center of gravity
and towing rope length. Similar calcula-
tions for the free-flight case have also
been performed.

The roots of equation 4.3 are marked

as '5\‘:
and the roots of equation 4.5 are
marked as A

The roots of the same subscripts k in
both cases free and towed flight cor-
respond to the same modes of the
glider. There exist two real roots
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Fig. 4. Changes of damping and oscillation
frequency dimensionless coefficients vs. towing
velocity.

corresponding to aperiodic motion and
two or one pairs of complex roots

X T (5,2 iRy and A
corresponding to periodic motion.
The real roots i!=3,<o correspond to

the glider rolling with angular velocity
p around the longitudinal axis x and

the roots . (%)
movements. The pair of complex roots

correspond to spiral

3, (A4) corresponds to the so-called
lateral oscillations (2, 3).
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Fig. 5. Changes of damping and oscillation
frequency dimensionless coefficients vs. glider
position relatively to towing airplane.
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Fig. 6. Changes of damping and oscillation
frequency dimensionless coefficients vs. horizontal
displacement of towing hook relatively to the
glider center of gravity.
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The pair of complex roots 3],

existing only in the towed flight case,
corresponds to periodic yawing mo-
tion, with a very long period around
the glider vertical axis z.

In the figures the thick lines corre-
spond to the towed flight data and the
thin lines to the free flight data.
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Fig. 7. Changes of damping and oscillation
frequency dimensionless coefficients vs. vertical
displacement of towing hook relatively to the
glider center of gravity.
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Fig. B. Changes of damping and oscillation
frequency dimensionless coefficients vs.
length of towing rope.

The conclusions given below are
based on the numerical calculations
for one glider type only, and may not
be valid for other gliders.

(1) According to the results of the cal-
culations, the towed glider is unstable.
For typical flight conditions, the period

of the unstable oscillations is T = 50 s,

and the time of double amplitude is T2
= 28 s. As a typical time of pilot's
reaction tg is 0,20 < t; << 0,54 s,

the glider instability is not dangerous.
(2) Towing has only a small influence
on the damping and frequency of the
sailplane’s lateral oscillation.

(3) Towing does not affect the glider
aperiodic motion. Below the angle of
stall, this motion is very strongly
damped in free as well as towed flight.
(4) Towing has an influence on the
spiral motion and new type of low fre-
quency yawing oscillation appears.
Both these motions are mutually de-
pendent; increase in damping of one
of them involves decrease in damping
of the other.

(5) From the point of view of stability,
the position of the towed sailplane be-
low the towing airplane is favorable; it
assures better spiral stability and only
slightly decreases the damping of the
low frequency yawing oscillation.

(6) The increase of towing velocity
above 30 m/s is desirable. It improves
the spiral and yawing stability.

(7) The towing hook attachment, being

in front of the glider center of gravity,
improves the spiral stability and slight-
ly decreases the yawing stability.

(8) Positioning the hook below the

g
s

lider center of gravity has the oppo-
ite effect to the one mentioned above.

The methods presented in this paper,
together with those of (4), (5) and (6)
with respect to longitudinal stability,
make possible the quantitative esti-
mates of the parameters, having an in-

fl

uence on the glider equilibrium, sta-

bility and characteristics.
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ymbols

- the span of the wing of glider,

- dimensionless aerodynamic
coefficients of forces normal
and tangential to the rope and
determined in relation to the
diameter and the length unity
of this rope,

3
1

diameter of towed rope,

kg/m

aerodynamic forces normal to the
rope acting on 1 m length of the

rope,
kg/m - weight of 1 m of the rope,

weight of glider,

wing area of glider,
kg/m

aerodynamic forces tangential
to the rope acting on 1 m
length of the rope,

forces acting on the hook of the
glider and incidence by the towed
rope,

kg

rope
in relation to the trajectory o
flight and measured on the hook
of glider and the hook of towed
airplane,
1/kg - coefficient of elasticity of the
towing rope.



