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1. Summary

This note suggests a straightforward method for— obtaining
low drag three-dimensional bodies from tabulated low drag
airfoil ordinates.

2. Introduction

Although a considerable amount of theoretical and experi-
mental work has already been done on low drag wing
sections, the same is not true in subsonic flow, for three-
dimensional bodies.

The available data are scarce and many of them date
from the lighter-than-air period, with few modern works
on the subject, that have been overlooked by many subsonic
aircraft designers.

However in glider design, fuselage aerodynamics is

gaining more and more importance as glider speeds are
moving up.

Many sailplanes have fuselage shapes whose projections
(plan and elevation) are similar to low drag airfoil contours.
However a simple study of potential flow theory, points out
that different results are obtained with the same shape, in
two- or three-dimensional flows.

A striking example of that, is the comparison of the
potential flow past a cylinder and past a sphere (see fig. 1)
the difference being greater if pressure gradients rather than
pressure distributions, are compared (ref. 1).

In reference 2 the potential flow past an airfoil shaped
body of revolution is obtained by means of conformal
mapping transformation of flow past a sphere and computed
values of pressure are less than for the corresponcing two-
dimensional case.

So, such airfoil shaped bodies, may not provide negative
pressure gradients of sufficient magnitude in the forebody



Fig. 1 - Pressure distribution of potential flow past a cylinder and a sphere -
Ref. 1.

to maintain the laminar condition of the flow at Reynolds
Numbers such as those of glider fuselages (R.N. about 6 to
13 108).

The well-known method of superposing -sources and sinks
to a parallel flow may also be used to compute the velocity
in the surface of a body of revolution with axis parallel to
the main flow, the result being.
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Fig. 2 ~ Pressure distribution along two elongated bodies of revolution in
axial potential flow — Ref. 1
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For simple geometrical forms, the solution is easily
obtained and figure 2 illustrates the results for elliptic and
parabolic elongated bodies of revolution (d/l = 1).

An interesting remark is that the three-dimensional para-
bolic case gives a pressure distribution closer to that of an
elliptical two-dimensional cylinder than that obtained with
a elliptical three-dimensional body!

3. The ““three halves power law”

The two theoretical methods seen above would permit the
design of a body with a prescribed pressure gradient law,
for instance, that of a low drag airfoil.

However the amount of work required and mathematical
knowledge is considerable and tabulated shapes are yet to
be computed and tested.
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Fig. 3 — Velocity components of the text

So, if a simple relationship could be established, between
two- and three-dimensional flows it would bring along the
evident profits from using all the work already done in
regard to wing sections.

Let us compare the potential solution for a two-dimensional |
airfoil with ordinate y (x) with a three-dimensional body of
revolution of radius r (x), as obtained by the superposition
of an uniform flow U, and a line of two- and three-
dimensional sources and sinks of intensity g, (x) and qg (%) |
(see fig. 3).

The velocity increase caused by a source or sink element
q dy is in each case:
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Only the component in the x direction need be considered
for elongated bodies and sections and so we have
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The source and sink intensity q, and q; can be related
o the ordinates y and r by means of the continuity law, that

Zives

a&/a/x @z = 27'/{0";_07_4'

X

X = ZUe0

S (x-XD

So a/;:-:. = Ve
v an [)' +fX—X)

2]405"

Voo (x-x7)
2 [FP+ Cx-x) V2 r o= ak
ax

n

g

If the same velocity gradient is desired in the body and in
the section, the following relationship must exist between y
and r.
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The solution of which results in a non-explicit expression
envolving log and arctg. of y and r.

An approximate and direct solution may be obtained,
observing that the functions between brackets have a sharp
maximum for (x—x’) = + y and (x—X’) = 4 2 1, falling
away for other values. Substituting (x—x") by y and /2 r we
obtain.
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A more correct solution would be obtained, using a
{(x—x") corresponding to the bracketted function center of
gravity, instead of that corresponding to its maximum.
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- Fig. 4 - Contours of bodies derived from NACA airfoils 0009, 63009 and
#5009

Such values being also functions of x” themselves, no direct
relationship results, but analysing the two functions we see
that if that were possible a larger exponent of y would
result and an aproximate “law” in the form:

r=y23

is now assumed.

4. The “fish” bodies

By means of the above expression the ordinates of three
bodies, were computed from the NACA airfoils 0009,
63009 and 65009, the results being presented in table 1 and
figure 4.

An amazing similarity is shown between the so calculated
bodies and some fishes, as shown by figure 5 where the
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Fig. 5 — Comparison between the computed bodies derived from NACA air-
foils and fishes

NACA 0009, 63A009 and 65A009 derived bodies, are com-
pared with corresponding low medium and high Reynolds
Numbers fishes. Although water is 800 times heavier than
air, its kinematic viscosity is only 0,07 of that of air, and
fish operating Reynolds Numbers fall within the operating
range of gliders.

For instance a 45” tuna travelling at 19 knots and a 6 m
glider fuselage flying at 60 mph. have the same Reynolds
Numbers (~ 10 million).

5. Fuselage Design

In actual glider fuselage design, the “pure” low drag body of
revolution is not practical and some modifications are
needed to allow for the following design features.

- Pilot visibility and internal arrangement.

- Wing up down-wash for Cr + 0.

- Minimum cross section.

— Tail cone structural strength.

- Angle of attack range.
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Fig. 6 — Example of «low drag» glider fuselage obeying the 3/2 power law

Figure 6 shows a glider fuselage obeying the 3/2 power law
as well as the above design parameters.

It is now important to remember, that such fuselage
shapes will only favour laminar flow in their forebody by
creating favourable negative pressure gradients. Actualy,
this laminar flow will only be achieved if factors such as:
surface smoothness and waviness, cabin sealing and venti-
lating etc., are carefully controlled resulting in an imprevious
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Table 1 — Coordinates of three bodies derived from NACA 0009, 63009 and
65009 airfoils

nose (see Wortmann’s article in ref. 3). If not, as with wing
sections, these shapes may give poorer results that obtained
with more conventional fuselages.

6. Conclusion

In the design of fuselages, tip tanks, propeller spinners,
wheel fairings etc., pointed shaped bodies, with hyper-
bolic or parabolic noses may give less drag than rounded or
elliptic-nosed shapes.

A simple and approximate method to obtain such shapes
is to compute the 2/3 power of tabulated airfoil coordinates.

Many existing gliders may obtain some “penetration’
gains by means of a simple nose cone modification, accom-
panied by cabin sealing and surface finishing.
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Zusammenfassung
der Arbeit von Galvao

Fiir dreidimensionale Korper (anders als fiir Fliigelprofile)
sind aerodynamische Werte kaum verfiigbar; bei hohen
Geschwindigkeiten ist jedoch der Rumpf von grosser Be-
deutung.

Viele Segelflugzeuge haben Rumpfformen &hnlich denen
von Fliigelschnitten, doch zeigt schon die Potentialtheorie,
dass verschiedene Ergebnisse mit derselben Form in zwei-
und dreidimensionaler Stromung erhalten werden. Als Bei-
spiel zeigt Figur 1 einen Vergleich der Strdmung hinter einem
Zylinder und einer Kugel. Die Methode von Quellen und
Senken kann dazu benutzt werden, die Geschwindigkeits-
verteilung um einen Rotationskorper zu berechnen; Figur 2|
stellt die Ergebnisse fiir elliptische und parabolische Korper
dar.

Ein Vergleich mit den obigen Methoden legt nahe, dass
die Ordinaten (Radien) eines dreidimensionalen Korpers,
ausgedriickt in Bruchteilen der maximalen Ordinate, un-
gefihr gleich sind der 3/2-Potenz der Ordinaten (halbe
Dicke) des equivalenten zweidimensionalen Korpers. Korper,
die auf diese Weise von 3 NACA-Profilen abgeleitet sind,
werden in Tafel 1 und Figur 4 dargestellt. Sie sind bemer-
kenswert ihnlich den Formen einiger Fische, wie in Figur 5
gezeigt.

Es ist interessant, dass die Reynolds-Zahlen fiir den Fisch
und fiir einen Segelflugzeugrumpf dhnlich sind, weil Wasser
_ obwohl dichter als Luft — eine niedrigere kinematische
Zihigkeit besitzt.

Ein Segelflugzeugrumpf, dessen Form ungeféhr iiber-
einstimmt mit oben angegebener 3/2-Potenz-Regel, ist in
Figur 6 gezeigt. Hans Zacher
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