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This is a review of “The Book of Why”, (Pearl & 
Mackenzie, 2018), the first book for a general 
readership by Turing Prize winner Judea Pearl, one 
of the parents both of Artificial Intelligence and of 
the “Causal Revolution” in statistics. The present 
review is more extensive than most book reviews 
because of the fundamental significance of this 
book and its subject matter to the evaluation 
community. 

Causality matters to evaluators. We need to 
understand how elements of a project or program 
are supposed to work: how interventions made on 
some things might contribute to differences made 
to other things, which themselves have further 
consequences. As such, we as evaluators are 
concerned with causality. Also when we try to judge 
in retrospect what in fact contributed to what, we 
are dealing with causality. 

To be sure, most evaluators have abandoned, or 
would like to have the freedom to abandon, overly-
mechanistic and linear models of how interventions 
work. The theories of change we (would like to) deal 
with are perhaps structured more like diagrams of 
organisms or ecosystems than like diagrams of 
machines, and they may have non-linear, partial, 
probabilistic connections with feedback loops, and 
may have vague and/or missing information. But 
they are networks of putative causal connections all 
the same. Even when someone says, “this is a 
complex system, it is very hard to predict its 
behavior, we need to identify key leverage points to  
influence its development in such-and-such a way”, 
they are still expressing a causal theory, albeit a 
fuzzy one, that tweaking this might influence that. 
So, the concept of causality in one form or another 
is essential to evaluation. 

The central premise of the book is that we have 
been lacking almost any well-established, formal 
way to talk about causality – to express causal 
questions or answers, to write down the equation 
for “smoking causes cancer” or the question “what 
was the causal contribution of this intervention to 
that effect?” The place most empirical social 
scientists have turned to in the search for such a 
language is statistics. But for nearly a century, 
discourse around causality was dominated by the 
thousand-pound gorillas of classical, associationist 
statistics, originally in the persons of R.A. Fisher 
and Karl Pearson, who told us that firstly 
correlation is not causation, and secondly that there 
is no such thing as evidence for causation except in 
the case of a Randomised Controlled Trial (RCT), 
and thirdly that even when we have an RCT there is 
no way to explain what happened to individuals 
within that very trial; explanations were restricted 
to the collective. Consequently, we were told that in 
cases where no trial exists there can be no causal 
explanations, and where no trial can ever be 
conducted (perhaps for ethical reasons) there will 
never be any causal explanations. So, essentially, 
except in the rare and special case of reporting the 
result of a randomised controlled trial, the word 
“cause” was taboo. 

Some fringe disciplines did flourish at the edge 
of the jungle away from these thousand-pound 
gorillas, giving us fragments of languages to talk 
about causation - Fuzzy Sets and Fuzzy Causal 
Maps (Kosko, 1986; Zadeh, 1973), Contribution 
Analysis (Mayne J, 2001), Process Tracing – see 
Collier (2011) – amongst others. But no alternative 
paradigm was strong enough to unseat the 
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associationist gorillas. Evaluation and the social 
sciences suffered as a result. 

In practice, of course, we pose causal questions 
and give causal explanations all the time, very often 
on an ad-hoc basis. Children learn to do it in their 
very first years (even though they never conduct 
randomised controlled trials), just as they learn to 
use mathematical language. In later years, they will 
learn how to formalise mathematical questions and 
calculate their answers using special symbols such 
as the “+” symbol for addition. But until recently, 
no-one was taught how to formalise causal 
questions or how to calculate or express the 
answers. 

Now all that is changing. A causal revolution is 
shaking the jungle, thanks primarily to the work of 
statistician Donald Rubin and, above all, to 
philosopher-statistician Judea Pearl. This is not a 
fringe skirmish or a dissenting footnote but a root-
and-branch rewriting of how we formulate and 
gather evidence for causal statements, which is 
being felt in disciplines from epidemiology to 
climate science. 

Most evaluators are not aware of this 
revolution. The present review attempts to 
contribute to spreading the good news to the 
evaluation community. 

 

Judea Pearl and his Contribution 
 
Judea Pearl started his career as an engineer. In the 
1980s he was working on problems in artificial 
intelligence. He wanted to be able to teach an 
artificially intelligent system to navigate and 
interact with the real world. He invented Bayesian 
Networks in order to facilitate the processing of 
probabilistic rather than only deterministic 
information (some of his work powers the phone in 
your pocket, along with many other innovations). 
More specifically, although the idea of using 
probabilistic information was not new, in practice, 
probabilistic knowledge was encoded in huge 
probability tables in which the association of every 
variable with every other was stored, and these 
required just too much computing power to work 
with. Pearl’s contribution was to show how to use 
network diagrams to break down these tables into 
much more manageable units. 

But Pearl was still frustrated because these 
Bayesian Networks could not encode causal 
information. They could not explain why making 
the cock crow does not cause the sun to rise, even 
though the two events are highly correlated: if one 
occurs, the other is highly probable. Classical 
statistics does not give us any convincing way to say 

anything about the direction or underlying nature 
of this connection - and Pearl and his colleagues 
had no way to store this information in an 
artificially intelligent system. But, he reasoned, if 
children can learn to understand and store causal 
information, machines can too. 

Pearl went back to the work of the geneticist 
Sewall Wright who invented Path Analysis as a way 
to encode causal information using diagrams in the 
early 1920s (Wright, 1921). These causal diagrams 
represent connections prior to the probabilistic 
information we actually observe. They explain and 
go beyond our observations. 

Wright’s work was vigorously and explicitly 
discouraged by the thousand-pound gorillas of 
Pearson and Fisher. They stuck almost religiously 
to the positivistic ideology that all knowledge is 
sensory information, and sensory information can 
not encode causal connections. 

The authors also refer to the work of Barbara 
Burks (1926), who may have preceded Wright with 
the use of causal diagrams in particular in the study 
of mediation, but the uptake of her work suffered 
under the twin pressures of mainstream statistics 
and the prejudices against women in science in the 
early and mid-twentieth century. 

Causal diagrams are easy to understand and are 
not so different in principle from the logic models 
and theories of change, with all their various 
weaknesses, which evaluators and program staff 
use all the time. Essentially, a causal arrow from 
“fire” to “smoke” says “intervening on the variable 
‘fire’ will do something to the variable ‘smoke’”. As 
a by-product, this intervention may also make 
“smoke” more probable; but this depends also on 
other circumstances (other variables affecting 
“smoke”). The arrow in a Pearlian diagram is about 
causal contribution, not about probability: it 
explains the probabilities. It remains a stable and 
valid piece of knowledge even if in a particular 
instance someone sucks away the smoke with a 
vacuum cleaner. 

By around 2000, Pearl had succeeded in 
providing a formal way to store causal information 
and solve causal problems using a combination of 
diagrams and mathematical expressions. This work 
is summarised in his outstanding contribution 
(Pearl, 2000). Unfortunately, even a reader with 
some familiarity with graph theory, statistics and 
formal logic will probably find it a difficult read. 
Pearl’s web page  does list some public 
presentations which are more accessible, but only 
with the publication of “The Book of Why” in 2018 
does the ordinary reader finally have access to some 
of Pearl’s most consequential ideas. 
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What Pearl and his co-workers have done is to 
break the taboo imposed by classical statistics on 
explicitly causal language, whether graphical or 
written, in mainstream empirical social science. 

 

What is in the Book? 
 
Pearl presents a ladder of knowledge with three 
levels: Association, Causation and Counterfactuals, 
differentiated in terms of the kind of statements 
which can be asked and answered at each level. The 
chapters of the book are loosely structured around 
these levels. 
 

Level One (Association) 
 
Classical and Bayesian statistics are situated on this 
level. From a Bayesian perspective, typical 
questions at this level are of the form: 
 

How would seeing X change my belief in Y? 
 
 So, for example, seeing smoke raises the  
probability of fire: 

 
P(fire) | see(smoke) > P(fire) | see(not-smoke) 
 

This “see()” operator is not necessary in classical 
statistics but it is shown here to distinguish it from 
the do() operator which is introduced in Level Two. 
(“P(x)” means “the probability of x”, and “|” means 
“given that”.) 

Information at this level has, on its own, no 
causal implications. If, and only if, we are in 
possession of the appropriate causal model (see 
Level Two) can we use it to answer Level Two 
queries about causation or even Level Three queries 
about counterfactuals. Therefore, according to 
Pearl, “data-driven” approaches in machine 
learning and “Big Data” will forever remain at this 
first level if they do not also integrate pre-existing 
causal knowledge about the domains in question. 

 

Level Two (Causation) 
 
Pearl’s approach to encoding causal information 
combines causal diagrams and ordinary 
mathematical and statistical expressions, extended 
to include the “do()” operator. 
 
Pearl’s causal diagrams. Pearl’s causal diagrams 
are in essence no different than those introduced by 
Burks and White, consisting of symbols for 
different variables connected by arrows 

representing explicitly causal, not correlational, 
links. 

Each link in a diagram corresponds to a written 
expression of the form 

 
smoke = f(fire, ...) 
 

in which the value of one variable is expressed as a 
(mathematical) function of one or more other 
variables. It is important to note that these are not 
equations in the normal sense, in particular 
because it is not usually possible to reverse them: 
the sentence above says that smoke is causally 
dependent on fire, and not vice versa. 

Some evaluators might be about to stop reading 
at this point because it might seem that this 
approach is only useful for things which can be 
measured precisely in numbers. Far from it: 
although many of Pearl’s examples do assume 
linear, numerical models, Pearl and his 
collaborators have shown that this approach is 
general enough to include any functional 
relationships expressing how variables of any type 
are influenced by others (this generalization is due 
to a student of Pearl, Thomas Verma). For example, 
we might believe that the acceptance of a new policy 
depends in part in some (as yet indeterminate) way 
on its ability to inspire young people. Although the 
authors do not explicitly say so, there is nothing to 
stop us writing this down: 

 
acceptance of new policy = f(ability of policy to 
inspire young people, ...) 
 

and drawing a corresponding arrow in our causal 
diagram even before we know with any precision 
how we are going to measure these variables or how 
we are going to formulate their relationship. We 
have certainly made no assumptions that this 
relationship should be deterministic or linear. Yet 
we have already started Pearlian theory-building. 
For example, we can predict the results of some 
Level One observations, such as that we will not, in 
general, find zero association between some 
measure of acceptance and some other measure of 
the ability of the policy to inspire young people. 

Perhaps the most important task facing a 
researcher is to find out about the causal influence 
of one variable, X, on another variable, Y, while 
excluding any influences on Y not actually due to 
the causal effect of X. Pearl’s most substantial 
contribution has been to identify several important 
rules for distinguishing causal from non-causal 
paths in a causal diagram just by looking at its 
structure, as explained very briefly in the following 
paragraph. 
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Causal influences of X on Y can be conveyed by 
any path in which all the arrows point from X to Y. 
Pearl explains that non-causal influences can 
potentially be conveyed via a “back-door” path from 
X to Y: any path that starts with an arrow pointing 

towards X. For example, the path X←B→Y is a 
(short) back-door path from X to Y. B is the 
researcher’s nightmare: a confounding variable 
which, if not controlled for, makes it look like X is 
influencing Y when in fact both are being 
influenced, at least partly, by B. But how can a 
researcher know which variables need controlling 
for, when the intervening path(s) might involve 
several variables? Any such path presents a risk that 
X and Y might be confounded, i.e. they might be 
associated in ways which are not due to X’s causal 
influence over Y. (The possibility of such paths is 
the key reason to demand randomisation of X – to 
break the influence of any other variables on X by 
ensuring that X is controlled only by the throw of 
dice.) Pearl explains under what conditions non-
causal information can flow, or not flow, down a 
back-door path. A path from B to D is blocked by a 

configuration like B→C←D (called a “collider”); 
controlling for C unblocks this junction and allows 

information to flow through it. Conversely,“chain” 

junctions like B→C→D or “forks” like B←C→D, 

when uncontrolled, allow information flow – which 
can be blocked by controlling for C. For example, in 

Figure 1 there is a (back-door) path X←A→B←D→

E→Y which is already blocked by the collider at B. 
Controlling for B would be a disaster because it 
would open this back-door route - contrary to the 
instinct of many statisticians to control for any 
variable which seems relevant.  

Using the “back-door” rule it is possible to just 
look at the structure of a diagram to identify 
potential confounding and “de-confounding” 
variables; treating these variables correctly will 
allow a researcher to make predictions about the 
result of an intervention X on Y without performing 
it. In short, to understand the causal influence of X 
on Y free from confounding influences. Later in the 
book, the authors also introduce the “front-door” 
rule which potentially allows researchers to control 
for arbitrary confounding variables. 
 
The “do operator”. Level Two also introduces the 
“do operator” which allows us to say things like this: 
 

P(smoke) | do(fire) > P(smoke) | do(not-fire) 
 
which translates as “The probability of smoke given 
an intervention which makes fire happen is greater 
than the probability of smoke given an intervention 
which makes fire not happen”. 

The “do operator” features in three axioms 
(which can perhaps been seen as collectively 
defining the operator). The authors use them to 
show, amongst other things, how to calculate effects 
of an intervention X on variables several links away 
from it in an arbitrarily complicated causal 
network. 

‘Do(X)’ is essentially different from its cousin 
‘see(X)’. Making smoke (via some method which is 
independent of lighting the original fire, e.g. by 
using a smoke machine) does nothing to the 
probability of fire: 

 
P(fire) | do(smoke) = P(fire) | do(not-smoke) 

 
which can be contrasted with: 

 
P(fire) | see(smoke) > P(fire) | see(not-smoke) 

 
as we saw above. 

We know all this, provided we possess the 
appropriate causal information expressed in this 
diagram: 

 

fire → smoke 
 
In particular we know that when we apply a do 
operator to a variable, we remove all the arrows 
pointing to that variable in the corresponding 
causal diagram – what Pearl calls “doing surgery” 
on the diagram, an insight he attributes to Peter 
Spirtes (Spirtes, Glymour, and Scheines, 2000) – a 
procedure which neatly removes any possible back-
door paths which might allow non-causal 
influences to flow from X. 

Figure 1. Example of a Causal Network (Adapted from 

Pearl and Mackenzie, 2018).  
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This approach defines the effect of an 
intervention on a variable downstream of the 
intervention in terms of a comparison between the 
actual value of the variable given the intervention 
and the alternative value which it would take 
without the intervention. This comparative 
understanding of effects goes back at least to Daniel 
Lewis (1974). But Lewis’s approach was based on 
comparing the actual world with a similar world 
which is “just different enough” to provide an 
appropriate contrast. He struggled to define just 
how different is different enough, for the same 
reason that statisticians have struggled to know 
which variables to control for and which not to 
control for in causal analysis. Pearl’s formulation 
avoids this problem because applying the “do 
operator” allow us potentially to calculate not only 
the actual and contrasting values of the variable in 
question but also of all the surrounding variables 
too, free of any back-door influences. 

The authors also explain the special status of 
RCTs: they are that mode of knowledge-gathering 
which is closest to the “do operator”: arbitrarily (i.e. 
free of other influences) “wiggling” one variable 
within a causal network to see what happens to 
variables downstream. Crucially, the authors show 
how in the right situations we can predict the 
results of various interventions, including RCTs, 
from observational, intervention-free data; and at 
Level Three they show how to make causal 
(counterfactual) statements which even RCTs 
cannot generate. 

 

Level Three (Counterfactuals) 
 
Theories are useful for making predictions about 
what will happen, but also for explaining how 
things happened in the past. 

“Patient X died after having taken drug Y, but if 
she had not taken drug Y, would she have 
survived?” It is not trivial to interpret such a 
sentence. We cannot unthinkingly apply Level Two 
logic. On both Level Two and Level Three, we base 
a causal explanation on the twin fact that X leads to 
Y, and that non-X leads to non-X. But when looking 
at the past, one of those two tracks is contradicted 
by what actually happened. We need additional 
machinery to complete Level Three calculations 
and avoid running into flat-out contradictions. It is 
not sufficient to merely “forget” the fact that she 
actually did take it, because that fact may have had 
other causal implications which are important for 
our calculation. Thus, this “counterfactual” 
sentence seems to be about a world in which the 
patient both did and did not take the drug. Purely 

associative statistics has serious trouble dealing 
with this kind of counterfactual. Not even RCTs can 
help: “No experiment in the world can deny 
treatment to an already treated person” (p. 33). The 
authors acknowledge Donald Rubin as being the 
first statistician to grasp the bull by the horns and 
provide a way to formulate and even answer such 
questions. They argue however that Rubin’s 
approach (Rosenbaum and Rubin, 1983) is 
fundamentally flawed because it tries to get from 
Level One (observation) to Level Three 
(counterfactuals) using data alone, without 
explicitly acknowledging the need for a relevant 
causal model. Pearl’s own solution for Level Three 
is however not as intuitive as the pure “do-calculus” 
of Level Two, involving as it does the use of 
counterfactual subscripts and several steps of 
calculation. 

Level Three is revealed also to be the proper 
home of some quite familiar phenomena like 
mediation and direct versus indirect effects. The 
authors cast new light on Simpson’s Paradox 
(Blyth, 1972) as a problem of direct versus indirect 
effects which can only be properly understood in an 
explicitly causal framework. They also discuss 
necessary and sufficient conditions as one 
important special case of counterfactual 
argumentation. They present methods for 
estimating “the probability of sufficiency, defined 
as the probability of the presence of an active causal 
process capable of producing the effect, and the 
probability of necessity, defined as the probability 
that no alternative process that could also produce 
the effect is present.” Although the concepts of 
necessary and sufficient conditions probably sound 
familiar to most evaluators, the authors illustrate 
with attempts to attribute specific extreme weather 
events to climate change, how confusing they can be 
even to trained scientists. 

 

What Can Evaluators Learn from the 
Book? 

 

Being Bayesian about Causal Information 
 
It is bad science to pretend that we start from a 
tabula rasa in assembling and interpreting 
evidence. The authors argue persuasively that when 
R. A. Fisher, as a Grandmaster of classical statistics, 
tried to do this as part of his support for tobacco 
companies during the debates about smoking and 
cancer, he was culpable in the unnecessary deaths 
of many. Even before the re-emergence of causal 
thinking, a Bayesian would have argued that a belief 
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in zero connection between two variables nearly 
always represents a substantive and extreme 
position: the correct starting point is always the 
experts’ best bet, given substantial incentives, 
based on the best evidence. Pearl simply extends 
this familiar Bayesian approach from associational 
to causal statements. 

The astute reader will have noticed that Pearl’s 
methods for getting from Level One to Level Two 
and Level Three always involve the use of pre-
existing causal knowledge. This knowledge may go 
beyond the knowledge that was input, but if we 
really had no causal beliefs, we would never be able 
to start our way up the ladder – except, arguably, by 
conducting RCTs. But Pearl persuades us to think 
like Bayes: our problem is not, given that we have 
no causal beliefs, how to get some. Rather, our 
problem is that, given that we already have a 
multitude of more or less well-founded causal 
beliefs, how we can leverage associational data and 
also manipulate our surroundings to improve and 
extend those beliefs. Claiming that we have no 
relevant causal beliefs is an extreme position which 
can make us, in certain circumstances, culpable. 
This message should speak very loudly to 
evaluators. It is never good enough if an evaluator 
says “the evidence certainly backs up what most 
experts believe about this causal connection, but we 
could not afford an RCT, and since correlation is 
not causation, we cannot really draw any 
conclusions.” Instead, evaluators should initiate a 
substantive discussion to establish the best 
available causal model and use that to work out 
which additional data is available or obtainable 
which could help revise or improve it further. The 
causal paths in this revised model, not the null 
hypothesis, should then guide us in answering the 
causal questions in our evaluation report. 

Pearl argues that in (at least) this sense, science 
can never be objective because it essentially 
involves making causal claims which go “beyond 
the data.” Causal information cannot be sucked up 
or “data mined” out of our observational 
surroundings by any purely data-driven process. 
Those who long ago tired of 
“qualitative/quantitative” arguments in the 
philosophy of science should note that Pearl’s 
position comes from an analysis of the properties 
and use of mathematical statements, not out of any 
interest in proving membership of one tribe or 
another. 

 
 
 
 

Not Making Statistical Mistakes 
 
This “Causal Revolution” is not just a philosophical 
shift but also has serious practical consequences. 
The book gives many examples of hair-raising 
potential flaws in classical statistical methods, for 
example in traditional approaches to mediation - as 
Keele (2015) has already warned evaluators.  
Anyone applying and interpreting statistical 
methods as basic as a two-way frequency table 
should be aware of Pearl’s plea to always be 
explicitly aware of the underlying causal model. If 
you get the model wrong, you will probably go 
wrong in your choice of method and in your 
interpretation of the results. 

 

A New Perspective on RCTs 
 
As mentioned already, a researcher in possession of 
an appropriate causal diagram and the 
corresponding data can simulate or predict the 
result on one variable of intervening on another, 
even protected from the influence of an arbitrary 
confounder - precisely the feature which makes 
RCTs so powerful. This puts RCTs into their proper 
place: “Either we can view them as a special case of 
our inference engine, or we can view causal 
inference as a vast extension of RCTs” (p. 133). 

 
Causal Thinking and Causal Illusions 
 
The authors argue that members of our species 
think natively in causal terms, perhaps because this 
has proven a successful way to model the world. It 
is extremely difficult, and probably pointless, for us 
to comprehend purely associative information, and 
we will always try, whether sanctioned or not, to 
code associative information in terms of causal 
connections – even when these associations are in 
fact spurious. Pearl explains several famous 
statistical paradoxes such as the “Monty Hall 
Problem” in precisely this way - as our mis-
application of causal thinking. This is yet another 
source of illusion to which our data-gathering 
processes may fall prey, and not only are we as 
evaluators vulnerable to it but so are our 
interviewees. 

 

Mechanisms and Knowledge Nuggets 
 
Pearl claims that we as evaluators, scientists and 
ordinary beings encode knowledge into chunks 
(discrete relationships between small groups of 
variables) and networks of such chunks. Properly 
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encoded causal information can often be 
“transported” from one setting to another even if 
the settings differ in some important aspects. We 
may be perfectly well aware that the truth and 
utility of the knowledge nugget “fire causes smoke” 
may fail in all kinds of ways - when combined with 
overlapping and possibly contradictory nuggets - 
yet it is out of this cacophony of competing 
knowledge fragments that we form a useful 
understanding of our world. This is perhaps the 
opposite of the claim “oh, but everything always 
depends on context.” So Pearl has a strong 
epistemological thesis - a claim about how we gain 
and encode knowledge in the form of causal chunks 
and networks of causal chunks. He further makes 
the corresponding psychological claim that this is 
close to the way our brains work as Homo Sapiens. 
This also explains how people manage to 
communicate with one another about causal effects 
- because we share, broadly speaking, causal 
models. Thirdly he makes a corresponding 
engineering claim that successful AI is compelled 
more or less to mimic this approach. Elsewhere, 
Pearl, as a realist, makes a fourth ontological claim 
corresponding to the first three: that the world is in 
fact organised in terms of quite stable mechanisms 
which are relatively autonomous. This fourth thesis 
will remind evaluators of Realist theory in 
evaluation (Pawson & Tilley, 1997). Pearl often uses 
the word “mechanism” to name these chunks in the 
world (though he has no specific word for the 
corresponding small theories such as “fire causes 
smoke” in which we encode our nuggets of 
knowledge about those mechanisms). 

Evaluators may also try interpreting the links 
within project theories of change as “causal chunks” 
à la Pearl; and we may be interested in whether 
these chunks could be useful building blocks for 
understanding the cognitive maps which, in turn, 
interviewees and other stakeholders use to 
understand and act in their respective worlds. 

 

Criticisms 
 

More Engineering than Social Science? 
 
Stephen West (2014), reviewing Pearl’s seminal 
work (2000), asks whether Pearl’s background in 
engineering explains why many of his examples 
seem too much like simple questions of “which 
button to press.” In real life, of course, it can be a 
challenge for evaluators to work out which button 
was actually pressed by an intervention. This is the 
issue of the “construct validity of the treatment” 
according to Campbell (Cook and Campbell, 1989). 

While this is an important practical point, there 
seems to be nothing in Pearl’s framework which 
would prevent it being extended to cope with this 
criticism. 

Donald Rubin offers an alternative framework, 
also not shy of dealing with causality, which is much 
more fully developed for the needs and concerns of 
social scientists in general and evaluators in 
particular. But Pearl is much clearer in underlining 
and illustrating the scale of the causal revolution 
and the importance of using our new freedom to 
explicitly adopt causal models. 

 

“But We Knew that Already” 
 
Many evaluators, even more than working social 
scientists, may be thinking “who cares about what 
statisticians say, we have been modestly working 
with causal statements and even causal networks 
and diagrams for years: just look at all our theories 
of change, for example.” And indeed, Pearl maybe 
overstates his claim about how comprehensively 
causal language was ever banned from statistics. In 
particular, the diagrams associated with Structural 
Equation Models (SEMs) certainly look as if they 
make causal claims and have regularly been 
understood in such a way. 

Even so, the work of Pearl and his collaborators 
puts causal language on new foundations and opens 
up the possibility firstly of having the right 
arguments to oppose those who still say, for 
example “you can never get from correlation to 
causation.” Secondly, there is enormous potential 
to provide a more unified and systematic 
foundation for theories of change and causal 
reasoning in evaluation, especially if Pearl’s ideas 
can be more explicitly extended to cope with data 
and models which are fuzzy, uncertain, non-linear 
and incompletely formulated. There is however no 
easy Pearlian cook-book even for statisticians – 
although Pearl, Glymour and Jewell (2016) is a first 
step – let alone for evaluators, upon which such an 
extension could build. 

What is more, when Pearl says “data” he is only 
ever thinking about correlations and the occasional 
experiment. Although he has a highly-developed 
framework for integrating this kind of data from 
different sources and contexts, he says nothing 
about how to integrate, for example, the opinion of 
a stakeholder which is explicitly presented as a 
causal model (“this leads to that”) without 
accompanying evidence, or an observation based 
on the thought processes around a single case. 

There is plenty of work still to be done. 
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Need for Some Basic Definitions 
 
Pearl is perhaps too much of a polymath, and in too 
much of a hurry to answer burning and practical 
questions, to provide a really satisfactory step-by-
step exposition of his ideas from the ground up. 
Even his seminal work “Causality” (Pearl, 2000) 
has been criticised on this basis. Most importantly, 
it seems that the basic causal link (“Y listens to X”; 
we “wiggle X to influence Y”) is really a primitive 
notion defined by the three axioms about which 
nothing else can be said; yet at the same time he 
argues for the plausibility of the axioms on other 
grounds, which is not really consistent with an 
axiomatic approach. It is a pity that this book does 
not provide an annex in which the basic concepts 
covered are built up one by one from first 
principles. In particular, this might have made it 
easier to understand the concepts on Level Three. 

 

How Does it Work as a Book? 
 
Is this book going to become a New York Times 
bestseller like, say, Kahneman’s “Thinking, Fast 
and Slow” (2011)? The chapters of the book are 
mostly structured around a series of vignettes such 
as the story of Galton’s intriguing “quincunx,” an 
overview of Bayesian statistics, and a brief history 
of the battle to show a causal link between smoking 
and cancer, which the present review has mostly 
ignored but which include some engaging stories. 
But Pearl is in deadly earnest and many non-
technical readers will find even this “general 
readership” book a little too hard to really work as 
entertainment. One point of encouragement is that 
the reader who gives up on Level Three - which is 
probably the hardest section of the book - will still 
take away plenty from it. 
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