The Rotor Flow in the Lee of Mountains

Observations and «a new theory by Dr. Joachim Kuettner, Geophysics Research Directorate,
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Summary

After a description of the rolor phenomenon an attempt
is made to explain it by the hypothesis of the “heated
pressure  jump’. The simple hydraulic  jump  theory,

although very altractive in many respects, fails to aceount
for the fact that the height of the roll cloud frequently ex-
ceeds that of the cap cloud | “Fohnmauer”) and that the
mountain wave generally reaches its most intense slate

the carly afternoon hours, Measurements made during the
Sierra Wave Project in the
rapid ground heating near the foot of the mountain, there-
the top of the layer
through turbulent mixing. This removes part of the gravi-
tational constraint on the air mass bouncing upwards in

California show effects of

by reducing inversion on ground

the hydraulic jump.
Heating rates of 10 C per 2 miles ground path and
reduction of the 50 %0 are observed. Il the
jump is moderately high part of the energy is radiated
away in a wave system (Cundulatory jump”). Tf the jump
50 %0 of the Kinetic energy are trans-
(“breaking jump’). A diagram
height ol the can be
The scems to be identical
the most hazardous type of High cap cloud
strong heating tend to create dangerous conditions.

inversion by

is inlense, up to
turbulence
the
“breaking jump”

formed into

is given from which rotor esti-

mated. with
rotor. and
This study supports the opinion ol many glider pilots

that the rotor flow plays a primary roll in the develop

ment of the mountain wave in contrast to many existing
theories.
Ever since the mountain wave has been discovered

fact that the
smooth lee wave has a strange and rough companion, the

obscrvers and pilots have been aware of the

“rotor flow™. The majority of the lee wave theories con-

Photo: Ovgard

Fig. 1 Rollcioud over Bishop, Cal

Cambridge, Mass., USA

St-Yan (France), July 1956

sider this disagreeable fellow as an insignificant byproduct
ol the lee wave or ignore him altogether. In contrast pilots
caught in the grip of the rotor have acquired great re-
manners and tend to consider rather the
as a good natured companion of the rude
rolor Like Cerberus at the gate of Hades the rotor guards
the gates to the smooth wave and a flying intruder ven-
turing unsuspectingly into his range is first being clubbed
by an unbelievable
down draft and eventually will be happy to beat a hasty
retreat. The results of this studv tend to support the
piloUs viewpoint of the primary importance of the rotor
flow.

speet tor his
smooth lee wave

turbulence, then dumped in a severe

Description of the rolor phenomenon

IYigures 1 to 6 give an idea of the nature of the “rotor”
which was probably first described by Koschmieder (1920).
darallel to the mountain range but a few miles leewards
it is line of cumulus rotate
around its horizontal axis (Fig. 1). “roll

which seems to
The height of this

visible as a

cloud” (also called “rotor cloud”™ or simply “rotor”) is
generally of the same order as that of the cloud layer
covering the mountain crests (“cap cloud” or “FoOhn-

mauer”). The lenticularis clouds lie just over the top of
the roll cloud and there may, be more roll clouds under
the consecutive wave crests further downwind (Fig. 2). In
spite of its heavy turbulence the rotor cloud sometimes
looks quite harmless or may even be invisible, but in the

more severe cases it is a rather impressive mass of
cumulus clouds paralleling the mountain range with all
its bends (IMig. 3).

Real flight hazards are indicated when the roll cloud

forms a solid wall of formidable height at a considerable
distance downwind of the mountain range. In this case
details in the structure of the mountain range are not
reflected in the rotor which represents one straight barrier
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Fig. 2: Schematic diogrom of montain wave flow
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Fig. 3: Airview from 30000 ft along lee slope of Sierra Nevada showing
frontside of rotor. Photo: Henderson, Bishop; California Electric Power Co.

extending sometimes hundreds of kilometers laterally and
more than 8 km vertically (Fig. 4). In the afternoon hours
its menacing appearance often resembles a thunderstorm-
squall line (without precipitation). Fortunately this type is
rare. Examples in the Sierra Nevada were the days at
which R. Symons soared his P-38 lighter over Bishop 1o
30,000 feet with feathered props (I7ig. 5) or the one when
Larry Pratt-Read-glider broken apart by
turbulence (Fig. 6). Comparison ol these two
cases indicates that the severity of the rotor is not simply
a malter of humidity, but a more complicated dyvnamical
aflair.

Edgar's was

excessive

Existing lxplanations

Numerous theories of the rotor phenomenon have been

advanced, some of which may be mentioned here in short

terms:

1. Instability of shear-gravity waves at the lower inversion
(Kuettner, 1939).

2. Flow separation in the pressure field of the leewave
(Lyra, 1943).

3. Hydraulic jump (Knox, 1952: Schweitzer, 1953: Long,
1954: Ball, 1956).

4. Overdeveloped wave in a flow with continuous densily
gradient (Long, 19

Fig. 5: Severe pressure jump in the lee of the Sierro Nevada

Air photo. R. Symons, Bishop, from 28 000 ft
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Fig. 4. Normal rotor cloud development in the lee of the Sierra Nevada

(line A-A) and severe rotor development (line B-B)

5. Karman-Vorlex street (Forchigott, 1¢

6. "Cal's eyve effeet”™ at the zero-wind level (Queney, 1955).

We will follow here the general idea of the “hyvdraulic
jump™ but with an essential modification which permits
us to overcome a basic difficulty of this hypothesis: As
mentioned already the rotor frequently reaches heights ex-
ceeding those of the cap cloud over the mountain crests.
Energy limitations do not permit a simple hydraulic jump
to accomplish this feat.

This was one of the reasons why the scienlists of the
University of California pursuing this idea in the Sierra
Wave Project (Knox 1952, 1954: IHolmboe and Klicforth,
1957) did not come up with the hydraulic jump as a final
answer 1o the rotor problem. Special measurements con-
ducted on the urging of Prof. J. Bjerknes indicale what kind
of mechanism is active. We may call it the “leated Pres-
sure Jump” (“pressure jump” being the accepted termino-
logy for a “hydraulic jump”™ in the atmosphere).

In order to explain the heated jump we must first discuss
the normal hydraulic jump and its application 1o the rotor
problem. In this connection it may he mentioned that a
remarkably clear treatment of the “foehn™ as a hydraulic
flow has been given by H.Schweitzer (1953) and a
excellent theory of the pressure jump in the lee of moun-
tains by the Australian 1F. K. Ball (1956

\’(’l'_\'

Fig. 6: Powerful rollcloud development near Bishop on 25" April 1955, when
severe turbulence destroyed L. Edgar’s glider (Air view looking downwind
from Bishop)
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Fig. 7: Discharge diogram. (Explanation in text)

The Hydraulic Jump

Under wave conditions the cap cloud (or “Féhnmauer”)
makes visible the cold air mass which spills over the moun-
tain range like water over a weir. In a water channel the
hydraulic jump forms at the foot of the weir where the
water arrives with a high velocity in a “shooting flow”.
Jumping back to some higher surface level it not only
slows down but looses a considerable portion of its energy
in turbulence. Down stream of the jump the flow is “tran-
quil” again as it was upstream of the weir.

To understand what is going on in the hydraulic jump
we may visualize a large waler reservoir with a sluice gale
regulating the water discharge. If the gate is gradually
raised, more and more waler will discharge, but beyond a
certain height of the gate further raising will have no in-
fluence upon the discharge. (In fact if it were possible to
increase the water depth in the gate further, less water
would pass.) Thus, at a “critical height” the outflow reaches
a maximum. This height establishes itself automatically if
the gate is removed and equals */3 of the original height
(over the bottom of the gate) inside the reservoir.

This peculiar behaviour is a consequence of two condi-
tions which have to be fulfilled in the discharge. First, the
continuily equation requires, once a steady state is reached,
that the same amount of water per second flows through

every cross section, i. e. that the discharge

() = vh = constant (1)
(v = mean flow velocity, h = height of water surface over

channel floor)

Sccondly the tolal available energy £ remains conserved
along streamlines during the outflow, i.e. the potential
energy given by the height ¥ (over the channel floor) of
itside the reservoir determines the kinetic

the free surface

T sealever | i |
Fig. 8
(See text)

Schematic diagrom of hydraoulic air flow over a mountain ronge

Fig. 9: Cloud water foll as seen from Puy-de-Déme observatory

and potential energy in the discharge. If frictional losses
arc neglected and streamline flow exists the total energy

2
E = ':; + gh = gh* = constant (2)

(g = gravily. This is Bernoulli’s equation along the sur-
face where the pressure vanishes.)

Combining (1) and (2) we find that the discharge has
its maximum at a “critical height” h,, where the velocity at
the gate reaches the critical value

l‘o;'\/gho- (3)
(Sce discharge diagram, I'ig. 7. In hydraulic terminology
h* is called the “specific head™.)

The critical velocity has the significance that it is also
the well known maximal propagation speed of long sur-
face waves. As a consequence no “swell” of the surface can
travel upstream through the gate, once critical velocity has
been reached there. This is of importance if the channel
floor slopes down oulside the sluice gate. Gravity will
then accelerate the stream to supereritical “shooting flow”,
and an eventual return to suberitical “tranquil flow™ far-
ther down stream cannot penctrate upstream, but remains
fixed at the foot of the slope.

This brings us sufficiently close to the airflow over
mountains and we may now look at IFig. 8 which depicts
the atmospheric conditions.

In the “reservoir’ far to the left the air mass may have
the height h* above the mountain crest. If there were a
gate at the crest which could be raised gradually the air-
flow would reach critical height and velocity at the gate.
In practice the air is already streaming towards the reser-
voir and the mountain barrier under the influence of the
large seale pressure field and the critical height h, over the
crest will little more than %/ I*. Since we have no
ree surface bul an interface hetween a colder and warmer
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Fig. 10: Nomogram to determine the height of a <heated pressure jumps.

(Explanation in text)
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Fig. 11: Temperature sounding over Sierra Nevada of 19'" March 1952 showing
an inversion layer of 8¢ potential temperature

air mass the density on top of the flow is not zero hut
only slightly reduced according to the temperature inver-
sion 7T of the two air masses. Actually the inversion is
rarely a sharp discontinuity, but a finite layer, see FFig. 11,
and it is therefore better to take the difference in potential
temperature 4. This reduces the gravitational force acting
on the interface to the “modified gravity”.

Vﬂégg (4)
which is not a constant any more and may be 50 times
smaller than gravity. As a consequence the critical velocity
over the mountain crest, as defined by (3) is now re-
duced to

vo=Vvh, (5)
IFrom now on we replace g by » and continue to treat the
airflow like water'.

We now want to know whal happens to the flow pour-
ing down the mountain slope from Section 0 to Section 1,
see I'ig. 8. Assuming frictionless streamline flow we may
again apply Bernoulli's energy equation for the top stream-
line and compare the two cross sections 0 and 1. If H, is

! This procedure is precise only if the upper layer were infinite
or al rest and if it had a constant potential temperature.

5 5% 5.000
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SCALE OF STATUTE MILES
Fig. 12: Potential temperoture field ond rollcloud position (upper part)

measured by mobile weather station over the Owens valley {lower part), after
Holmboe and Klieforth, 1957
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the height of the mountain over the valley floor we have

1 . y ’
7 (Hy + hy— ) o (07— 0,7 (61
In view of the constant discharge Q defined in (1) and the
critical velocity v, defined in (5) we arrive al a cubic
equation for the depths of the flow of the 1wo eross
sections:
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Remarkably cnough gravity » and discharge rate Q0 have
vanished and the only parameter of importance left is the
depth I, of the flow over the mountain crest (cap cloud) in
comparison to the free slope of the mountain, 71, This
explains why the flow of clouds through mountain passes
looks precisely like a true river, Fig.9 (except for the
velocity which cannot be judged from a still photo).

Solution of (7) shows that the depth shrinks by aboul
50 % and the velocity doubles if h, = 0.4 H,. Equations
(1), {5) and (7) indicate that the most violenl winds in the
valley must be expected if the “Fdéhnmauer” (cap cloud)
over the mountain is tall and the inversion strong. This
appears to be the basic mechanism of “foehn” and “bora”.

We are now interested in finding out what happens far-
ther downstream, at Section 2 (Fig. 8). As evidentl from the
discharge diagram, Iig. 7, there are always two possibilities
to accomplish a given discharge (), namely a suberitical and
“shooting flow" is
never maintained for long in nature, since friction and the
undisturbed  environment tend towards the suberitical
alternative of “tranquil flow”. As a consequence we must
expect that the flow in the valley raises its depth from
to the corresponding level he, sce Fig. 7 and 8. Now, if this
happens, waves can travel upstream in the suberitical area,
near hz, while in the supercritical arca near hiy, they can-
not. The wave front will therefore steepen until it breaks
between Section 1 and 2. In this way the hydraulic jump is
formed which becomes slationary over ground.

a supercritical one. Supercritical or

As much of the linear kinetic energy of the shooting flow
is transformed into rotational kinetic energy of turbulence
(and eventually into heat) the streamline flow is destroyved
by violent mixing and the Bernoulli equation does not hold
anymore in the jump area. But the “momentum equation”
still holds which states that the net pressure force acting on
the vertical cross sections to the right and left of the jump
equals the rate of momentum change:

o

'? (he* — hi®) = hi* — hev2® = Q (11i—02) (8)
From this relation we can find the height of the jump h
in comparison to the depth of the flow upstream of the
jump, A Itis given by the simple quadratic equition

LE ve .

(E)+(ﬁ]—2Fﬁxm (9)
Fiist the “Froude number” which expresses the degree to
which the flow is supercritical at Section 1:

Ft=uv2[yh (101

where »hiis the square of the eritical velocity at height.
Iy, as defined in (5). Solution of (9) is the well known
hydraulic jump equation

b L

n=—t) g rrRe s P2 (1

(for sufficiently large Froude numbers).

To compare the height of the rotor. e,
of the cap cloud (I1, + h,) we have to link equalions (11)
and (7). This can ecasily be done through the Froude
number 7y if the “shooting flow™ velocity vy is expressed
in terms of Q by (1) and Q in terms of h, by (5). It then
turns out that

with the height




Fi* = (ho/l)* (12)
Connecting in this way the air flow conditions over the
mountains (Section 0) with those in the rotor region (Scc-
tion 2) we find that the height of the hydraulic jump he
can never exceed the height of the flow over the barrier
(H, + h,). This relation is plotted in Fig. 10 (curve to the
It is quite independent of the
slope characteristics, the inversion, the flow velocity ete.
The deeper the flow over the mountain, the higher the
rotor, but even the rather extreme where the cap
cloud is double as high as the mountain (h,/H, = 1), yields
only a jump he of less than %4 the cap cloud height
(h, + H,). Whe thus arrive at an interesting conclusion: In
spite of many similarities (spill over, shooting flow, jump.
turbulence) the simple pressure  jump hypothesis
does not explain the remarkable height of the roll cloud
which so frequently exceeds the cap cloud. The obser
me-
chanism is at work which we may call the “heated pressure
jump’.

left labelled “no heating™).

use

severe

tions during the Sierra Wave Project suggest that a
L2 b

T'he Heated Pressure Jump

Full development of lee wave activity is generally not
reached before the early afternoon, much to the dismay
of glider pilots who want to fly cross country during the
“4 o'clock wave” has
the Sierra-Wave-Projecl-pilols.

short winterly daylight hours. The
among
Their usual conclusion that thermal activity causes the swell-
ing of the roll cloud is quite close to the point although the
mechanism involved is a bit more complicated.

Continuous cruises with a mobile weather station across
the Owens Valley and the Sierra slopes have revealed that
during the early afternoon hours the air coming down the
mountains is heated in the valley floor by about 1° poten-
tial temperature every 2 miles of its path (Holmboe and
Klieforth, 1957). Fig. 12 indicates a total heating of 4° on
an 8 mile stretch from the foot of the mountain to the front
side of the rotor during the hours between 14 and 16 o’clock.
In this case (19 March 1952) the mountain wave was very
powerful with a rotor top of almost 25,000 ft. (Glider flights
of over 13 km height and 600 km distance were accom-
plished.) Since mixing is very violent in the rotor zone

become notorious

(making il almost impossible to trace clear streamlines
along the potential isotherms, Knox, 19: the heat will
he distributed throughout the layer so as to reduce the in-
version. Fig. 11 shows a radiosounding {rom the upwind
side of the Sierras at 11 hours of the same day. The inver-
sion amounted there to about 8" in potential temperature

(generally it is even stronger). We must therefore expect
a 50% reduction of the inversion on the leeside of the
mountain. This will allow the hvdraulic jomp to bounce
hack to far greater heights, as the gravilational constraint
en the inversion surface is cased.

Comparing cross seclions 1 and 2
gravity changes from

(IFig. 8) the modified

Y =—g g (13)

which, if introduced into (8) leads to the cubic equation

(%})L—'(l u',"):ﬁ‘ w-‘Z%’ZF,Z—U

(14)
Va2 i
upstream conditions is

instead of (9). Connection to the
again given by the Froude number, equation (12} and (7).
The result is startling. Solutions for different healing rates

)

b= (%) are plotted in Fig. 10. 1f 50°%0 of the inversion

Y
are destroyed (as on the 19 March 1952) the rotor is lifted
by over 50% and exceeds the height of the cap cloud pro-

§ 8 3
vided the flow over the mountain is deep enough ( h, >IH“)

The use of Fig. 10 may be illustrated by the following
example which fits the case of 19 March 1952. The height
h, of the cap cloud over the mountain crest is the same as
that of the mountain crest 71, over the valley, i. e. h/H, = 1
(vertical scale on the left). The heating may destroy 50%
of the inversion so that we have to follow the line g = 50%
until it meets the horizontal line h /I, = 1. We then read
vertically down and find, on the horizontal scale (h,/H, +
h,) = 1.1. In other words, the height h, of the rotor exceeds
the total height (H, + h,) of the cap cloud over the valley
floor by 10%.. Since the Sierra Nevada, south of Bishop,
is about 13,000 feet high and the valley floor 4,000 feet,
the cap cloud should be in this case at 22,000 feet and the
rotor at 24,000 feet m. s. 1. (while without heating, it would
not exceed 17,000 feet). This is very close to the conditions
observed in the afternoon of the 19 March 1952 (Kuelt
ner, 1953).

Since the height of the mountain range varies, we have
also plotted on Fig. 10 the height of the rotor over sea level
for H, = 7000 ft. and [, = 5000 ft. (dash-dotted lines)
assuming a mean-valley floor of 5000 ft.

Also plotted are the relative heights of the hydraulic jump
h./h, (dashed lines) for the following reason: If the jump
is small or moderate much of the released energy is ra-
diated away in a wave system downstream of the jump
(“undulatory jump”). If the jump is high (h,/h; = 2] most

of the released energy goes into turbulence (“breaking
jump”). As much as 50% of the kinelic energy may be

transformed into turbulence in this way.

We have therefore shaded the “dangerous area” of the
rotor flow which is defined by (li,/h,) > 2 (breaking jump)
and (h,/H, + h,) > 1 (rotor height exceeding cap cloud
height). The danger is maximized by strong heating rates /.
The shallower the flow, the stronger the heating required.

For deep flows rotor heights of 30,000 ft. (9 km) may
be reached if the healing rate exceeds 75%o. This may be
the reason why the severe rotor formations are found way
back in the valley (fig. 4—6) allowing the flow to heat
strongly along the valley ground (which in the Sierra Ne-
vada, consists of hot, sunny desert).

Finally an energy consideration may show what a power-
ful agent this heating process is. Kinetic energy if trans-
formed into heat creates the following temperature increase:

AT = ev?*/2 ¢cp (15)

where ¢ = heat equivalent of mechanical energy

¢, = specific heat of air at constant pressure.

If in a breaking jump, 50% of the kinetic energy is trans-
formed through turbulence into heat, a fochn storm of
100 km/h velocity would raise the lemperalure by only
/49 C. The heat added at the ground in front of the rotor is
therefore a multiple of the kinetic energy which is respon-
sible for the normal hydraulic jump. This conflirms the
opinion of glider pilots that thermal growth of the roll
cloud intensifies the mountain wave in the afternoon.

The theory outlined here tends to support the idea first
advanced by Schweitzer (1953) that the “foehn” is a hy-
draulic phenomenon with supereritical flow.
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Résumé

Apres avoir décrit le phénomeéne du rotor, l'auleur es
I'expliquer par I'hypothése d'un s¢seuil de pression thermiques.
La seule théorie du seuil hydraulique, quoique trés plaisante &
maints égards, ne permet pas dexpliquer le fait que l'altitude
du nuage de rotor dépasse souvent celle de la cape nuageuse
(mur de feehn) et que I'onde de relief alteint son intensité maxi-

mum dans les premiéres heures de l'aprés-midi. Des mesures
faites pendant le «Sierra Wave Project> en Californie montrent
les effets du rapide réchauffement du sol au voisinage du pied
de la montagne, qui provoque une réduction de I'inversion a la
partie supérieure de la couche au sol grice 4 un effet de mé-
lange du a la turbulence. Cela supprime une part de la con-
trainte gravitationnelle sur les masses d'air projelées vers le
haut sous I'effet du seuil hydraulique.

Des réchauffements atleignant 1o sur deux milles de trajec-
toire au sol et une réduction de linversion de 50 % sont ob-
servés. Si le seuil est de hauteur modérée, une partie de I'énergie
est utilisée par le systeme d'onde (cseuil ondulatoire»). Si le
seuil est trés marqué, jusqu'a 50°%e de I'énergic cinétique se
transforme en turbulence («scuil de rupture:). Un diagramme est
reproduit permettant d’estimer la hauteur du rotor. Le <seuil de
rupture» semble s'identifier avec le type de rotor le plus dange-
reux. Un mur de feehn élevé et un fort échauffement tendent i
créer des conditions dangereuses.

Cette étude appuye l'opinion de beaucoup de piloles de pla-
neurs que la circulation dans le rotor joue un role primordial
dans le développement de 'onde de relief malgré ce que préten
dent beaucoup de théories existanles,
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