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The purpose of this article is to obtain an analytic expression
for the vertical velocity pattern in three dimensions in the
lee of an isolated mountain, and to present this in a form
such that the comparison with the original two-dimensional
study of Lyra [1] will be facilitated. Some numerical solu-
tions for the vertical velocities have been obtained by R.
S. Scorer [2] for a mountain of a shape such that there is
non-oscillatory disturbance to the lee, and these results may
also be used for comparison. The computed pattern turns
out to be one characteristically observed in the lee of an
isolated hill or mountain range of limited length, and cloud
photographs are adduced in this condition.

The model considered, identical with that of Lyra, consists
of a stably stratified atmosphere flowing with uniform speed
along the x-direction. It is assumed that the space-time scale
of the disturbance renders negligible both the compressibility
of the air and the coriolis deflection. The disturbed motions
are thus pure gravity waves with non-negligible vertical
accelerations. The disturbance introduced by the mountain
is assumed to be small of the first order. The equation gov-
erning the vertical velocity w in such a system is
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g being the acccleration of gravity (y¢—y), the difference
between dry-adiabatic and environmental lapse rates, U the
curtent speed, and 7 the mean tropospheric temperature.
This equation simplifies to that of Lyra [1] and Queney [3]
in case there is no variation along the y-direction.

The fundamental solution of Lyra was for an infinite
plateau of height h. In the present model the plateau will
have width 2 b in the y-direction. If b is I kilometer or less,
the following solution applies. The steady-state formulation
of the problem, as is well known, is indeterminate, and
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Fig. 1. Vertical velocities in the two-dimensional lee wave (after Lyra [1]). The
distance of the heavy lines from the horizontal to the vertical velocity. Under

the typical meteorological conditions described in the text, one non-dimen-
sional vertical velocity unit is equal to 1.9 m/sec.
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admits of a symmetric solution, when what is wanted is a
solution with a lee wave but negligible disturbance at large
distances upstream. This aspect of the problem has been dis-
cussed in the literature (Hoiland [4]; Palm [5]; Wurtele [6],
so that for present purposes it will be sufficient to use the
method of Queney [3, pp. 41 ff.] for eliminating mathemati-
cally the upstream wave.

It would be possible to obtain a numerical solution to
equation (1), but for the purposes al hand an asymptotic
evaluation is preferable. In the two-dimensional case the
asymptotic solution is a good approximation at distances
greater than one stationary wave length (abouth 7 km) from
the mountain; closer than this in nature, the particular
shape of the mountain plays an important role, and the non-
linear effects probably dominate the mction. The desired
solution is

w = 2kshbU A cos (ks Rz|7) (2)
where
Rz;‘xz+yz+z2‘r2ﬁx2+zzq
and
PG O K N R AR
r*R | o+ aty? ) |

The geometric description of the wave patlern in three
dimensions is not complicated. In the plane 5 = 0 the solu-
tion (2) reduces to

4
cos ks (x* + z*)

w— 2kshbU ——
x* + 22

which is the wave pattern of Lyra’s two-dimensional asymp-
totic solution for large r. Lyra's complete solution is repro-
duced in figure 1. The magnitude of the disturbance down-
stream, however, dies out like x ', as compared with x— '
in the two-dimensional problem. This is the result of the
spreading of the wave in the direction normal to the flow.

The tilt of the wave decreases with increasing distance
from the x-axis. The lines joining the first downsiream crests
in several planes y = constant are displayed in figure 2.
The line in the plane y = 0 thus corresponds to the first
crest line in figure 1.

Fig. 2. The tilt of a wave crest os a function of cross-wind distance, shown in
five planes, y = constant




Fig. 3. Isopleths of vertical velocity at the 3-km level. Updraft areas ore hatched.
Under the typical meteorological conditions described in the text, 100 non-
dimensional verticol velocity units are equal to 45.1 cm'sec.

In horizontal planes z = z, the nodal lines are given by
(2). If we take the point x = x, y = 0 on any one of these
lines, its equation becomes

so that the nodal lines in horizontal plane are rectangular
hyperbolas with the x-axis as their major axis, concave
downwind.

When isopleths of vertical velocity are plotted, the factor
A in (3) alters the shape, but the pattern is always domi-
nated by the hyperbolic nodal lines. To gain an idea of the
magnitude of the vertical velocities, we may take the height
h of the platecau as one kilometer and the half-width b as
one kilometer. The wind speed will have the value 20 meters
per second, and the stationary wave length corresponding
to this speed and to a lapse rate of about 65°% of the dry-
adiabatic is Ls = 10.5 kilometers, ks = 0.6 km~!, The non-
dimensional vertical velocities for the 3 kilometer level are
analyzed in figure 3, and the dimensional values for the case
mentioned are indicated.

The crescent shape of the first updraft areas (hatched
in figure 3) is a frequently observed cloud palttern. The best
photograph of such a cloud that I have been able to find
is one taken by Count Masanao Abe [7] in the lec of Mount
Fujiyvama, reproduced in figure 4. As a matter of general
metcorological interest, and also to call attention to the
originality of Count Abe’s researches, I include a photograph
(figure 5) of Abe’s model experimental wind tunnel, in
which he successfully reproduced the crescent shaped lee
cloud.

Figure 3 may also be compared with figure 3a of
article [2]. Although we have no analytic expression for the
latter pattern, and although there would be no wave pattern
if the computation were continued downstream, a simple
visual comparison of the figures reveals a marked similarity
in the crescent shaped updraft region. The difference in
downstream wave patterns is a result of the particular form
of Scorer’s mountain and exists in two dimensions as well
as in three (cf. Queney, op. cit.).

orer's

Fig. 4. Crescent shoped cloud in the lee of Mt. Fujiyama, photographed by
M. Abe [7]

The only other similar gravity wave i three dimensions
which has received altention in the literature is the ship
wave. I'irst studied by Lord Kelvin, this problem received
perhaps its most complete treatment by Togner [8]. Mathe-
matically, the problem is one of a moving disturbance of
the pressure at the free surface of a liquid of infinite depth.
The resulting displacements are diagrammed in figure 6.

The most striking feature of the ship wave is the wake,
wilh an angle of 39 degrees, 16 minules. The wake lines are
the waves with greatest elevation and oulside these the
disturbance is negligible. No such effect occurs in the atmo-
spheric model, although, to be sure, the amplitude here falls
off as y°. This cannot be explained in satisfactory detail
wilhout reference lo the corresponding transient problem.

There is a further difference in the pattern of crests; the
ship wave solution exhibits a singularity along the x-ax
a result of the occurrence of the impressed pressure disturhb-
ance on the free surface itself. In the atimospheric case, of
course, the disturbance is initiated at z == 0, the entire mo-
tion on this plane being kinematically constrained.

The ship wave pattern might be expected to be charac-
teristic of the lee wave on an atmospheric surface of dis-
continuity, which behaves dynamically like a free surface.
This is in fact the case. Scorer [9] has recently employed
such a model with an inversion at two kilometers, obtaining

Fig. 5. Crescent shaped lee wove cloud formed in model experimentol wind
tunnel of M. Abe [7]
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Fig. 6. Elevations of the free su’ace in a ship wave (ofter Hogner [8])

a wake angle of about 25°. In the upper layer, of course,
the internal lee wave pattern discussed in this article would
be superimposed on the ship wave.

For full mathematical delails the reader is referred to [10].
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