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ABSTRACT 

In this paper we discuss and re-analyze some phenomena involving interactions between machines 
and states of conscious intention that have been reported by Robert Jahn and his colleagues at 
Princeton University. We specifically deal with the experiments these investigators have carried out 
using an apparatus called the random mechanical cascade (or JUv1C). We introduce a class of 
theories, called selection theories, which might be invoked to explain the phenomena they have 
observed. These include some parapsychological theories that have been proposed for such phenom­
ena in the past, and they also include the theory that the phenomena are spurious by-products of 
conscious or unconscious editing of the experimental data. 

We have found that the data for the RMC experiments have some statistically significant features 
which have not been noted before, and which tend to rule out selection theories as possible expla­
nations of the observed phenomena. Thus our findings support the conclusion that these phenomena 
represent a genuine anomaly, and they narrow down the range of possible theories that might account 
for this anomaly. 
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INTRODUCTION 


A
group at Princeton University, including R. D. Nelson, B. J. Dunne, and 
R. G. Jahn, I has for several years carried out a research program investi­
gating correlations between human intention and the behavior of various 

machines. In one series of experiments the machine was a version of a device 
commonly used to demonstrate the law of large numbers. The Princeton device, 
called a "Random Mechanical Cascade" or RMC, was described as follows in Nelson 
et aU The machine consists of a quincunx array of 330 3/4" nylon pins with a 
horiwntal spacing of 3.25". A total of 9000 3/4" polystyrene spheres are allowed 
to cascade through the array from an inlet at the top, and these accumulate in 19 
equally spaced collecting bins at the bottom. About 12 minutes are required for 
all of the balls to reach the bins. 

As one would expect, the 9000 balls tend to fill the bins according a Gaussian 
distribution, but this distribution is somewhat irregular, and its mean and other 
statistical features tend to vary randomly. In the Princeton experiments an observer, 
called an "operator", tried to influence the mean of the distribution to shift to the 
left, remain at the baseline (the statistically expected position), or shift to the right. 
The operator did this by meditation within the mind, rather than by trying to 
physically interfere with the machine. Usually the operator sat in front of the 
machine at a distance of about eight feet and watched the cascading balls, but in 
some experiments the operator was at a remote location. 

The operation of the machine was divided into sets of three "tripolar" runs, one for 
each of the three intentions of left, baseline, or right. (In some cases the operator 
was free to choose the order of the intentions in each set, and in other cases this was 
dictated by the experiment protocol.) An operator would perform a number of 
series, each consisting of 10 or 20 tripolar sets. The distribution of the balls in the 
bins was counted electronically for each run and recorded automatically in a com­
puter file. 

For a given run, let b(k) be the number of balls in bin k for k 1, ... ,19. The 
19 numbers, b(1), . .. , b(19), are referred to as the bin distribution for the run, and 
they roughly approximate a Gaussian distribution. The mean of this distribution is 
called the bin distribution mean. We will also speak of the mean and standard 
deviations of the variable called "bin distribution mean" over a series of runs, each 
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of which produces a bin distribution and a bin distribution mean. These two uses 
of the word "mean" can be distinguished by context. 

The performance of the operators was evaluated by examining the behavior of the 
quantities It-b~ rt-b~ and rt-It, where It, b~ and rt are the average bin distribution 
means for the runs with intentions, left, baseline, and right, in a long series of tripolar 
sets of runs. Differences between It, b~ and rt were used to offset the effect of long 
term trends in machine behavior caused by wear and other systematic factors. We 
note that since there are 19 bins, the average bin distribution mean for a perfectly 
symmetrical machine should come out to 10. Since the actual machine is slightly 
asymmetrical, this average tends to be slightly higher than 10. 

One would naturally expect that there would be no relationship between human 
states of consciousness and the statistical behavior of the machine. However, the 
experiments indicated that in the long run, this behavior tended to conform with 
the intentions of the operators. In a total of 1131 tripolar sets of runs generated 
by 25 operators, it was found that rt-It came out to about .0057. This corresponds 
to an average bin distribution mean for rightward intentions of 10.0229 and an 
average bin mean for leftward intentions of 10.0172. 

Although the differences between these average bin means are quite small, they turn 
out to be statistically significant. The standard deviation corresponding to rt-It was 
.0493, and the t-score was 3.891. This outcome has a probability of about 5 X 10-5, if 
we assume that the individual runs were statistically independent and not influenced 
by operator intention. 

I 
n these experiments the bulk of the runs were generated by two operators (10 
and 55), and operator 10 achieved by far the most significant results. However, 
a statistically significant effect remains even if the data generated by operators 

10 and 55 are excluded from the analysis. 

In this paper we will analyze the results of the random mechanical cascade experi­
ments, and show that the data generated by these experiments reveals some anoma­
lous effects in addition to those originally reported. To do this, it was necessary for 
us to gain access to the original RMC data, and this was kindly provided by Roger 
Nelson of the engineering anomalies research group at Princeton.! In Section 1 we 
briefly discuss the possible effects of small forces generated by the observer on the 
RMC. In Section 2 we introduce the class of selection theories and give three 
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examples ofsuch theories. In Section 3 we discuss the RMC data, and we show how 
it reveals hitherto unknown effects that should not occur, according to selection 
theories. Finally, in Section 4 we summarize our conclusions. 

1. THE EFFECT OF SMALL FORCES 
ONTHERMC 

W hat happens when a conscious person desires to perform some action, 
such as picking up an object? Standard explanations maintain that the 
desire to act can be identified with particular electro-chemical phenom­

ena in neurons within the brain. These give rise to movements of bodily parts and 
possible changes in the body's electrical field and other physical characteristics. Could 
these changes in turn influence the behavior of the RMC in a normal physical 
fashion? 

Nelson et. al3 discuss possible mechanical, electromagnetic and gravitational inter­
actions between the observer and the RMC, and reject these "ordinary" forces as 
being too weak by several orders of magnitude to produce the observed effects. 
Although this is basically correct, there are some fine points regarding the effect of 
ordinary forces on the RMC that should be taken into account. 

In recent years a phenomenon known as deterministic chaos has been extensively 
investigated. The essence of this phenomenon is that in physical systems with 
nonlinear dynamics, very small changes imposed on the state of the system can grow 
exponentially into very large changes in a short period of time. The consequences 
of this exponential growth have been dramatically illustrated by the "butterfly effect," 
described by E. N. Lorenz in a meteorological context: "even if the atmosphere could 
be described by a deterministic model in which all parameters were known, the 
fluttering of a butterfly's wings could alter the initial conditions, and thus (in the 
chaotic regime) alter the long term prediction".5 

The dynamics ofthe RMC involve many nonlinear interactions, such as the nonlinear 
dependence of angle of bounce on angle of incidence in collisions between balls and 
pins. Analysis of simple mathematical models of the RMC shows that these inter­
actions result in deterministic chaos, and we suggest that they also result in chaotic 
phenomena in the real RMC. If this is true, it means that extremely small forces 
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generated within the environment of the RMC could have a measurable effect on 
the bin distribution mean. Thus, in principle, the bin distribution mean could be 
influenced in a systematic way by small, ordinary, physical forces generated by the 
body of the observer. 

However, if small forces can result in large effects, small variations in these forces can 
likewise result in large variations in the effects. According to the theory of determin­
istic chaos, this means that if the observed anomalous behavior of the bin distribution 
mean is produced by small, ordinary forces generated within the body of the ob­
server, then these forces must be produced with great precision in accordance with 
the observer's intentions. Thus as Jahn and his colleagues note, I the observed 
anomalous effects cannot be produced by normal forces applied with a normal degree 
of precision (of the kind we would expect from a human nervous system). But they 
might be produced by normal forces applied with paranormal, or unexpectedly high, 
precision. Here we will not try to quantify "paranormal precision", but we suggest 
that it might be worthwhile trying to do this in future studies of PK phenomena. 

2. SELECTION THEORIES 

O
f course, there are theories which attempt to account for the anomalous 
behavior of the RMC without bringing in physical forces at alL For 
example, there is a class of theories, called selection theories, that can be 

described in general terms as follows: Let us suppose that natural processes obeying 
known physical laws produce an ensemble of possible outcomes for runs of the 
RMC. This ensemble can be defined by a probability distribution, P ( x) , where 
x is the information representing an RMC run. Let y represent the observer's state 
of intention, and let j ( x, y) > 0 measure the degree to which a run x satisfies the 
intention y. (Here we write y = RT, LT, or BL , where these symbols stand for states 
of intention.) We suppose that the greater the agreement between the run and the 
intention, the greater is j (x, y). Define the following probability distribution for 
a pair, (x, y ) , consisting of a run plus an intention: 

P'(x,y) =j(x,y)P(x)1 K (1) 

where K is a normalization constant. In a selection theory, the actual, measured 
probability distribution for (x, y) is given by P! (x, y) , for some suitable function, 
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f (x, y ) . We will give three examples of selection theories, and show in each case 
how one arrives at P' ( x, y). 

E 
xample (1), precognition. The first example assumes that the RMC always 
behaves according to known physical laws, but that the observer has 
a paranormal ability to foresee the future. In this example we suppose that 

the observer has the opportunity to make his own choice of intentions prior to each 
run (the "volitional" mode). We suppose that he makes his choice in accordance 
with what he foresees, but that his foresight is imperfect. This can be expressed by 
means of a Markov chain transition matrix, M ( x, y), which gives the probability 
that the observer will choose intention y, given that the future run will be x. In this 
model, the probability that (x, y) will come up is 

P'(x,y) == P(x)M(x,y) (2) 

which has the same form as Equation (1). The constant K = 1 since the sum of 
M ( x, y) over y RT, BL, L T is assumed to be equal to 1. 

In the case where the intentions are chosen in advance by the experimenters (the 
"instructed" mode), a similar model can be formulated on the basis of precognition 
by the experimenters. 

Example (2), wave function collapse. We have studied the behavior of solutions 
of the Schrodinger equation for an idealized model ofballs bouncing from pins. The 
results suggest that during a run, the quantum mechanical wave function for the 
RMC should spread out to encompass a range of outcomes for that run. Thus, the 
normal physical behavior of the RM C can be expressed in terms of the collapse of 
the quantum mechanical wave function. We can let 'P represent a wave function 
of the RM C plus observer that encompasses many possible run outcomes, and let 
(/Ji represent wave functions of the RMC plus observer for specific outcomes. (Just 
to simplify the discussion, let us suppose that the (/Ji'S form an orthonormal basis for 
wave functions.) 

In quantum mechanics, the probability of getting state (/Ji after collapse of the wave 
function, 'P, is I < 'P, (/Ji > I . Wigner 6 has argued that the collapse of the wave 
function is connected with consciousness, and he proposes that a proper formulation 
of this connection will require modifications of the laws of quantum mechanics. So, 
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if we suppose that consciousness prefers lPj's showing harmony between intention 
and RMC run, we can venture to express this by replacing I < p, lP

j
> 12 by f(lP) 

I < P, lP? 12
, where fis a positive function that favors such harmony. This modified 

form of quantum mechanics is also a selection theory. 

Example (3 ), data selection. In this theory we suppose that the observed correlation 
between intention and RMC behavior is spurious. probability of run outcome 
x is determined by a distribution P (x), which is generated in accordance with the 
laws of physics. But in the natural course of events, some runs may seem defective 
for one reason or another, and the experimenter may wish to delete them from the 
database. We suppose that, owing to the desire for a successful experiment, the 
experimenter is more likely to throw out runs where x disagrees with the intention, 
y, than runs where x agrees. (He may do this consciously or unconsciously.) This 
can be expressed by means of a data selection function, 0 < f( x, y) < 1, 
which represents the chances of retaining a particular run in the database, and which 
is somewhat smaller for cases where x and y disagree than it is for cases where they 
agree. The probability for (x, y) in the edited database is then given by Equation (1). 

L 
et us suppose that the run information, x, can be expressed as x = ( u, v, 
w), where u and v are real variables describing different features of the run, 
and w contains whatever additional information is needed to specifY x. We 

can suppose that v is the variable to which intentions apply (namely, the bin mean 
in the RMC experiments). Sincef(x,y) expresses the degree of agreement between 
v and the intention, y, we can write it as J: (v,y). The variable u is presumed to 

be one to which the intentions of the operator do not apply; for example, this would 
be the case if the operator had no knowledge of u. 

If we substitute x = ( u, v, w) into Equation 0), and then eliminate the variable 
w by summing over it, we obtain an equation of the form 

P! ( u, v, y) = J: (v, y) P ( u, v) I K (3) 

The dependence of von y in this model can be seen by examining the expected value 
of v, given y. This expectation value is 

E ( v Iy) = f f v P! ( u, v, y) dudv Iff P! ( u, v, y) dudv (4) 

and we can similarly define E (u Iy) , the expected value of u, given y . 
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The model is designed so that E (v Iy) varies as the intention, y, varies. But what 
does the model say about how the variable, u, varies as y varies? We can readily 
calculate this if we assume that the distribution, P ( u, v), for u and v is a bivariate 
normal distribution with means, m, m, standard deviations, s , s , and correlation 

u v u v 

coefficient, r. Given this assumption, we find that, 

[ E (u Iy) -mJ I Su ::: r [ E (v I y) -mJ I Sv (5) 

T 
he distribution, P ( u , v), depends on the physics of the RMC. This 
equation tells us that if u and v are not strongly correlated in P ( u, v), then 
E ( u Iy) will vary only weakly as the intention, y, is varied. This makes 

sense because u is not directly linked to the intention, y. It is linked with y only 
indirectly through 1; ( v, y) and P ( u, v). 

We will show in the next section that we can find an RMC variable, u, for which 
P ( u, v) is approximated by a bivariate normal distribution with a small r, but for 
which E ( u Iy) does vary strongly with y, in violation of Equation (5). Indeed, 
even though r is positive, E( uly) and E( vly) vary in opposite directions as yvaries. 
This implies that the RMC data reponed by Nelson et aL,l cannot be realistically 
modelled by a selection theory, and in particular, it cannot be modelled by theories 
(1) through (3 ), above. 

3. ANALYSIS OF THE DATA 

The infonnation describing an RMC run is given by 19 bin numbers, b (1), ... ,b (19), 
indicating the number of balls that fall in each of the 19 bins. As we mentioned 
in the introduction, this sequence of 19 numbers is called the bin distribution for 
the run. The bin mean is simply the expected value of i for the distribution, 
b( i), i = 1, ... ,19. We wanted to find additional variables that (1) are functions 
of the 19 bin numbers, (2) are physically meaningful, and (3) are nearly statistically 
independent of the bin mean and of one another. Our objective in defining such 
variables was to find candidates for the u of Equation (5). 

The distribution of balls in the bins can be approximated by a Gaussian. In Nelson 
et. al7 it is observed that the bin distribution tends to deviate from a Gaussian in 
the center due to the tendency of some balls to fall straight down for some distance 
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without striking pins, and at the sides due to bouncing of the balls from the sides 
of the machine. The deviation in the center takes the form of a second, narrower 
Gaussian superimposed on the main bin distribution Gaussian. The bouncing of 
the balls from the sides contributes an additional V-shaped curve that is superim­
posed on these two Gaussians. Thus, the bin distribution can be broken down into 
the sum of these three curves, each of which can be explained in terms of the physics 
of the RMC. 

Let Dist( 1 ) , ... ,Dist( 19) stand for the bin distribution for a given run. We tried 
to break down Dist into the three components just mentioned. The first of these 
is Gauss 1, an approximation to Dist by a Gaussian. This was obtained by fitting 
a quadratic to log [Dist( 3 )], ... ,log [Dist( 7 )], log [Dist( 13 )] , ... ,log [Dist( 17)] by 
least squares, and then expressing Gauss 1 as the exponential of that quadratic. In 
the least squares fit, we avoided the bins in the middle and on the ends since for these 
bins, Dist tends to deviate from a Gaussian. 

The next step is to scale Gauss1 so that its total, Gauss1 ( 1 ) + ... +Gauss1 ( 19 ), is 
maximal, given that 

Dist 2 ( i) = Dist ( i) - Gauss 1 ( i) ~ 0 (6) 

for iI, ... , 19. When we do this we find that Dist 2 has the shape of a Gaussutn, 
but is narrower than Gauss 1. We therefore define the second component as Gauss2, 
a Gaussian approximation to Dist 2. This Gaussian is defined to have the same mean 
and standard deviation as Dist 2 on bins 3-17 (avoiding the non-Gaussian behavior 
on the sides), and it is scaled so that its root-mean-square difference from Dist2 is 
minimal. 

The total of Gauss 1 cannot exceed 9000, the total number of balls per run, and it 
generally is about 7700. The total for Gauss 2 is generally somewhat over 1000. 
The third component, called Rem (for remnant), is defined by 

Rem ( i) Dist 2 ( i) Gauss 2 ( i) (7) 

for i = 1, ... ,19. We note that Rem (i) may take on negative values. 

Figure 1 illustrates the breakdown of Dist into Gauss 1, Gauss 2, and Rem in a 
particular case. It is interesting to note that Rem has a remarkably consistent form. 
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Dist (Original bin distribution) 
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Dist 2 ('" Dist - Gauss ]) 
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Rem ('" Dist 2 - Gauss 2) 
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Figure 1. Breakdown ofbin distribution into component curves. 


Figure 2. Superposition of30 examples ofRem ('" Dist- Gauss] Gauss2)' 
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Table I 
A set of 14 bin distribution variables, 

based on Dist, Gaussl, Gauss2, and Rem. 

Vble. Mean S.D. Description 

VI 10.0082 .2449 Mean of Dist-Gauss 1 

V2 10.0341 .0774 Mean of Dist restricted 
to bins 3-7,13-17 

V3 115.9227 11.8348 Dist (18) + Dist (I 9) 

V4 10.0178 .0382 Mean of Dist 

V5 10.0194 .0528 Mean of Gauss 1 

V6 10.0480 .2120 Mean of Gauss 2 

V7 3.2750 .0383 S.D. of Dist 

V8 38.3002 12.2195 Rem (18) + Rem (19) 

V9 3.3052 .0684 S.D. of Gauss 1 

V10 2.6706 .2378 S.D. of Gauss 2 

Vll 7774.6040 443.9916 Total of Gauss 1 

V12 1157.4250 447.0527 Total of Gauss 2 

V13 67.9623 27.9438 Total of Rem 

V14 42.3580 12.3441 Rem (1) + Rem (2) 

Figure 2 shows the superposition of Rem curves obtained from 30 different bin 
distributions. The elevation at the sides is presumably due to reflection of balls from 
the side walls, and the other characteristics must be due to asymmetries in the 
structure of the machine. 

For each run, we can compute a number ofstandard parameters for the distributions, 
Dist, Gauss 1, and Gauss 2, including their totals, means, and standard deviations. 
We can also compute such quantities as Rem (1) + Rem (2) and Rem (18) + Rem (19), 
which indicate the behavior of the bouncing balls near the sides of the RMC. 
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Table II 
Statistical correlations over the total data set for variables vI, ... , v14. 


The total data set contains 4530 bin distributions. 


2 3 4 5 6 7 8 9 10 11 12 13 14 

1 -.11 .29 .18 -.46 .85 -.04 .38 -.02 -.01 -.04 .04 .01 -.33 

2 .05 .89 .85 .00 -.08 -.13 -.01 -.09 -.01 .02 -.04 .18 

3 .28 .03 .01 .53 .82 .22 -.11 .04 -.06 .27 .05 

4 .74 .12 -.10 .12 -.03 -.08 -.04 .04 -.04 -.08 

5 -.42 -.07 -.17 -.01 -.07 .00 .00 -.05 .17 

6 .00 .08 -.04 .00 .03 -.03 .02 .00 

7 .10 .59 .12 .04 -.05 .16 .17 

8 -.28 .05 .09 -.12 .52 .14 

9 -.41 -.45 .48 -.55 -.26 

10 .03 -.08 .68 .03 

11 -1.00 .09 .18 

12 -.15 -.21 

13 .49 

Table I gives a list of 14 of these quantities, called vI, ... , v 14, along with their 
means and standard deviations over our entire set of RMC data, which consists of 
4530 (= 3 X 1510) runs. Table II lists the correlation coefficients for pairs of the 
variables vI, ... , v 14. These are also computed using the entire data set. 

We wanted to study a set of bin distribution variables that have as little statistical 
correlation as possible, but are also physically meaningful. One way of doing this 
is to eliminate strongly correlated variables from the set vI, ... , v 14 until a set of 
nearly uncorrelated variables remains. Table III shows the result of doing this. 
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Table III 
A subset of the variables vI) ... ) v 14 which are nearly 

statistically independent of one another. 

6 7 8 10 11 14 

4 Mean of Dist .12 -.10 .12 -.08 -.04 -.08 

6 Mean of Gauss 2 .00 .08 .00 .03 .00 

7 S.D. of Dist .10 .12 .04 .17 

8 Rem (18) + Rem (19) .05 .09 .14 

10 S.D. of Gauss 2 .03 .03 

11 Total of Gauss 1 .18 

14 Rem (1) + Rem (2) 

In the set of variables of Table III, v 4 is the bin mean, which the RMC operators 
tried to directly influence. The other 6 variables were presumably not the object 
of operator or experimenter intentions, and they would be hard for the operator to 
recognize by observing the machine. Our question is: Do these other variables 
display behavior significantly correlated with operator intention? A selection theory 
would imply they should not do this, but it turns out that some of them do. 

In Table N we list the results of an analysis similar to that reponed in Tables IA-C in 
Nelson et. aL 1 Their table was computed for a 1131 run subset of the total data set, 
generated by 25 out of the 35 operators. These comprise all the runs in the total 
data set in which a single operator observed the RMC machine in operation, in the 
same room. (Other runs involved multiple operators, or an operator trying to 
influence the machine at a remote location or at a time before or after the time of 
the run.) In our analysis we also made use of this 1131 run subset. 

For each tripolar set of runs, the differences v 4 (i, LT) - v 4 ( i, BL), 
v 4 (i ,RT) - v 4 ( i, BL ), and v 4 (i, RT) - v 4 ( i, LT) were computed, where 
v4 (i,Ln, v4 (i,BL), and v4 (i,Rn are the bin means obtained under leftward, 
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Table IV 
Comparison between the behavior of the bin mean, v 4, and variables v 5, v 6, v 7, v 8, 

v 10, v 11, v 14, v 15, and v 16 for 1131 runs generated by 25 operators. 

Vble Intent Mean S.D. t-score Prob. Correlation 

4 LT-BL -.00564 .05005 -3.7870 .76E-04 
4 RT-BL .00007 .05008 .0472 .48E+00 
4 RT-LT .00571 .04931 3.8913 .50E-04 

5 LT-BL -.00789 .07090 -3.7420 .91E-04 .70955 
5 RT-BL .00001 .06938 .0065 .50E+00 .72223 

5 RT-LT .00790 .06927 3.8364 .62E-04 .71710 

6 LT-BL .01124 .29531 1.2799 .10E+00 .09233 
6 RT-BL .00373 .29996 .4178 .34E+00 .12404 
6 RT-LT -.00751 .29278 -.8629 .19E+00 .12407 

7 LT-BL .00321 .03500 3.0875 .10E-02 -.04128 

7 RT-BL .00085 .03578 .8003 .21E+00 -.03315 

7 RT-LT -.00236 .03630 -2.1881 .14E-Ol .01918 

8 LT-BL .70664 17.63451 1.3476 .89E-Ol .16174 
8 RT-BL -.59116 17.25134 -1.1524 .12E+00 .08853 
8 RT-LT -1.29780 16.99774 -2.5677 .51E-02 .12033 

10 LT-BL -.00397 .30761 -.4343 .33E+00 .00937 
10 RT-BL -.01122 .31699 -1.1900 .12E+00 .02250 
10 RT-LT -.00724 .31543 -.7724 .22E+00 -.00912 

11 LT-BL -18.69107 630.79480 -.9965 .16E+00 .01230 
11 RT-BL -4.65074 632.71381 -.2472 .40E+00 .00503 
11 RT-LT 14.03979 627.16571 .7529 .23E+00 .03185 

14 LT-BL 1.02498 16.41335 2.1001 .18E-Ol -.10295 
14 RT-BL -.10467 16.80345 -.2095 .42E+00 -.10887 
14 RT-LT -1.12965 17.39774 -2.1836 .14E-Ol -.07294 

15 LT-BL .33160 3.08571 3.6140 .15E-03 .05171 
15 RT-BL .03976 3.08411 .4336 .33E+00 .02832 
15 RT-LT -.29184 3.08992 -3.1764 .75E-03 .07167 

16 LT-BL .27337 2.82734 3.2517 .57E-03 .06682 
16 RT-BL -.01755 2.87298 -.2055 .42E+00 .04326 
16 RT-LT -.29093 2.88306 -3.3936 .34E-03 .08805 
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baseline, and rightward intentions for the ith tripolar set. (Here i = 1 , ... , 1131.) 
The means and standard deviations for these three differences were computed for the 
1131 cases, and these were used to compute corresponding t-scores and probabilities. 
The probabilities indicate how likely it is that the means of the differences would 
be displaced by chance from 0 to their observed values. The main point made by 
Jahn and his colleagues is that these probabilities turn out to be unexpectedly low. 

We performed the same computations for each of the remaining 6 variables of Table 
III, plus the additional variable, v 5. For example, for variable v14 the computations 
were done for the differences, v14 ( i, LT) - v 14 (i, BL ), v 14 (i, Rn -v 14 (i, BL ), 
and v 14 (i, Rn -v 14 (i, Ln. Table IV enables us to compare the probabilities 
computed for each of these 7 variables (namely, v 5, v 6, v 7, v 8, v 10, v 11, and 
v 14) with the probabilities computed for the bin mean, v 4. In the table, the three 
differences are indicated for each variable by the symbols LT-BL (left minus baseline), 
RT-BL (right minus baseline), and RT-LT(right minus left). The t-scores are written 
with a minus sign if the corresponding quantity had a negative displacement. The 
correlation coefficients between the difference pairs for each of the 7 variables and 
the difference pairs for v 4 are also indicated. 

I 
t is natural for the displacement probabilities for variables v 4 and v 5 to be 
similar, since these variables have a correlation of about .71 for each of the three 
differences. Thus v 4 has probabilities of .000076 and .00005 for LT-BL and 

RT-LT, and v 5 has similar probabilities for these differences. These small prob­
abilities represent the main anomalous effect. However, if we look at variables 
v 6, v 7, v 8, v 10, v 11, and v 14, we can see that they also tend to have moderately 
low probabilities for LT-BL and RT-LT, even though they have very small correla­
tions with v 4. 

One should ask whether or not this might be statistically significant. The answer 
is that, individually, the displacements of these variables are not highly significant, 
but they are highly significant when taken together as a group. Since the variables 
tend to be mutually uncorrelated, this can be shown by summing them up and 
examining the displacement of the sum. 

With this aim in mind, the calculations of Table IV were also performed for two 
composite variables: 
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v 15 = Z(v 6) + Z(v 7) + Z(v 8) - Z(v 10) - Z(v 11) + Z(v 14) (8) 

and 

v 16 Z(v 6) + Z(v 7) + Z(v 8) + Z(v 14) (9) 

where Z(variable) is that variable shifted so as to have mean a and scaled so as to 
have a standard deviation of lover the 1510 tripolar sets. The transformation Z 
was applied so as to make the magnitudes of the variables comparable, and thereby 
prevent the high magnitude variables in the sum from overshadowing the contribu­
tions of the low magnitude variables. In v 15 the variables vIa and vII were given 
a minus sign due to the fact that they vary in a direction opposite to that of variables 
v 6, v 7, v 8, and v 14. (This can be seen by examining Table IV.) 

T
he same computations were performed for v 15 and v 16 that were per­
formed for v4, v 5, v 6, v 7, v 8, v 10, v 11, and v 14, and the results are 
listed in Table IV. These results indicate that the mild effects noted for the 

constituent variables of v 15 and v 16 do seem to add up. We see from the table 
that v 15 has probabilities of .00015 and .00075 for LT-BL and RT-LT, and v16 
has corresponding probabilities of .00057 and .00034. These probabilities indicate 
that the group behavior ofthe variables making up vIS and v16 is significantly different 
from what would be expected by chance. 

Here the objection could be raised that perhaps we have tried our analysis with many 
different variables, and have presented the results for v15 and v 16 because they turned 
out to give us low probability values. These values would then be of no real 
significance, because one can always find a spurious effect that looks significant ifone 
juggles the data sufficiently. 

The answer to this objection is that we did not do this. The variables in Table I 
were selected initially on the basis of our understanding of the RMC, and no other 
variables of this type have been considered. The subset of these 14 variables listed 
in Table III was chosen solely on the basis of the correlation coefficients listed in 
Table II, the object being to find a subset of vI, ... , v 14 with mutual correlations 
of the smallest possible magnitudes. 

We can see from Table IV that all 6 of the variables of Table III show a noticeable 
tendency towards systematic drift in the cases LT-BL and RT-LT. The two sums, 
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v 15 and v 16, show that these tendencies, taken together, are statistically significant. 
The composite variables v 15 and v 16 are the only ones considered; they were not 
chosen from a larger set of composite variables. 

We also performed the calculations of Table IV for the full collection of 1510 
tripolar sets of runs. In this case it turned out that v 15 has probabilities of .0079 
and .0081 for LT-BL and RT-LT, and v 16 has probabilities of .024 and .0034. In 
general, one tends to obtain lower probabilities for the 1131 case subset than for the 
full data set of 1510 cases. What is happening here is that anomalous effects are 
much weaker in the part of the data set involving either multiple operators or 
operators who could not see the RMC in operation. 

We note that the correlation coefficient of v 4 and v 15 is .073 (over the entire data 
set), and that of v 4 and v 16 is .028. correlation coefficients between the 
difference pairs for v 15 and v 16 and the corresponding difference pairs for v 4 are 
listed in Table IV, and also lie between 0 and .1. (Recall that the difference pairs 
are v 15 (i, LT) - v 15 (i, BL), and so on.) Although these correlation coefficients 
are small, they are significantly different from 0 in the positive direction. This can 
be seen by applying the formula, 

t = r [ ( N - 2) / (1 r 2) ] 112 (10) 

where Nis the number of cases (1510 for the whole data set and 1131 for the subset), 
r is the correlation coefficient, and t is interpreted as a t value.8 For the correlation 
coefficients in question we obtain t values ranging from 1.09 to 2.97. 

The improbable displacements of v 15 and v 16 cannot be accounted for by the 
hypothesis that v 15 and v 16 shift in correlation with the shift in v 4. In fact, the 
displacements of v 15 and v 16 for LT-BL and RT-LT go in the direction opposite 
to the corresponding displacements of v 4, even though v 15 and v 16 are positively 
correlated with v 4. These displacements constitute an anomalous effect that is 
independent of the original anomalous effect reported by Jahn and his colleagues. 
Moreover, this effect is due to the behavior of variables (the constituents of v 15 and 
v 16) which could not be observed by the operators, and were not the objects of 
operator intentions. 
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We have examined the 4530 pairs, (v4, v 15), and we find that their distribution 
can be approximated by a bivariate normal distribution. The same is true of the 
pairs, (v 4, v 16). This means that Equation (5) should apply with v v 4 and u 
= v 15 or v 16. This equation implies, for example, that 

[E(v 151 LT) E(v 151 BL)] / sui) r[E(v4 I LT) - E(v 4 I BL)] / SI4 (11) 

where r lies between 0 and .1. But this is contradicted by the actual behavior ofv 15, which 
shifts strongly in the positive direction in this case, even though v 4 shifts strongly 
in the negative direction. 

I 
n addition to the calculations presented in Table IV, we produced graphs 
showing the behavior of the 10 variables, v 4 , ... , v 16. For these graphs we 
adopted the following procedure. First, the variables were all scaled so as to 

have mean 0 and standard deviation 1. That is, we replaced vk by Z ( vk) for each 
ofthe variables. We then formed all ofthe pairs, (v4, v~, for k= 5,6,7,8,10,11,14,15,16. 
For the pair, ( v4, vk), define the two dimensional random variable (X

2n
_
1 

' ) 

to be (v 4 , vk), computed for the nth tripolar set with leftward intention. 

Similarly, define C~n' ~) to be (-v4, -vk), computed for the nth tripolar set with 
baseline intention. We plotted the random walk generated by steps of (~I'~) for 
n=I, ... 2xI510. 

We will let (Sn' represent the random walk generated by steps of (XI' ~). Thus, 
S = o T = 0 and 

0 

(12) 

For each tripolar set of runs, this random walk takes one step of ( v 4 , vk) for the 
run of intention, LT, and one oppositely directed step of ( - v4 , - vk) for the run 
of intention, BL. This gives us an idea of the comparative behavior of v4 and vk 
in the case LT-BL. Similar random walks were plotted for the cases RT-BL and 
RT-LT. We also plotted these random walks for the subset of 1131 tripolar sets in 
which a single operator was watching the RMC, for the subset of tripolar sets generated 
by operator 10, and for the subset in which operator 10 was watching the RMC. 

For a given angle, l/J, the random walk can be projected onto the line through the 
origin at angle l/J. This projected random walk is 

(13) 
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The standard deviation of u" is (n (1 + sin (2 ¢J) r)l1/2, where r is the correlation 
coefficient for X and Y. If we assume that v 4 and vk keep the same statistical 

n n 

properties for tripolar sets in the interval from n = 1 to 2 X 1510, and that operator 
intention is irrelevant to their behavior, then r is the correlation coefficient between 
v 4 and vk, as estimated in Table III. (This table should be supplemented with 
values for rof.073, .028, .814 for (v4, v15), (v4, v 16), and (v15, v16), re­
spectively.) Although there is some change in the statistical properties of the viis with 
the passage of time (represented by n), the curve, 

R = 2 ( N ( 1 + sin (2 ¢J) r) ]112 (14) 

provides a two standard deviation limit that can be used to evaluate the behavior of 
( S , T) for n 1 , ... , N. 

n n 

Figures 3 (a-e), 4, and 5 (a-c) show some of the plots of these random walks, along 

with their estimated two standard deviation limits. In each graph, Sn is plotted along 

the x-axis and T)s plotted on the y-axis. Figure 3 (a) shows the behavior of v4 and 

v 16 for the subset of the 1510 tripolar sets generated by operator 10, the most 

successful operator in the RMC experiments. This figure shows the case of LT-BL, 

or left minus baseline. In this figure we see that the random walk moves to the left 

and up in nearly a straight line. The leftward movement is the anomalous displacement 

of the bin mean, v 4, and the upward movement is the anomalous displacement of 

v 16. Figures 3(b-e) show the corresponding behavior of v4 and vk, where k = 6, 

7, 8, and 14. These are the variables that sum up to form v 16 (see Equation 9). 


F
 
igure 3 (a) should be compared with Figure 4, which shows the (v4, v 16) 

random walk in the case of LT-BL for the subset of runs in which operator 
10 watched the RMC in action. We note that the random walk in Figure 4 

moves further out from the two standard deviation limit than does the random walk 
in Figure 3 (a); this is due to the fact that the anomalous effects seem to occur 
predominantly in the runs involving a single operator who is able to observe the 
RMC. 

Figures 5 (a-c) show the behavior of v 4 and v 16 for all 1510 tripolar sets. In this 
figure, parts (a), (b), and (c) are for the respective cases of LT-BL, RT-BL, and RT­
LT. Figure 5 (b) shows that in the RT-BL case, v4 barely moves from the origin, 
while v 16 shows considerable activity. This rather puzzling non-random behavior 
occurs in the RT-BL cases for practically all of the variables. 
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Figure 3 (a). Operator 10, left-baseline. 
Parameters (4,6) are the (x,y) axes. 

Figure 3(c). Operator 10, left-baseline. 
Parameters (4,8) are the (x,y) axes. 

Figure 3(e). Operator 10, left-baseline. 
Parameters (4, 16) are the (x,y) axes. 

Figure 3(b). Operator 10, left-baseline. 
Parameters (4,7) are the (x,y) axes. 

Figure 3(d). Operator 10, left-baseline. 
Parameters (4,14) are the (x,y) axes. 

Figure 4. Operator 10, left-baseline. Parameters 
(4,16) are the (x,y) axes. Case ofl131 runs. 
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To test whether or not the apparent non-randomness of these random walks is 
illusory, we performed a number of probabilistic experiments using the RMC data. 
The results of the first of these experiments are summed up in Figure 6. There we 
have superimposed 100 random walks which are generated in nearly the same way 
as the random walks in the case of v4 vs. v 16 for all tripolar sets. The only difference 
is that in each tripolar set, the + (v 4 , v 16) and - (v 4, v 16) steps of the random 
walk are chosen at random from the three runs in that set, instead of being chosen 
on the basis of intention. The random choices were made using a pseudo-random 
number generator. The idea here is to create random walks that are identical to the 
random walks of Figures 5 (a-c), with the exception that information concerning 
operator intentions is erased by random scrambling. Figure 6 shows that these 
random walks show no particular tendency for systematic drift, apart from a slight 
tilt with positive slope which may be due to the small positive correlation between 
v4 and v 16. Thus, all of the anomalous effects in Figures 5 (a-c) seem to depend 
on the information regarding operator intentions. 

The results of the second experiment are shown in Figure 7. This experiment is 
the same as the first, with one exception: In the random walks, if a step is positive 
in v4, then it is rejected with a certain probability; if it is negative then it is always 
accepted. This rule has the effect of imposing an artificial bias against movement 
in the positive v4 direction (the positive x-axis in the plots). This is exactly the kind 
of bias we would postulate in the "data selection" theory described in the previous 
section. If that theory is correct, then these random walks should be similar to the 
one plotted in Figure 5(a). 

W
e can see from Figure 7 that, with a couple of exceptions, there is no 
tendency for the random walks generated in this way to mimic Figure 
5 (a), the real random walk for variables v4 and v 16 and intentions IT­

BL. The artificially generated random walks do show a tendency to drift system­
atically to the left, but instead of also drifting in the positive y direction, they exhibit, 
if anything, the opposite tendency. 

We also considered the following hypothesis: Suppose that there is a variable w that 
is weakly correlated with both v 4 and v 16. Perhaps the joint displacements of v 
4 and v 16 can be explained as a result of selection applied to w. To investigate this 
hypothesis properly, one would have to consider many different candidates for w. 
We investigated only two possible uls, and it turned out that neither one could 
account for the observed displacements of v 4 and v 16. 
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Figure 5(a). All operators, left-baseline. 
Parameters (4,16) are the (x,y) axes. 

Figure 5(c). All operators, right-left. 

Parameters (4,16) are the (x,y) axes. 
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Figure 6. Superposition of100 RMC random 
walks with randomized intention. Parameters 
(4,16) are the (x,y) axes. 

Figure 5(b). All operators, right-baseline. 
Parameters (4,16) are the (x,y) axes. 
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Figure 7. Superposition of100 RMC random 
walks with randomized intention and artificial 
selection ofpara meter 4 low (i.e. to the left). 
Parameters (4,16) are the (x,y) axes. 

Subtle Energies • Volume 2 • Number 1 • Page 68 



4. CONCLUSION 

The basic conclusion that emerges from this study is that in addition to the original 
anomalies reported by Jahn and his colleagues, the statistical behavior of the bin 
distributions seems to display systematic patterns that correlate with human inten­
tions, but are not related in an obvious way to the conscious content of those 
intentions. Thus, the data show a systematic shift in v4, the bin mean, but they 
also show shifts in v 15, and v 16. These, in turn, are due to the summing up of 
shifts in the constituent variables of v 15 and v 16, namely v 6, v 7, v 8, vI 0, v 11, 
and v 14 (see Table I). The shifts in v 15 and v 16 are somewhat less improbable 
than the shift in the bin mean, but they are nonetheless statistically significant. This 
is especially true for the set of 1131 runs in which a single operator was present 
during the running of the RMC (see Table IV). 

The shifts in v 15, v 16 cannot be accounted for by inter-variable correlations with 
the bin mean that could be due to the physical characteristics of the RM C device. 
The reason for this is that we can calculate the correlations between v 4 and these 
two variables over the whole data set, without taking operator intentions into ac­
count. When this is done, it is found that the resulting correlations go in the wrong 
direction to account for the observed shifts in v 15 and v 16. 

T hese findings tend to rule out a class of theories, called selection theories, 
which might be invoked to explain the anomalies in the RMC data. In 
particular, they tend to rule out the possibility that the main anomalous 

effect in the bin mean was obtained by conscious or unconscious data selection by 
the experimenters. Certainly a drift in v 4 in a given direction can be obtained by 
systematically throwing out a certain percentage of the runs which do not tend in 
that direction. However, as we have seen, such editing of the data will not generate 
the additional shifts that we have observed in certain other variables, and it seems 
unlikely that these variables could have been the object of additional data selection 
by the experimenters. 

Theoretical calculations suggest that it would be difficult for the experimenters to 
generate the observed anomalous effects by exerting small, normal forces on the 
RMC (of the kind that could be produced by a human body at a distance from the 
machine). Forces of the strength that could be produced by an observer watching 
the RMC could influence the RMC in accordance with the observer's intention, if 
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these forces could be generated with very precisely specified magnitudes. But to do 
this, it would be necessary for the observer to somehow unconsciously determine 
what these magnitudes should task which would be difficult to carry out even 
with a supercomputer and an accurate mathematical model of the RMC. 

What we are left with is the conclusion that some unknown agency affects the 
behavior of the RMC in accordance with conscious intentions of the operators. This 
agency not only affects the bin mean, which is the object of the operators' intentions, 
but it also strongly affects other aspects of RMC behavior which would be expected 
to vary almost independently of this variable. To learn more about what is happening 
here, we would recommend future experiments in which many different aspects of 
a physical process are monitored, while efforts are being made to influence particular 
features of that process. Such experiments would reveal whether or not the phenomena 
we have observed here generally occur, and they may give further insight into the 
causes of these phenomena. 
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