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I. INTRODUCTION

Both experiments and theory (1, 2) indicate that in a three-dimensioral flow near the
centre of a swept-back wing, the point of minimum pressure is shifted backwards from the
leading edge.

Hence the local 1ift in the front of the centre section is reduced compared with that
of the flat-plate, while the local 1lift on the rear part has a sonewhat higher value

The maximum local velocity of the flow across the c2ntre section is not necessarily
higher compared with that of the sections located at greater distances from the kink.

The available methods for estimation of the velocity distribution in centre section of
swept wings are restricted to the case of zero lift.

This note represents an attempt to illustrate a way for aetermination of an approximate
velocity distribution and the isobar pattern in the region otf the plane of symmetry in-
cluding the cases of non zero lift.

Simple expressions are given for calculating the chordwise velocity distributicns both
for the centre section and the sections at greater spanwise distances from the kink.

Assuming a parabolic spanwise variation of isobars in the region adjacent to the plane
of symmetry, a method that can be used to predict the isobar pattern is briefly demou-
strated for two particular swept-back and swept-forward constant chord wings with symme-
trical airfoils for two values of the local lift.

Since the resultant isobar pattern obtained in this way is only approximate and of
empirical character, a firmer theoretical basis is needed.

II. VELOCITY DISTRIBUTION ON A SECTION GF SWEPT WING AT A GKREATZE DISTANCE FROM THE KINK

It is known (3) that the velocity distribution about a symmetrical airfoil can be con-
sidered as composed of two separate and independent components:
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where:
v - 1s the local velocity at the wing surface;
V0 - is the free stream velocity;
v/V - is the velocity - increment ratio corresponding to the velocity distribu-

tior over the basic thickness form at zero angle of attack,
A va/Vo - is the velocity - inerement ratio corresponding to the additional load dis-
tribution associated with angle of attack;
cy - is the 1lift coefficient for which the velocity or pressure distribution is
to be determined.
In the expression (1), the sign (%) corresponds to the upper surface, and the sign (-) to
the lower surface of the wing.
For NACA airfoils, the values of ratios,(v/vo) and (A va/vo) are given in reference (3).
For other airfoils, these values may ve determined using the method exposed in reference (4).
Let us now consider an infinite sheared wing, i.e., a wing of constant chord set into an
oblique position with respect to the direction of flight, so that iis both leading and
trailing edges make an angle (Q) with the normal to the flight direction.
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The flow around a section of sheared wing parallel to the flight direction will be simi-
lar to that around a section of a swept wing of infinite aspect ratio and constant chord,
but at a greater distance from the plane of symmetry.

Though the velocity distribution at such a section is in reality resulting from a three-
dimensional flow, it can be determined by means of a two-dimensional method.

The chordwise velocity distribution can be represented by the relation:
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where:

@ - is the angle of sweep;

x - is the chordwise coordinate and

y = - is the spanwise coordinate.
In this formula, the velocity-increment ratios (v/Vo) and (A va/V ) correspond to that of
an infinite non sheared wing, i.e., straight wing, and have thus éﬁe same values as in ex-

pression (1).

II1I. VELOCITY DISTRIBUTION AROUND THE CENTRE SECTION OF A SWEPT WING

According to the results given in reference (1), the chordwise velocity distribution
around the centre section (y -~ 0) of a swept wing of infinite aspect ratio and at zero
incidence can be calculated from the following expression:
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where:
F* (x) - denotes the first derivative of the function
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which determines the upper boundary of the wing profile, and
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is a function of the angle of sweep (Table I, see the next page).
The velocity distribution at the kink in the zero l1ift case may therefore be determinded

immediately from the results obtained for a given section in two-dimensional flow.

In reference (2) it is shown that the chordwise 1ift distribution at the centre of a
thin swept-back wing differs, in the first approximation, from the ordinary flat-plate 1ift
distribution only in the exponent which instead of (%2) becomes [(%) - (@/n)].

It is suggested that this change of the exponent is more appropriate for the centre
section of swept wings, and that it may replace the ordinary flat-plate distribution in all
those cases when the lifting surface is swept.

Combining this result with the method exposed in reference (4), the following general
expression for calculating the chordwise velocity distribution around the centre section of

a swept wing may be obtained:
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where the first term at right side is given by the relation (3), and
c. - is local 1ift coefficient on 2 section at greater spanwise distance from the

plane of symmetry.
The sign (+) corresponds to the upper surface and (-) to the lower surface of the wing.
The function g (Q) represents the kink effect, and is used in the above formula as a
factor to obtain the corresponding local 1ift coefficient in the centre section.

This factor is defined as follows:
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z - being the chord of the airfoil.
The last term in the expression (6) is given by:
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The evaluation of the integral in numerator of the expression (7) rejuires some special
care. In order to avoid the infinite values of the integrand at the leading edge, for
(x = 0), an approximate solution is obtained by integrating grafically from:

X X

— =0,025 to — =1

z z
In table I are summerized the calculated values of the kink effect factors f (@) and g (9)
for different angles of sweep.

TABLE I
o 0° 10° 20° 30° 40° 50° 60°
£ (@) 0 0,1100 | 0,2132 | 0,3020 | ©0,3721 | 0,4136 | 0,4192

g () 1,0 0, 9434 0, 8955 0,8561 0,8247 0, 8000 0, 7823

) -10° -20° -30° -40° -50° -60°
£ (@) -0, 1100 | -0,2132 | -0,3020 | -0,3721 | -0,4136 | -0,4182
g (@) 1,0680 1, 1503 1,2403 1, 3493 1,4762 1,6238
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1V, VELOCITY DISTRIBUTION OVER THE WING SURFACE AND THE ISOBAR PATTERN PLOTTING

By means of the expressions (2) and (G), the chordwise velocity distributions on a sec-
tion at greater spanwise distance from the kink and in centre section of a swept wing of
constant chord may be calculated, for various prea sumed values of the local 1ift coeffi-
cient. In order to obtain approximate velocity distribution (or pressure distribution,
which is the same, since the two are strictly connected by BERNOULLI’s equation) over the
surface of the wing, the following simple method is adapted.

It is known that in the centre section, the isobars or lines of equal pressure must be
at right angles to the direction of flight. Assuming now a parabolic spanwise variation of
the isobars in the region of the kink, the lines of equal pressure or *pressure contours*
may be plotted.

The series of figures which follow show the results of calculations for two infinite
swept-back and swept-forward wings of constant chord, having both NACA 0012-64 airfoil and
a 35° angle of sweep.

Figures 1 and 2 (see the next page) show the resulting isobar pattern in the case of
zero lift while figures 3 -and 4 (see page ) represent the same for a definite value of
the local 1ift coefficient (c 0.25).

On these figures, the kink effect can be seen clearly and at some distance from the
centre the isobars become almost parallel to the edges.

In view of the difficulties of the three-dimensional flow, it is evident that the results
of calculations and the method of plotting the isobar pattern are only very approximative.

Further experimental investigations are needed to give a more detailed information
applicable in practical cases.
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