
Loading… The Journal of the Canadian Game Studies Association
Vol 10(16): 75-86
http://loading.gamestudies.ca

	
Procedural Elaboration: How Players Decode

 Minecraft

Nic Watson
Concordia University

nicwatson@nicwatson.net

Abstract
Minecraft play practices reveal a type of analytic play in which significant work is invested in
discovering esoteric details about the game, without necessarily providing practical prescriptions
for optimizing play. This paper proposes the term “procedural elaboration” to describe such
activities and the knowledge thereby produced. In contrast to the existing concept of
theorycrafting, the products of procedural elaboration are primarily descriptive rather than
prescriptive. However, this knowledge is far from trivial or banal. I argue that these knowledge-
making activities can be explained through two functions of procedural elaboration. First, it
provides players with a tool for dealing with the threatening inscrutability of some procedural
game systems. Second, it acts as a ritual form of communication that helps to solidify a coherent
Minecraft player community, while also establishing a social order within that community.
Subsequently, I consider why players persist in using specifically experimental methods in
procedural elaboration, even though the online availability of decompiled Minecraft source code
means that the rules are not fully hidden as they are in most other games. I argue that the
experimental method persists for these reasons: because it does not require specialized
programming skills; because the gameplay already casts scientific experimentation as play; and
because the iterative nature of Minecraft’s development has produced source code that is structured
in a way that resists direct deciphering.

Author Keywords

Minecraft; procedural elaboration; procedural literacy; procedural hostility; experimental play;
tactics; ritual communication; cultural capital; gamer capital

Introduction: Procedural Elaboration and its Functions

MrSideliner is a video game record-setter. Specifically, he holds the record for the slowest possible
movement speed in Minecraft, as documented in his YouTube video (MrSideliner, 2013). His
accomplishment has less to do with the finesse or precise movement one usually associates with
record-setting game play, and more to do with engineering skill. Improving on the methods of
other slow-walkers before him, he determined that if he built an apparatus that layered cobwebs
atop still water, above a layer of soul sand, with ice blocks underneath it all, and then walked
through backwards, under the effects of a Potion of Slowness, while sneaking and drawing a
bowstring, he could achieve constant motion at a whopping 18 metres per hour.

	76

A normal walking speed in Minecraft is 860 times faster than MrSideliner’s record, clocking in at
around 4.3 metres per second (where one voxel “block” equals one metre), according to a table
compiled by players on the Minecraft Wiki (“Transportation,” n.d.). The same table contains
calculated average speeds for 19 other combinations of transportation method and conditions, all
determined empirically through player testing: minecarts on powered track or on slopes; boats
travelling on downstream rapids or over flat water, with or without a running start; sneaking,
sprinting, swimming on the water’s surface, swimming underwater (in both flowing and still
water); with or without speed potions; and other combinations besides.

This table tells us two things. First, it indicates the fastest way to get around (without using
teleportation or the flying abilities offered by the game’s “Creative Mode”) is to ride a horse, for
an average speed of 9.675 m/s. Second, it shows that Minecraft players will invest hours of work
in setting up controlled experiments to empirically derive vast amounts of quantitative trivia.
According to the article’s associated Talk page, experimenters built giant ramps and flat tracks,
and measured the time it took to travel 100 metres in two timed trials. The original wiki article,
before it was edited for conciseness, reported the individual trial times themselves.

The experiments, their results tables, and accompanying wiki discussion, together with the in-
game experimental constructions used to carry out the investigations, constitute a mode of
analytical play practice that I propose to call procedural elaboration. This term was chosen to
capture how players trace, rework, and redirect procedural game rules in order to discover
something about their nature. The word “elaboration”, having the same root as “labour” and
“laboratory”, implies a process of work through which something is produced, while also
suggesting the notion of extending or adding to a core concept for the sake of explication (as in
the phrase, “Please elaborate on your statement”). Procedural elaboration does precisely this: it
explicitly investigates, documents, and renders visible the (sometimes unexpected) results of
procedure that are only implied as potentials in the game code itself.

Through procedural elaboration, Minecraft players invest significant work in order to discover
what look like esoteric details regarding the underlying rules of the game engine. Although in some
ways similar to theorycrafting as it is described by Paul (2011)1, procedural elaboration differs
significantly in that it is primarily descriptive (whereas theorycrafting is prescriptive). Procedural
elaboration is not directly associated with power-gaming or strategies for optimizing play. It may
therefore be tempting to dismiss the fruits of procedural elaboration as trivial curiosities, but on
the contrary, these activities play central roles in the articulation of Minecraft gameplay. Adapting
de Certeau's (1984) concept of tactics, I will show how procedural elaboration enables players to
productively inhabit and navigate the procedurally-hostile Minecraft world. Furthermore, drawing
on James Carey's (2009) work on the ritual function of communication, I argue that procedural
elaboration and the circulation of its products serve as rituals through which social order is enacted
and maintained within the player community. Subsequently, I consider why in-game experimental
methods of procedural elaboration persist in the case of Minecraft, despite the general availability
of its source code for direct reading.

Background
Briefly, Minecraft is an open-world sandbox game, released by Mojang AB in 2011, in which

	77

players can explore, modify, and build within a procedurally-generated world. It is often
described—imperfectly, according to Duncan (2011, p. 11)—as an expansive, inhabitable virtual
Lego set.

To date, most extant literature on Minecraft is concerned with its potential educational uses (e.g.
Bayliss, 2012; Short, 2012; Schifter & Cipollone, 2013). Other scholarship from the field of game
studies does exist. Goetz (2012) describes the key pleasure of Minecraft gameplay as a “tether and
accretions” fantasy, while Keogh (2013) has explored how the threat of permanent player death in
a Minecraft world can provide a narrative-producing tension. Lastowka (2011) argues that
Minecraft has benefited from a Web-2.0-like strategy of harnessing amateur creativity, while
Duncan (2011) suggests that Minecraft has a “platform” nature, pointing to how the iterative and
agile nature of Minecraft development, coupled with customer collaboration, results in “many
Minecrafts” (p. 2)—the existence of many different types of gameplay that are all called
“Minecraft.”

Optimizing Minecraft?
It is necessary to acknowledge that instrumentalism and play optimization—the traditional aims
of theorycrafting—are present in Minecraft as motivations for empirically investigating hidden
game mechanics, if only to highlight how procedural elaboration goes beyond these uses. With a
simple combat system and relatively few varieties of gear compared to typical role-playing games,
Minecraft demands less statistical optimization from players than games like World of Warcraft
do. Most optimization prescriptions concern the combinatorial use of resources. The Minecraft
Wiki article on “Smelting”, for example, provides tips on how to optimally convert wood logs into
usable furnace fuel (charcoal), listing the seconds of smelting time per log-to-charcoal conversion
for each of the other wood-derived fuels (“Smelting”, n.d.). A table on the same page suggests
selecting fuels based on the number of items to be smelted in a batch, to minimize waste. Another
important area of optimization is in item and book enchanting, in which the player can maximize
the possibility of acquiring a specific enchantment by selecting the right enchantable equipment
and spending the right number of experience points2.

The knowledge of how to move very, very slowly does not seem to align with these kinds of
instrumental goals. Yet this, and other similar forms of knowledge, serve as important tools for
players dealing with the everyday facts of Minecraft life.

A Tactic Against Intractability

Procedural hostility is one such fact of Minecraft life. This does not refer to visible, diegetic
hostility in the form of starvation, lava pits, treacherous cliffs, or the zombies and creepers that
emerge at night. Procedural hostility instead resides in the difficulty that the player has in making
sense of the operations of the game engine. It makes itself known whenever the game seems to
behave in a glitchy and unpredictable way, or when it presents an unexpected obstacle to the
player's plans. It appears also in the inability of the player's mind to grasp the complex and
inscrutably rapid operations of the machine that runs the game. Even when set to the monster-less
“Peaceful” mode, Minecraft remains procedurally hostile.

	78

The case of the glitchy portal
Anyone who has tried to set up a fast travel system in Minecraft’s Nether dimension will have at
least a passing familiarity with this hostility. The Nether is a hellish dimension that exists apart
from the normal Minecraft world (the Overworld). The two spaces can be linked together by means
of magical teleportation portals. The Nether is spatially shrunk relative to the Overworld, such that
two portals that are close together in the Nether may link the player to corresponding portals that
are much further apart in the Overworld. A common player project, therefore, is to link distant
Overworld locations via easy highway routes through the Nether. The engineering of such routes
is complicated by the sometimes bizarre ways in which Nether and Overworld (“normal” world)
teleportation portals are paired up. Multiple Overworld portals can become linked to a single
Nether destination, while a Nether portal can unexpectedly link to an Overworld portal other than
the one the player intended to reach. To make matters worse, if a portal in a pair is blocked or
deactivated, then attempting to travel through what used to be its mate can lead Minecraft to create
an entirely new portal, either in a different (and unexpected) location, or placed awkwardly atop
the existing portal.

A 2010 thread on MinecraftForum.net, titled “THEORY: Why your portals are ‘glitched’”
(Mitch7656, 2010), attempts to figure out the reasons behind this erratic behaviour by making
educated guesses as to how the game algorithm would go about selecting or creating a destination
portal upon teleport. The original poster, Mitch7656, created a series of cartoon images to help
explain how the spatial relationship between Overworld and Nether plays into this algorithm. In
this early era of Minecraft development (open alpha testing), part of the purpose of these
investigations appears to have been to determine if the observed portal behaviours should be
considered a bug or a feature. In either case, these players were largely at the mercy of the
developers and their update cycle for patches. In the meantime, a working knowledge of the
procedural rules governing Nether portals would help to take the edge off of the existential threat
posed by their strange behaviour, by implying a kind of mastery over the game engine, even in the
absence of actual control. At the very least, knowing when and how things will break helps to
counteract the disorientation caused by unexpected glitches.

This act of procedural elaboration did not result in a full-fledged ‘Theory Of The Nether Portal’,
but rather an ad-hoc theory of why the Nether portal breaks. Although it implies a possible solution
(place your portals sufficiently far apart from one another so that they do not interfere, and put
them in protected locations to prevent deactivation by monsters), the primary purpose of the
exercise appears to be descriptive rather than prescriptive.

This function of procedural elaboration constitutes a practice of everyday Minecraft life, one that
counters the logistical problems posed by the game's everyday procedural hostility. It is what de
Certeau (1984) calls a tactic. In The Practice of Everyday Life, de Certeau describes media texts
metaphorically as landscapes over which media producers claim ownership. These producers
employ planned, top-down strategies in order to direct and constrain the ways in which their works
will be interpreted and used. Audiences, however, employ the tactics of nomadism and poaching
to carve out their own inhabitable interpretive spaces, and navigate their own reading-paths
through the text. In the case of Minecraft, the concept of the text maps onto the game code as an
intentionally designed artifact: the producer made decisions about how Minecraft would behave
based on strategies that balance game design goals, business and development models,

	79

programming conventions, and the capabilities of target machines. Although these strategic
decisions may leave players perplexed and frustrated, they can resort to procedural elaboration
tactics to help them navigate through the untamed procedural frontier of an early-alpha game. They
can thus assert a sense of control, mastery, and belongingness therein, and ultimately turn what (at
player-level) seems chaotic and threatening into something familiar and domestic.

The problem of motion
Motion through space (a concept distinct from teleportation and travel) poses additional procedural
puzzles for players to deal with. While the ability to move fast is an obvious convenience, what is
at stake in the deliberations over the details of speed (described in the introduction, above) is a
deeper understanding of how the Minecraft code actually builds motion as a phenomenon.
MrSideliner’s slow-motion machine demonstrates which slowness-causing conditions are
additive, and provides an opportunity for players to reflect on how these conditions can combine
to produce emergent procedural extremes of behaviour. At its limits, slowness itself becomes an
intractable problem. The inability to achieve very slow speeds under normal conditions leads to a
lack of precision: players have difficulty getting their avatars into the exact positions and
orientations desired when, for instance, posing for a third-person screenshot, or trying to approach
a ledge as closely as possible without falling off. At normal walking or sneaking speeds, it is too
easy to over-shoot the mark. While experiencing slowness through MrSideliner’s device does not
provide a solution to this problem, it does help make sense of it. More philosophically, it is a means
for wrapping one’s head around the perplexing notion of near-imperceptible-yet-inexorable slow
motion and the startling effect of multiplicative modifiers, and as such, has precedents in the art
world. There is a striking similarity between MrSideliner’s apparatus and Arthur Ganson’s kinetic
sculpture, Machine With Concrete, housed at the Exploratorium museum in San Francisco.
Machine With Concrete consists of a motor spinning at a quite visible 212 RPM (approximately
one revolution every 0.28 seconds), connected to a series of 12 worm gears. Each worm gear drives
the next axle in the chain at one-fiftieth of its own frequency. After only 12 such speed reductions,
the final gear is spinning so slowly that it makes one revolution every 2.3 trillion years—slow
enough that it can be safely encased in a concrete block.

Procedural elaboration through sculpture
In another instance in which the products of procedural elaboration look more like descriptive art
than prescriptive strategy, a group of experimenters set out to investigate the details about how
players are respawned in a Minecraft world after death. The results of this experiment are
showcased on the Minecraft Wiki’s page about respawning (“Spawn/Multiplayer details”, n.d.).
The players built an obsidian pillar at the precise nominal “spawn coordinates” (a specific block
location, as set using administrator commands), on a flat bend of sand. One player repeatedly died
and respawned, digging a hole in the sand on the exact point where the player reappeared each
time. After several dozen iterations, the resulting distribution of holes made clear that respawning
players would be placed randomly within a 20-by-20-metre square centered on the nominal spawn
point. This knowledge does have some practical use—making it possible for multiplayer server
administrators to build “spawn jails” to hold new or respawned players—but the wiki page
provides far more information than is practically necessary. Instead of simply announcing the
experiment’s conclusion, the page provides an explanation of the method and a screenshot of the
test setup, showcasing the process of discovery itself. What is most compelling about the
experimental apparatus is that it works as a sculpture that is a scatterplot of its own data set, literally

	80

graphed directly onto the terrain. The creation of this sculpture can be read as an instance of data
art practice, which Whitelaw (2008) describes as “a concrete exploration of what data is, does, and
can do” (Introduction section, para. 3). In this instance, however, the art is concerned with a
specific understanding of what data “can do”, namely in terms of using physically inscribed data
to trace human-programmed, black-boxed procedures.

To summarize, the tactics of procedural elaboration are ways of dealing with problems posed by
difficult-to-comprehend aspects of the game world. Importantly, “dealing with” is not the same
thing as solving.	Sometimes,	procedural	elaboration	can	do	little	more	than	comment	on	the	
natural	order	of	the	(procedural)	universe.	This	leads	to	the	second	function	of	procedural	
elaboration:	as	a	form	of	ritual	communication	that	underpins	the	social	life	of	the	Minecraft	
player	community.	

Procedural Elaboration as Ritual Communication

Reflecting the natural order
James Carey argues that newspapers can be understood “less as sending or gaining information
and more as attending a mass, a situation in which nothing new is learned but in which a particular
view of the world is portrayed and confirmed” (2009, p. 16-17). Seen this way, the newspaper
becomes “a presentation of reality that gives life an overall form, order, and tone” (p. 17). The acts
of procedural elaboration discussed above can also be understood in this way. What is most striking
about the examples given is that the product of the investigations, as presented to the world, is
more than just a piece of knowledge or an answer to a research question—that is, more than what
we would expect from thinking of these activities in terms of meaningful statements to be
transmitted from knowledgeable experimenters to other players. The centrepiece of MrSideliner’s
work is not the verbal answer to the question, “What is the slowest possible speed and how is it
achieved?”, but rather the machine he built to arrive at the answer. The respawning experimenters
similarly provided documentation of their process and screenshots of their apparatus. The player
community seems less interested in the answers to questions about the game engine than they are
in the process of how such answers were obtained. This makes sense if, taking a cue from Carey,
we see the communication of procedural elaboration less as attempt to disseminate instrumental
or prescriptive information about how to play Minecraft, and more as a way of dramatically
depicting the experience of life in the procedurally-constituted Minecraft world.

The production and sharing of these depictions is key to the social construction of a Minecraft
player community on multiple levels. The experimental activities of procedural elaboration
themselves invite collaboration between multiple players—a point which is discussed further in
the section on “Empirical versus generative methods of decoding” below. Furthermore, much as
the mass circulation of print media gave rise to the “imagined communities” of Anderson’s theory
(1991)3, the depictions of acts of procedural elaboration for a broader audience, via YouTube or
the Minecraft Wiki, creates a sense of common experience for Minecraft players who will never
actually meet in the same Minecraft worlds.

	81

Procedural elaboration, paratext, and gamer capital
Procedural elaboration does not just reinforce social cohesion, it also plays a role in establishing
social order by being associated with prestige and what Consalvo (2007) calls “gamer capital”. It
has this in common in theorycrafting. However, where the link between prestige and disseminating
prescriptions for optimal play and prestige is intuitively easy to see, the notion that prestige also
adheres to those who practice descriptive procedural elaboration is less obvious, and is worth
explaining here.

Paul (2011) has argued for understanding theorycrafting, and the discourse that surrounds it, as
game paratexts which, in Consalvo’s words, “work to shape the gameplay experience in particular
ways” (2007, p. 9). The same analysis applies to procedural elaboration, which is communicated
through paratexts such as wiki articles, YouTube videos, and forum postings. For Consalvo, the
ability to speak authoritatively about games—that is, to mobilize these paratexts—is tied to “gamer
capital,” a subtype of Bourdieu’s (1986) cultural capital. The ability to discover, share, and debate
detailed knowledge about hidden game engine behaviour through paratexts thus serves an
important function in the circulation of cultural capital within a gaming community. It marks some
people as experts who are procedurally literate (Mateas, 2005), even if the knowledge they have
seems of little immediate use from the point of view of someone who is only looking to optimize
his or her gameplay. Just as there is cultural capital associated with knowing all manner of trivia—
and thereby performing well at bar trivia or Trivial Pursuit, there is cultural capital associated with
having specialized knowledge of the details of Minecraft’s game engine. For example, players
often install mods to change their Minecraft gameplay experience, and a particular choice of which
mods to play with is a defining characteristic of one’s play style. Being able to speak
authoritatively about balance, overpowered/underpowered features of various mod combinations,
or about the realism of a particular mod’s method of representing electrical energy, can help define
one’s own personal mod choices as rational and legitimate in public discourse.

Debate is not limited to occurring between players, either. Procedural elaboration also plays an
important role in dialogue between players and developers. Several contributors to the
aforementioned forum discussion on Nether portals used the discussion as an opportunity to push
the position that there is something wrong that the developer needs to “fix.” Crucially, procedural
literacy must be demonstrated for a successful critique of a developer’s actions. The ability to
perform such critique not only renders procedure familiar and domestic (as was previously
discussed), but also positions the writer of the critique as a knowledgeable person with sufficient
status to participate legitimately in the player community. After all, if one has sufficient standing
to go toe-to-toe with the almighty developer (whether or not the developer is actually paying
attention), then one must surely have sufficient standing to engage with other players.

This section has explored how descriptive procedural elaboration serves important social functions
for the Minecraft player community. In the following section, I consider an unusual problem posed
by the case of Minecraft: why experimental procedural elaboration persists as a vibrant practice
even when source code containing all the answers is available.

	82

Empirical Versus Generative Methods of De-coding

In most games, players who are interested in gaining a deeper understanding of the game’s
operations must attempt, through repeated empirical study and statistical analysis, to triangulate
on the hidden rules of the game engine. Minecraft players often use a similar approach, but they
also have an unusual alternative option available to them. With the release of the fan-made
Minecraft Coder Pack in 2011, it became relatively simple for anyone with some knowledge of
the Java programming language to decompile the game into de-obfuscated, readable source code.
Rather than trying to guess the underlying rules through trial and error, players can now read those
rules directly, which I call a “generative” method. This arguably yields more precise results. Yet
as the Minecraft Wiki’s table of Minecraft movement speeds demonstrates, both methods persist.

Obstacles to decoding
The easiest explanation as to why empirical methods persist is that not everybody has the means
to read the Java code. The barriers to entry into the world of empirical experimentation are much
lower than the barriers to deciphering source code. We might still expect that code-reading would
supplant empirical methods by positioning itself as a more precise—and therefore more
legitimate—discourse, but curiously this does not appear to have happened on the Minecraft Wiki.
A partial explanation may be that empirical methods hold their own because of the creative twists
they introduce, such as showing off the cleverness of the experimental apparatus, or building in-
world data visualizations.

Furthermore, looking inside the black box of code does not necessarily clarify anything.
Sometimes, after a peek inside the code, even the experienced programmer will decide that it
would be easier to triangulate the outside of the black box, rather than untangle the inside. The
code is not structured and partitioned rationally like an apartment building, but is messy and
organic like a wasp’s nest. This is the natural result of Minecraft’s iterative development and just-
in-time addition of new features. Duncan (2011) suggests that there are “many Minecrafts”—
meaning that there are many radically different ways to articulate gameplay within Minecraft, but
also more literally that there are many different publicly-released versions of the software. There
are dozens of official “vanilla” (non-modded) releases alone, from early development snapshots,
through alpha and beta stages, to the current “release” version that Mojang has continued to iterate
upon, despite it having been ostensibly “finished” years ago. The differences in game mechanics
between versions can substantially alter the experience of gameplay4. More to the point, the code
to add new features is often shoehorned awkwardly into the existing code-base, in a way that is
not always easy to puzzle out. The “agile” nature of Minecraft development that Duncan (2011)
identifies as key to its success becomes an obstacle to those who would study the code instead of
experimenting in game.

For instance, the algorithm for determining walking speed has a series of checks for conditions
such as sprinting, jumping, moving through water, moving on ice, attempting to use an item, being
under the influence of a potion, and more. These checks are not all performed in an orderly fashion
in one part of the program, but are instead spread haphazardly across multiple subroutines. One of
the major tasks of the player-movement code is translating between movement as a forward speed
and strafing speed (i.e. the local axes, relative to the player), to movement as a displacement along
the global X and Z axes. The various checks and modifiers on movement speed occupy awkward

	83

positions before, in-between, and after these translation steps. Additionally, the choice of
multipliers for normal walking speed seem to be largely arbitrary. A contributor to the Minecraft
Wiki’s talk page for the Transportation article has actually puzzled out the entire algorithm for
calculating walking speed by reading source code, and has re-written it in a simplified form
(“Transportation”, n.d.). In this explanation, the contributor notes that the “internal movement
speed,” a variable number that conveys little meaningful information on its own, can be translated
into metres per second by multiplying by 4274/99. It is probable that these values were themselves
tweaked by developers through trial and error. Thus, this portion of the code itself was likely
written, tested, and modified through empirical experimentation, rather than by generative
planning.

Given these obstacles to mapping out game rules by studying code, it is no wonder that
experimentation remains a comparatively effective method for explicating the game’s behaviour.
The structure of the code inherently resists the big-picture strategy of top-down, line-by-line
explication, so players resort to the ground-level tactic of experimentation instead.

“I’m going to try Science!”
A certain fascination with the thematic representation of the scientific method may also be
responsible for the popularity of empirical methods among Minecraft players. “Science” (often
spelled with a capital ‘S’ in the experimental play I have observed) becomes a ritual mode through
which both playfulness and expertise are represented. Furthermore, it is a mode that invites
participation, collaboration, and the showing-off of skillfully-constructed Scientific apparatus.
Where studying source code isolates investigators from each other, in-game experimentation
brings them together.

Furthermore, it is not surprising that Minecraft players would be predisposed to enjoy
experimentation, since the game already invites such activity from the outset—for instance, in the
initial discovery of crafting recipes (before a preponderance of how-to guides began to appear on
the internet). Popular mods like Thaumcraft make experimental research explicit. In Thaumcraft,
the player must use instruments to study objects in the environment in order to determine their
elemental composition. New elements are discovered through a combination of finding them in
nature, and a trial-and-error process of attempting to combine elements in a laboratory setting.
Empirical science is already framed and experienced as a play activity. Thus, the experimental
mode of procedural elaboration is more readily experienced as play than is code-reading,
especially since it actually involves running the game program instead of just reading it.

In the World of Warcraft theorycrafting community, there is some concern that access to a game’s
code would mean the end of theorycrafting as a vibrant practice, and would render the game as a
whole more shallow (Paul, 2011, Theorycraft: Why Players Use It section, para. 7). Whether or
not this would be the case for WoW, the case of Minecraft demonstrates that such an outcome is
not generally inevitable, especially if we look beyond the purely instrumental view of
experimentation. The structure of the game code, combined with the entrenched appeal of ritual
modes of communication enabled by procedural elaboration, help to maintain the use of
experimental methods even when source code is available.

	84

Conclusion

The existing theorycraft-based explanation of empirical investigation of game mechanics has
largely explained such activities in terms of prescriptions for optimization and power-gaming. This
paper has argued for the need to take a more expansive view of these activities. The concept of
procedural elaboration helps to illustrate what instrumental theories of gameplay fail to capture:
how the production of descriptive procedural knowledge through experimentation is a gameplay
end in itself. Players use the tactics of procedural elaboration to render procedurally hostile spaces
safe and domestic, assert mastery over the game space, and position themselves as knowledgeable
experts, rich in gamer capital. These tactics stand in contrast to the strategies of theorycraft,
wherein some players feel that prescriptivism threatens to dictate one “right” way to play the game
(Paul, 2011, Theorycraft: Why Players Resist section, para. 9). Without a prescriptive message to
transmit, the communication of acts of procedural elaboration nevertheless serves a ritual function,
constructing and reinforcing social bonds within the player community.

There is a need to investigate whether procedural elaboration practices of the kind seen in
Minecraft are also found in other games. Moreover, procedural elaboration can benefit from being
integrated with larger theories of emergent play. Newman (2008) has drawn attention to the notion
of playing and experimenting with games as an alternative mode of play that reframes the game as
a toy. Parker’s (2008) concept of “expansive play” provides opportunities for interpretation
through a procedural-elaboration framework. With expansive play, players synthesize their own
game experiences out of a combination of procedural rules already embedded in the game program
and self-imposed rules. Knowledge produced via procedural elaboration can be applied towards
creating and refining the kinds of player-made games-within-games discussed by Parker—games-
within-games like Jeep Tag may themselves be examples of procedural elaboration. Furthermore,
it may be productive to consider procedural elaboration itself as an instance of expansive play.
This would point to an investigation of whether there are player-imposed rules for carrying out
procedural elaboration, and how these rules come about.

Finally, an emic5 perspective on the experience of, and motivations for, procedural elaboration is
needed. A logical future step would therefore be to directly interview players engaging in these
practices.

	85

References

Anderson, B. (1991). Imagined communities: Reflections on the origin and spread of nationalism

(Revised Edition). London, UK: Verso.
Bayliss, J. D. (2012, September). Teaching game AI through Minecraft mods. In Games

Innovation Conference (IGIC), 2012 IEEE International (pp. 1-4). IEEE.
Bourdieu, P. (1986). The forms of capital. In J. Richardson (Ed.), Handbook of theory and

research for the sociology of education (pp. 241-258). New York, NY: Greenwood.
Carey, J. W. (2009). A cultural approach to communication. In J. W. Carey (Ed.),

Communication as culture: Essays on media and society (Revised Edition) (pp. 11-28).
New York: Routledge

Consalvo, M. (2007). Cheating: Gaining advantage in videogames [Amazon Kindle Edition].
Retrieved from www.amazon.com/Cheating-Advantage-Videogames-Mia-Consalvo-
ebook/dp/B001D221M4/

de Certeau, M. (1984). The practice of everyday life (S. Rendell, Trans.). Berkeley, CA:
University of California Press.

Duncan, S. C. (2011). Minecraft, beyond construction and survival. Well Played: A Journal on
Video Games, Value and Meaning, 1(1), 1-22. Retrieved from
http://dl.acm.org/citation.cfm?id=2207097

Goetz, C. (2012). Tether and accretions: Fantasy as form in videogames. Games and Culture,
7(6), 419-440.

Keogh, B. (2013, September). When game over means game over: Using permanent death to
craft living stories in Minecraft. In Proceedings of The 9th Australasian Conference on
Interactive Entertainment: Matters of Life and Death. ACM.

Lastowka, G. (2011). Minecraft as web 2.0: Amateur creativity & digital games. Available at
SSRN 1939241.

Mateas, M. (2008). Procedural literacy: Educating the new media practitioner. In D. Davidson
(Ed.), Beyond fun (pp. 67–83). Pittsburgh, PA: ETC Press. Retrieved from
http://dl.acm.org/citation.cfm?id=1594207.1594217

Mitch7656. (2010, October 31). THEORY: Why your Nether portals are “glitched”. Message
posted to http://www.minecraftforum.net/forums/archive/alpha/alpha-minecraft-
halloween-update/838694-theory-why-your-nether-portals-are-glitched

MrSideliner. (2013, January 20). Slowest you can walk in Minecraft: 18 blocks per hour! [Video
file]. Retrieved from https://www.youtube.com/watch?v=Q8b5xehp3sg

Newman, J. (2008). Playing with videogames. New York, NY: Routledge.
Parker, F. (2008). The significance of Jeep Tag: On player-imposed rules in video

games. Loading…, 2(3). Retrieved from
http://journals.sfu.ca/loading/index.php/loading/article/viewArticle/44

Paul, C. A. (2011). Optimizing play: How theorycraft changes gameplay and design. Game
Studies, 11(2). Retrieved from http://gamestudies.org/1102/articles/paul

Schifter, C., & Cipollone, M. (2013, March). Minecraft as a teaching tool: One case study. In
Proceedings of Society for Information Technology & Teacher Education International
Conference (pp. 2951-2955).

Short, D. (2012). Teaching scientific concepts using a virtual world – Minecraft. Teaching
Science, 58(3), 55-58.

	86

Smelting. (n.d.). In Minecraft Wiki. Retrieved February 12, 2015, from
http://minecraft.gamepedia.com/Smelting

Spawn/Multiplayer details. (n.d.). In Minecraft Wiki. Retrieved February 12, 2015, from
http://minecraft.gamepedia.com/Spawn/Multiplayer_details

Transportation. (n.d.). In Minecraft Wiki. Retrieved February 12, 2015, from
http://minecraft.gamepedia.com/Transportation

Whitelaw, M. (2008). Art against information: Case studies in data practice. The Fibreculture
Journal, 11. Retrieved from http://eleven.fibreculturejournal.org/fcj-067-art-against-
information-case-studies-in-data-practice/

1 Paul (2011) describes the emergence of theorycrafting as a player practice in World of Warcraft. Through
controlled, repetitive experiments and statistical analysis, theorycrafters attempt to triangulate on hidden rules of the
game engine, such as how exactly a given weapon’s attack rolls are calculated, or the probability of a monster
dropping a rare item. The end goal is usually to come up with strategies for optimizing one’s gameplay—for
instance, determining the best equipment set for fighting in a certain area at a certain level.
2 Players can use the fan-made, web-based Minecraft Enchantment Calculator for this task:
http://www.minecraftenchantmentcalculator.com/rev6/
3 This comparison takes a more expansive view of the concept of imagined communities than Anderson does in his
book Imagined Communities (1991), extending it beyond an explanation of nationalism to describe more generally a
sense of community that can form around media artifacts shared in common, even without direct communication
between members.
4 For example, the addition of beds in Beta Version 1.3, which allowed players to skip through nights, substantially
changed the prior rhythm of differing daytime and nighttime activities described by Goetz (2012, p. 425).
5 That is, an internal, local perspective that considers the cultural meanings espoused by the practitioners of
procedural elaboration themselves.	

																																																								

