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Abstract 

Principal Components Analysis (PCA) is widely used by behavioral science 

researchers to assess the dimensional structure of data and for data reduction 

purposes. Despite the wide array of analytic choices available, many who employ 

this method continue to rely exclusively on the default options recommended in 

dominant statistical packages. This paper examines alternative analytic strategies 

to guide interpretation of PCA results that expand on these default options, 

including (a) rules for retaining factors or components and (b) rotation strategies. 

Conventional wisdom related to the interpretation of pattern/structure coefficients 

also is challenged. Finally, the use of principal component scores in subsequent 
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analyses is explored. A small set of actual data is used to facilitate illustrations and 

discussion. 

Despite the increasing popularity of confirmatory factor analytic (CFA) 

techniques, principal components analysis (PCA) continues to enjoy widespread 

use (Kellow, 2004; Thompson, 2004). Researchers who employ PCA are typically 

interested in (a) assessing the dimensional structure of a dataset (Dunteman, 1989) 

or (b) reducing a large number of variables into a smaller set of linear 

combinations (components) for subsequent analyses (e.g., multiple regression). For 

instance, an evaluator may have occasion to develop a new instrument and wish to 

ascertain the number and features of the underlying dimensions represented in the 

data. At other times an existing measure is modified or shortened and the sample 

data are used to explore the extent to which the structure of the original version has 

or has not been substantively altered (although CFA is a stronger method for this 

purpose). The PCA approach also is useful for creating new variables that are 

linear combinations of a set of highly correlated original variables. These new 

composite variables may then be used in subsequent analyses. As Stephens (1992) 

notes, “… if there are 30 variables (whether predictors or items), we are 

undoubtedly not measuring 30 different constructs, hence, it makes sense to find 

some variable reduction scheme that will indicate how the variables cluster or hang 

together” (p. 374). Use of PCA helps to solve at least two problems. First, the 

presence of multicollinearity (high inter-item or variable correlations) leads to 

inflated standard errors for the measured variables when conducting statistical 

analyses, which increases the probability of Type II errors (non-significance when 

a significant difference exists in the population). Second, when one is using a large 

set of variables to predict or explain another variable (or set of variables) as 
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opposed to a smaller set of composites, one pays a price in terms of the degrees of 

freedom used in the analysis. All other things being equal, the more degrees of 

freedom expended the smaller the value of the omnibus test statistic (e.g., F) that 

results from the analysis (Stephens, 1992).  

 There are a number of important issues related to the data in hand that need to be 

addressed (e.g., linearity; absence of outliers) before invoking PCA, and readers 

are referred to Tabachnick and Fidell (2001) for an excellent overview of these 

considerations. Once PCA is determined to be appropriate, the analysis proceeds in 

a series of sequential steps―several options are available to researchers at each 

step. Too often researchers rely on the default options provided in the major 

statistical packages and fail to examine other options that may allow for fuller 

exploitation of the data. The purpose of the present paper is to briefly explore the 

options available to analysts with respect to (a) rules for retaining principal 

components and (c) rotation strategies. In addition, conventional wisdom related to 

the interpretation of pattern/structure coefficients is challenged on substantive 

grounds. Finally, we briefly explore how PCA may be used to derive component 

scores for further data analysis. 

Heuristic Data  

For heuristic purposes, real data from a recent evaluation of a large alternative 

education campus are used in the analyses. These data consist of responses from a 

sample of 36 teachers and administrators on six items taken from the School 

Culture Quality Survey (SCQS) developed by Katzenmeyer (1994). The items 

represent two of the four subscales on the instrument: Shared Vision (SV) and 

Facilitative Leadership (FL). We want to emphasize that one important 
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consideration in invoking PCA is the subject to variable ratio. Since PCA 

capitalizes on chance associations—as do all members of the general linear model 

family—this ratio is ideally at least 10:1 (see Thompson, 2004, for a review of 

other factors that also are relevant). The present ratio of 6:1 is far from ideal, but 

will suffice for the present discussion. 

Rules for Retaining Components 

In the initial extraction process, PCA will derive as many components as the 

number of measured variables. After the initial components are extracted, the 

analyst must decide on how many components should be retained to meaningfully 

represent the original correlation matrix. The initial component eigenvalues, 

percent of variance accounted for, and cumulative variance accounted for are 

provided in Table 1. According to Stevens, “probably the most widely used 

criterion is that of Kaiser (1960): Retain only those components whose eigenvalues 

are greater than 1” (1992, p. 378). This is the default option in many statistical 

packages (e.g., SPSS). Other methods for retaining factors, however, may be more 

defensible and perhaps meaningful in interpreting the data. Indeed, after reviewing 

empirical findings on its utility, Preacher and McCallum (2003) report that “the 

general conclusion is that there is little justification for using the Kaiser criterion to 

decide how many factors to retain” (p. 23). 
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Table 1. 

Initial component extraction statistics 

Initial Eigenvalues % of Variance Cumulative % 

3.363 56.048 56.048 

.973 16.211 72.259 

.558 9.296 81.555 

.449 7.477 89.033 

.419 6.979 96.012 

.239 3.988 100.000 

One reasonable alternative to Kaiser’s rule is Cattell’s (1966) scree test, which 

provides a graphical representation of the eigenvalues relative to their magnitude 

(this option is available in most major statistical packages). The basic idea is to 

plot eigenvalues on the ordinate (y axis) of a bivariate scatter with order of 

magnitude represented on the abscissa (x axis). Then, a visual inspection of the 

scree plot is undertaken to identify a point at which an inflection occurs that 

signifies a flattening of the line of best fit. Eigenvalues that occur before the first 

value that signifies a flattening are then retained (Stevens, 1992). An example is 

provided in Figure 1. For the present data, the Kaiser criterion would suggest 

retaining a single component, while the scree plot suggests retaining two 

components. 
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Figure 1. Scree plot for the SCQS data 
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A fairly common technique noted in the literature (Kellow, 2004) combines the 

two approaches. Eigenvalues greater than one are initially retained, and the scree 

test is used subsequently to assess the tenability of the model. Because eigenvalues 

represent reproduced variance, this is equivalent to setting a minimum level of 

acceptable variance reproduced by a component. The second stage evaluates the 

parsimony of the solution relative to the contribution of each component to 

reproducing the original variance in the data. A potential disadvantage of this 

approach is the arbitrary criterion of retaining eigenvalues greater than one in the 

first stage. Because PCA studies typically rely on sample data, eigenvalues 

(reproduced variance) should be expected to change (even with large samples) 

slightly from sample to sample. In addition, the interpretation of what constitutes a 

“meaningful” amount of variance accounted for (which eigenvalues represent) is 

inherently subjective (Thompson, 2002). Indeed, in the present data the second 

eigenvalue is .973, which is virtually indistinguishable from one. Moreover, since 

the measured variables conceptually are indicators of two different components, it 

seems reasonable (and supported by the scree interpretation) to retain both.   
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Rotation Strategies 

Once an appropriate number of components have been determined, the analyst is 

charged with the task of interpreting the components. This process often is 

facilitated by geometrically rotating the factors to obtain a sharper conceptual 

solution. Because the starting point for locating factors in geometric space is 

arbitrary, rotating the factors does not change the overall variance explained by the 

components, although the eigenvalues associated with the respective components 

are not necessarily the same as the unrotated solution (Thompson, 1996). Two 

methods of rotation are available: (a) orthogonal and (b) oblique. 

Orthogonal rotation constrains the obtained solution such that the obtained factors 

are uncorrelated. The overwhelming choice of analysts who opt for an orthogonal 

solution is the varimax procedure, which is the default option in most popular 

statistical packages (Kellow, 2004; Russell, 2002; Thompson, 2004). For various 

reasons (Tabachnick & Fidell, 2001; Stevens, 1992) varimax is generally an 

excellent choice if one prefers an orthogonal solution, although other options are 

available. 

In contrast to orthogonal solutions, oblique rotation solutions allow for factors to 

be correlated. At times, the quest for simple structure is inhibited by the 

assumption of uncorrelated factors. “Typically this is indicated by variables 

having…coefficients that are large in absolute value on two or more factors (which 

is sometimes called multivocal vs. univocal)” (Thompson, 2004, p. 42). The use of 

an oblique solution, such as oblimin or promax (see Tabachnick & Fidell, 2001, for 

an overview) often best captures the reality of the construct(s) being investigated. 

Rarely does one assume that multidimensional constructs, such as school climate, 
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are composed of dimensions that are completely independent of one another. Most 

statistical programs will provide an estimate of the correlation between 

components when an oblique rotation is requested. Tabachnick and Fidell 

recommend performing such an analysis and examining the correlations for values 

of .32 and above, indicating at least 10% of overlap between the components 

(although, again, this is an arbitrary value). 

In order to interpret the principal components one must consult the correlations 

between variables and components, often referred to as “loadings.” As noted by 

Thompson (1996), these coefficients are merely “weights” assigned to variables to 

indicate their importance. However, this obscures a very important difference 

between these values when oblique as opposed to orthogonal rotational strategies 

are used. 

If an orthogonal rotation is used, the correlation between a variable and a 

component represents the total contribution of the variable to the respective 

component (called a structure coefficient). In the case of orthogonal rotation, the 

components will be uncorrelated and the structure coefficients and pattern 

coefficients will be identical. In contrast, when an oblique rotation is employed, the 

correlation coefficient associated with a particular variable and a component 

indicates the unique contribution of that variable to the component after partialling 

out the variance attributable to the variable’s covariance with other components 

(called a pattern coefficient) (Tabachnick & Fidell, 2001). This is analogous to 

regression analysis, where the beta (ß) weights indicate the contribution of 

individual predictors in “explaining” the criterion variable. If the predictors are 

perfectly uncorrelated, these weights indicate both the total and unique 

contribution of a predictor variable. However, when the individual predictor 
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variables are correlated with one another―which is usually the case―the weights 

indicate the unique contribution of the variable to explaining the criterion in the 

presence of other predictors. 

Table 2 provides the unrotated component pattern and structure matrix and rotated 

matrices for the present data using both orthogonal (varimax) and oblique (oblimin 

and promax) rotations. Inspection of the unrotated matrices (which are identical) 

indicates that the items tend to correlate highly with both components, despite the 

postulated existence of two separate components. The varimax rotation provides a 

fairly clear differentiation between the components with the exception of the sixth 

indicator, which is fairly highly correlated with both components. Note that the 

pattern and structure coefficients are identical, which confirms our earlier 

statement about the identity relationship between the two matrices when 

components are rotated to be orthogonal (uncorrelated). Relaxing the assumption 

of uncorrelated factors by invoking the oblimin procedure results in a slightly 

better fit (r between factors = .42). Inspection of the pattern and structure 

coefficients for the oblique rotation reveals, indeed, that these coefficients are not 

the same because of the correlation between the two components, as mentioned 

earlier. The promax solution provides an even more parsimonious fit of the data (r 

between factors = .53). It should be noted that in both oblique methods, one may 

alter the degree of correlation allowed between the components by manipulating a 

parameter called delta in oblimin and the pivot power in promax. We (shamefully) 

have provided examples using the default values for the sake of brevity; however, 

the interested reader is referred to Kim and Mueller (1978) and Tabachnick and 

Fidell (2001) for further explication. 
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Table 2. 

Rotated component pattern and 

structure matrices using orthogonal and oblique methods 

Pattern Matrices 

 Unrotated Varimax Oblimin Promax 

Variable I II I II I II I II 

SV 1 .778 -.410 .863 .172 .894 -.035 .922 -.085 

SV 2 .721 -.430 .831 .121 .870 -.081 .902 -.132 

SV 3 .857 -.169 .771 .409 .743 .243 .742 .213 

FL 1 .570 .665 .023 .876 -.167 .933 -.255 .983 

FL 2 .734 .342 .355 .728 .223 .690 .168 .709 

FL 3 .800 .179 .508 .643 .407 .561 .368 .563 

         

Structure Matrices 

SV 1 .778 -.410 .863 .172 .879 .340 .877 .401 

SV 2 .721 -.430 .831 .121 .836 .284 .832 .343 

SV 3 .857 -.169 .771 .409 .845 .554 .854 .604 

FL 1 .570 .665 .023 .876 .224 .863 .263 .849 

FL 2 .734 .342 .355 .728 .513 .784 .542 .797 

FL 3 .800 .179 .508 .643 .642 .731 .665 .757 

SV = Shared Vision  FL = Facilitative Leadership 

As noted by Thompson (2004), “Persons first learning of rotation are often 

squeamish about the ethics of this procedure” (p. 40). It should be stressed 

however, that component rotation simply expresses the data in a different 
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dimensional space. The wise analyst would do well to go beyond default settings 

by exploring both orthogonal and oblique rotation strategies. 

Interpretation of Factor Pattern/Structure Coefficients   

Although the misuse of language associated with these coefficients is problematic, 

a second issue, related to their substantive interpretation, is more troublesome. It 

may be argued that the most artful aspect of PCA is the determination of the 

salience of variables as they relate to derived factors. Analysts often use an 

absolute criterion for deciding to retain variables that is absolutely arbitrary 

(Hogarty, Kromrey, Ferron, & Hines, 2004). Two of the most popular criteria are 

pattern/structure coefficients greater than ⎥.3⎥ or coefficients greater than ⎥.4⎥. The 

former rule appears to be attributable to Nunnally (1982), who claimed that “It is 

doubtful that loadings (sic) of any smaller size (.30) should be taken seriously, 

because they represent less than 10 percent of the variance” (p. 423). The latter 

criterion can be traced to Stevens (1992), who stated:  

It would seem that one would want in general a variable to share at least 15% of 

its variance with the construct (factor) it is going to be used to help name. This 

means only using loadings (sic) which are about .4 or greater for interpretation 

purposes. (p. 384)  

A basic problem with this approach is the dichotomous decision making process 

that it encourages: ⎥.31⎥ is good and ⎥.29⎥ is bad. In the present example, the factor 

pattern/structure coefficients clearly meet the previous criteria; however, this is not 

always the case. Happily, a recent review of practice (Kellow, 2004) indicates that 

at least some researchers employing PCA (about 25%) refuse to be bound by such 

restraints and, instead, rely on logical interpretation within the context of the 
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phenomena being investigated to guide their interpretation of the salience of 

component pattern/structure coefficients. Adhering to conventional “rules of 

thumb” such as interpreting coefficients based only on their magnitude in 

comparison with a strict criterion seems to belie the “exploratory” spirit of PCA. 

Using Component Scores in Subsequent Analyses  

Once the dimensional structure of the data has been determined, there are several 

methods for determining individual scores on these dimensions for further 

analyses. For the sake of brevity, all analyses will be conducted using multiple 

regression, however, the results easily generalize to all GLM methods (e.g., 

ANOVA; discriminant analysis) provided that statistical assumptions for each 

method are satisfied. We will use the data for the SCQS to predict the responses on 

a single item measuring overall effectiveness of the school principal using an 8-

point scale ranging from 0 (not at all effective) to 7 (highly effective). 

Before pursuing the notion of component scores, imagine a statistically naïve 

evaluator who might decide to use all six variables to predict the criterion of 

overall effectiveness. These results are provided in the first section of Table 3. 

Using all six items results in a large R2 (.54) and statistically significant omnibus F 

value (5.59, p < .001). Notice, however, that none of the individual ß weights for 

the items would be considered statistically significant at conventional levels. This 

rather perplexing event happens because of the high inter-correlations between the 

items, particularly with such a small sample size. This phenomenon, known as 

multicollinearity, results in a very unstable regression solution. 
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Table 3. 

Predicting “Overall Effectiveness” with 

SCQS scores using various score derivation methods 

Method Variables ß weight p value 

All variables    

(R2 = .54, F = 5.59, p = .00) SV 1 .230 .131 

 SV 2 .088 .678 

 SV 3 .071 .717 

 FL 1 .242 .190 

 FL 2 .222 .190 

 FL 3 .247 .145 

Composite Scores    

(R2 = .51, F = 17.19, p = .00) SV .589 .000 

 FL .189 .213 

Orthogonal Component Scores    

(R2 = .51, F = 17.2, p = .00) Reg SV .588 .000 

 Reg FL .407 .002 

Oblique Component Scores    

 Reg SV .533 .001 

(R2 = .51, F = 17.2, p = .00) Reg FL .272 .049 

SV = Shared Vision  FL = Facilitative Leadership 

Suppose, instead, we use a simple method of constructing component scores by 

simply summing the individual responses of teachers to each of the three items on 

each of the two components. These results are presented in the second section of 
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Table 3. Note that the R2 value is also substantial (.51) and the obtained F statistic 

is both statistically significant (p < .00) and much larger (17.19) than in the 

previous analysis using all six items as predictors. This is because each predictor 

we enter into the regression equation requires us to expend an additional degree of 

freedom, which in turn reduces the obtained F value (all other things being equal). 

From these results we would conclude, based on the ß weights and corresponding p 

values, that SV was both substantively and statistically significantly superior to FL 

in predicting overall effectiveness. Looks, however, can be deceiving. It so 

happens that the zero-order correlation between SV and the criterion is .697 (r2 = 

.486), while the zero-order correlation between FL and the criterion is .527 (r2 = 

.278). Both values are substantively and statistically significant (p < .01). Clearly, 

both composite variables have something to offer in predicting the criterion. But 

SV and FL also are highly correlated (r = .574). In standard multiple regression, 

the predictor with the highest correlation with the criterion (SV) always enters the 

solution first. The second predictor, if correlated with the first, is evaluated based 

on its unique contribution to predicting the criterion after controlling for variance 

accounted for by the first predictor. 

The third section of Table 3 presents results using component scores derived from 

the varimax rotated (orthogonal) components. Most statistical packages offer 

several methods of obtaining empirically derived component scores, but in the case 

of PCA, all will yield identical results for a particular rotational strategy. The 

present scores were derived using a regression approach. This method uses the 

component pattern/structure coefficients to weigh the observed scores, forming an 

additive composite score for each component. In the case of orthogonal solutions, 

the scores will be uncorrelated across the respective components. Therefore, each 



J. Thomas Kellow 

Journal of MultiDisciplinary Evaluation, Number 5 
ISSN 1556-8180 
September 2006 

103

component ß weight represents the total contribution of the variable in predicting 

the criterion irrespective of the other predictor. This may be confirmed by squaring 

the ß weights (.5882 = .346 and .4072 = .166), and obtaining the sum, which results 

in a value of .512―within rounding error of the obtained R2 (.511). Orthogonal 

factor scores may be optimal in their advantage of being directly interpreted as the 

overall contribution of each component in predicting the criterion; however, as 

noted earlier, orthogonal solutions may not be optimal in fitting the original data. 

The choice of which component scores to use in subsequent analyses is determined 

by the initial selection of a rotation solution. Since we chose the oblique (promax) 

solution as the best fit of the data to the model, we are obliged to use the oblique 

component scores for subsequent analyses (B. Thompson, personal 

communication, December 15, 2004). These statistics are displayed in the final 

section of Table 3. Importantly, the obtained R2 is identical to that obtained using 

the orthogonal scores, which reinforces the notion that, while different rotational 

strategies may distribute the variance accounted for by the components differently, 

the amount of variance explained by the original components remains constant. 

Discussion 

When used thoughtfully, PCA is a powerful tool for data analysts interested in 

exploring the dimensional structure of scale variables. Too often, we argue, 

persons using the technique rely blindly on the default options in popular statistics 

packages. The popular “Little Jiffy” combination advocated by Kaiser (1970), 

wherein components with eigenvalues greater than one are retained, and the 

varimax criterion, is atavistic in light of the complexity underlying components 

analysis. As we have demonstrated, the use of different criteria can impact the 

decisions made at various steps in the analytic sequence. While no interpretation or 
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decision may be thought of as inherently superior, the use of multiple criteria 

acknowledges the subjective nature of interpreting PCA results. The same may be 

said of the tendency for analysts to set some a priori criterion for interpreting 

pattern/structure coefficients without considering the component structure as a 

whole. 

Evaluation analysts are encouraged to explore a variety of options at each stage of 

the PCA process, and to allow informed judgment to guide the process rather than 

strict, arbitrary criteria. We have presented a few of these options in the present 

paper, but there are additional options that are infrequently used because they are 

not readily available in most packages. For instance, some have suggested a 

promising variant of the scree plot in which standard errors are computed to 

supplement interpretation of the number of components to retain (Nasser, Benson, 

& Wisenbaker, 2002). 

The use of PCA to obtain composite scores is a valuable tool when dealing with 

correlated variables. As has been shown, the problem of multicollinearity can lead 

to some perplexing results, and the use of component scores can help to clarify 

these statistical dilemmas. In addition, the use of component scores rather than a 

large number of individual variables is better given the fact that, all other things 

being equal, using fewer predictors (in the regression case) makes for a more 

powerful analysis. 

On a final note, we would like to reaffirm the thoughts of May (2004) on the 

presentation of statistical analyses to evaluation audiences. Increasingly, evaluators 

are becoming cognizant of the multivariate reality of evaluation contexts. To the 

extent possible, evaluators are obliged to honor this reality. It would, however, be a 
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grave mistake to present component matrices and the like within the body of an 

evaluation report (unless one is afraid someone might actually read the report). 

While valuable, these data are best left to appendices, or as May suggests, a 

different evaluation report aimed at researchers rather than a non-technical 

audience. That being said, we hope this brief paper encourages the diligent 

evaluator to go beyond the “hegemony” of the default and explore the rich number 

of options available to analysts who choose to invoke PCA. 
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