GPU-Based One-Dimensional Convolution for Real-Time Spatial Sound Generation

Authors

  • Brent Cowan University of Ontario Institute of Technology
  • Bill Kapralos University of Ontario Institute of Technology

Abstract

Incorporating spatialized (3D) sound cues in dynamic and interactive videogames and immersive virtual environment applications is beneficial for a number of reasons, ultimately leading to an increase in presence and immersion. Despite the benefits of spatial sound cues, they are often overlooked in videogames and virtual environments where typically, emphasis is placed on the visual cues. Fundamental to the generation of spatial sound is the one-dimensional convolution operation which is computationally expensive, not lending itself to such real-time, dynamic applications. Driven by the gaming industry and the great emphasis placed on the visual sense, consumer computer graphics hardware, and the graphics processing unit (GPU) in particular, has greatly advanced in recent years, even outperforming the computational capacity of CPUs. This has allowed for real-time, interactive realistic graphics-based applications on typical consumer- level PCs. Given the widespread use and availability of computer graphics hardware and the similarities that exist between the fields of spatial audio and image synthesis, here we describe the development of a GPU-based, one-dimensional convolution algorithm whose efficiency is superior to the conventional CPU-based convolution method. The primary purpose of the developed GPU-based convolution method is the computationally efficient generation of real- time spatial audio for dynamic and interactive videogames and virtual environments.

Downloads

Published

2009-12-27