An Analysis of Goodhart’s Figure of Merit

By F. G. Irving

Introduction

H C.N. Goodhart has proposed a Figure of Merit which
describes the potential cross-country performance of a glider
and is independent of the weight of the glider. It is obtained
by taking the maximum value of the ratio (average cross-
country speed) : (thermal strength).

The purpose of this paper is to provide a theoretical
justification for this Figure of Merit, to obtain its value for
an idealised glider and some real gliders and to consider
the practical implications of the theory.

General Dertvation of the IFigure of Merit

Given the performance curve of a glider, there is a well-
known construction for oblaining the best speed to fly
between thermals and the average speed achieved, given the
achieved rate of climb. This is shown graphically in Figure 1,
where

v, = achieved rate of climb

V= Dbest speed to fly between thermals

vs = corresponding rate of sink of the glider in still air

V= average cross-country speed.

FFor convenience, this diagram may be made non-dimen-
sional by wriling:

r= VIV, s
where

Vo = minimum drag speed, and

vy, = rate of sink at V.

For the sake of simplicity, true specds will be used
throughout this paper, it being implied that conditions near
sea-level are under consideration.

Figure 2 then shows the require construction in a non-
dimensional form. For consistency in signs, rates of sink
are negative and rates of climb are positive. In this diagram,
the performance curve or “polar” becomes independent of
weight and is therefore a unique curve for each type of
gliders in a given configuration.

= 04/vy, € = v/Vso, u = VIV,
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Fig. 1

/A, the non-dimensional rate of sink, is therefore a unique
funktion of r, the non-dimensional forward speed, for each
type of glider.

ie. 4 = S(r)
where the nature of the function S depends on the type of
glider.

With the sign convention shown above, it follows that at
cach chosen value of ¢, the non-dimensional rate of climb,
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i.e. c=38—r§ (1)
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dr
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Now if the true thermal strength = vy, then v; = v, +

(rate of sink of the glider in circling flight)
= V¢ + 0 Vs min
where vs min = minimum rate of sink in straight flight,
and o = a constant depending on how the glider is
flown in circling flight.
Now, for any given glider
0s min = K vy, where K is a constant
S0 vy = v + oK vy,
= ve T nwg say.
i.e. ﬂ=r+n (3)
Vso ‘
Hence, given S and n and choosing values of r, u could
be found from equation (2) and ¢ from equation (1). u could
then be plotted as a function of (¢ + n) for the given glider
(Fig. 3).
In order to obtain Goodhart's proposed Figure of Merit,
the slope of the tangent from the origin is required, i. e. the
maximum value of

C
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By differentiation, it is found that the maximum value
occurs at the value of r which satisfies
nS 4 (rS'—S8)=0 (4)

i. e. of

W
ThHe: value f(_.._
e value of (= n.’m-x.

and is unique for a given glider.

is clearly independent of weight

Goodhart's Figure of Merit is (vl’)
¢t/ max.

(A

() (B)e

Since both of these factors are independent of weight, it
follows that the Goodhart Figure of Merit depends only on
the aerodynamic properties of the glider—on the shape of
the performance curve as defined by S and on the best lift/
drag ratio.

It is also clear that this Figure of Merit, which might con-
veniently be termed the “Goodhart Number”, is a measure
of the potential cross-country performance of a glider. Con-

Now

sidering the actual curves of V against v, it will be seen
that different values of the weight will give different curves,
whose envelope is a line from the origin, of slope (Vlve)
max. For a given value of vy, vy, in Figure 4, the weight of
the glider should be adjusted to a value W, so that the oper-
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ating point A lies on the envelope, thus giving the maximum
value of V. Any other weight, W, or W, will give operating
points B or C.

Calculation for an Idealised Glider

Consider a glider whose polar is given by the simple equa-
tion (see Ref.1)

Wvs =k, V* + k,/V (5)
Then, by the usual analysis
1
Vo= (k!.!kl)4 (6)
and, by substituting in (5)
Wow =2k, * k,
At V=17V,

Woy =k V3 + ky|rV,
and introducing (6)

13
Wos = (PP +1jr) by by
Wo, r‘+1

Hence Ve B

So that, with the above sign convention, the non-dimen-
sional equation for the polar becomes

ril
A= — o5 (7)
Hence §=— (S_r;r;’l)
v wE=l)
il c+n_ (3r—1)(r*+m—1) ®)
Equation (4) becomes
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Hence, given n, r may be found. In practice, the form
of this equation is such that it is more convenient to choose

values of r and to find the corresponding values of n.
For this idealised glider, it may be shown that

E 3 1 3

s W'v'amin.=4)<3 Tkl-{ki“ (10)
So that

! K_”lmin._zxsﬁ:_ 1

T v 114
" and therefore 0 =n/K=1-14n (11)

t

i Figure 5, showing r plotted against o, may therefore be
. obtained from equations (9) and (11). For each value of ¢,

! c%u may be obtained from the corresponding values of n
and r (Equation 8), and may also be plotted as shown in
. Figure 6.

» It now remains to select a suitable value for ¢. Goodhart
“ has suggested 1.5, which, as is shown below, would seem
“ to be reasonable. From Figures 5 and 6, if 0 = 1.5, then r =

u

;1293 and — = 0.232.
) c+n

Hence for an idealised glider, and assuming that the rate
¢ of sink in circling flight is 1.5 X minimum rate of sink in
straight flight, the Goodhart Number, G, is given by

G = 0.232 X (L/p) max.

. For a glider whose (%/p)max. is 32, the Goodhart Number
would be 7.43, for example.

Justification for choosing ¢ = 1.5

If a real glider is considered, operating under practical
conditions, it is clear that in general ¢ will vary from one
thermal to another and even from time to time in the same
thermal, since ¢ a function of forward speed and angle of bank.
However, in order to compare different gliders on the same
basis, a standard value must be chosen.

If a glider in circling flight is always flown at the speed
appropriate to minimum rate of sink (which will itself
depend on the angle of bank, since the corresponding lift
coefficient remains constant), then the minimum rate of

3
sink will be proportional to (sec®) 2 where @ is the angle
of bank.
3
i.e. o = (secD)? (12)

If @ is taken as 30°, representing a fairly typical con-
dition, then o = 1.24 on this theoretical basis. In practice,
there is a slight increase in both induced and profile drags
due to the non-uniform spanwise distribution of local air-
speed and direction and to the aileron deflection. A further
increment occurs due to inevitable errors and corrections
in piloting. It would therefore seem reasonable to take
o = 1.5 as representing what is likely to happen in practice.
It is worth noting that if o = 1.5 in Equation (12), @ is
almost exactly 40°.

The Goodhart Number for some representative gliders.

Taking o = 1.5, the Goodhart Number has been obtained
fore some representative gliders by graphical construction.
The resulls are given in table 1.

Type Max. (Di) G G/ (%)mu.
Weihe . .. .. ... 29.2 6.30 0.216
SKY: o soonpmeimes = = 1 27.5 6.32 0.230
Skylark 3 . ... .. 32 7.15 0.224
Breguet 901 . . . . . 36 8.05 0.224
Table 1.

Comparing the figures in the final column with the “ideal-
ised glider” value of 0.232, it will be seen that the lowest
shows a deficit of only 8%. To a first order, therefore, the
best lift/drag ratio can be taken as a measure of the poten-
tial performance.

Some Practical Considerations

As mentioned above, the weight of the glider on a parti-
cular day should be adjusted so that the operating point
lies on the envelope of the average speed curves (e. g. at
A in Fig. 4).

However, the variations in weight which would be needed
to satisfy this requirement are quite excessive. Thus, if the
point A normally corresponded to a thermal strength of
1.7 metres/sec, an increase in thermal strength to 2.4 metres/
sec, would theoretically require the weight to be doubled.
In practice, the loss in performance due to flying at the
incorrect weight is very small: the operating point of the
Breguet 901 with water ballast (390 kg all-up weight)
corresponds to thermals of 1.89 metres/sec, but if it is flown
in the same thermals without ballast (315 kg all-up weight),
the loss in cross-country speed is of the order of 1 k. p. h.
It is interesting to note the thermal strengths corresponding
to the ideal operating points of the gliders previously con-
sidered, as shown in table 2.

All-up weight Best thermal strength
Type

Pounds kg m/sec. Ft/min.
WBIHE civmmameanane » 735 328 1.71 336
SKY ' wusiene % uow 800 375 2.10 413
Skylark 3 . ... .. 790 353 1.89 372
Breguet 901 . . . . . 705 315 1.70 335
Breguet 901 . . . . . 875 390 1.89 372

Table 2.
Conclusions

L. The Goodhart Number is a non-dimensional quantity
expressing the potential cross-country performance of
a glider.

2. It depends on the shape of the performance curve and
the maximum /.

3. In assessing the Goodhart Number for a given glider it
is reasonable to take the minimum sinking speed in
circling flight as 1.5 times that in straight flight.

4. To achieve the best performance on a given day, as
described by the Goodhart Number, the weight of the
glider should be suitably adjusted. However, the penalty
involved in operating at a fixed weight is generally very
small.
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