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Background:! Evaluation! work! frequently! utilizes! factor!
analysis! to! establish! the! dimensionality,! reliability,! and!
stability!of!surveys.!However,!survey!data! is! typically!ordinal,!
violating! the! assumptions! of! most! statistical! methods,! and!
thus!is!often!factor2analyzed!inappropriately.!
!
Purpose:!This!study! illustrates!the!salient!analytical!decisions!
for! factor2analyzing! ordinal! survey! data! appropriately! and!
demonstrates!the!repercussions!of!inappropriate!analyses.0
!
Setting:! The! data! used! for! this! study! are! drawn! from! an!
evaluation! of! the! efficacy! of! a! drama2based! approach! to!
teaching!Shakespeare!in!elementary!and!middle!school.!
!
!

Intervention:0Not!applicable.!
!
Research0Design:!Survey!research.0
0
Data0 Collection0 and0 Analysis:0 Four! factor! analytic! methods!
were! compared:! a! traditional! exploratory! factor! analysis!
(EFA),! a! full2information! EFA,! and! two! EFAs! within! the!
confirmatory! factor! analysis! framework! (E/CFA)! conducted!
according!to!the!Jöreskog!method!and!the!Gugiu!method.!
!
Findings:! Methods! appropriate! for! ordinal! data! produce!
better! models,! the! E/CFAs! outperform! the! EFAs,! and! the!
Gugiu! method! demonstrates! greater! model! interpretability!
and!stability!than!the!Jöreskog!method.!These!results!suggest!
that! the! Gugiu! E/CFA! may! be! the! preferable! factor! analytic!
method! for! use! with! ordinal! data.! Practical! applications! of!
these!findings!are!discussed.!
!
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Within the field of evaluation, survey research is 
one of the most predominant methodologies. In a 
review of empirical work published in 2014 in 
several evaluation journals (New Directions for 
Evaluation, Educational Evaluation and Policy 
Analysis, Evaluation and the Health Professions, 
Evaluation Review, Evaluation and Program 
Planning, and American Journal of Evaluation), 
45% (74 of 165) of the articles reviewed utilized 
survey data in some form. Of these 74 studies, 24% 
(18) reported using factor analysis to examine the 
dimensionality, reliability, or stability of the survey 
used in the study. However, even though surveys 
are a popular methodology for use in evaluation, 
survey data is frequently analyzed incorrectly 
(Kampen & Swyngedouw, 2000). Most survey data 
are ordinal, but the most commonly-used methods 
of factor analysis assume that data are continuous. 
The reviewed literature underscores this 
mismatch: of the 74 reviewed studies that collected 
survey data, only 4% (3) appear to have explored 
the quality of their measures using factor analysis 
in a way appropriate for the nature of the data that 
was collected. Because factor analysis is such a 
commonly-used method, representing 24% of the 
reviewed articles that utilized survey data, it is 
important to discuss methods of factor analysis 
that are appropriate for use with ordinal data. The 
purpose of this article is to illustrate the 
repercussions of utilizing inappropriate factor 
analytic methods and to demonstrate how to 
conduct appropriate factor analytic methods, using 
an illustrative, evaluation-based example. To make 
this discussion maximally beneficial for the reader, 
this study illustrates points that are well known in 
the psychometric literature using real data that 
was collected as part of an evaluation, rather than 
emphasizing the mathematics of how one method 
is superior to the other or using Monte Carlo 
simulations, which utilize simulated data that 
frequently do not match the complexities of real-
world data (e.g., employ designs with few 
variables, simple correlation matrixes, and often 
no method effects). 
 The evaluation used as an example in this 
study aimed to assess the efficacy of a drama-
based approach to teaching Shakespeare. The 
Royal Shakespeare Company created the Stand Up 
for Shakespeare (SUFS) program to change the 
way students encounter Shakespeare in school 
(Strand, 2009). The program prepares teachers to 
help students engage with Shakespeare the way 
actors would—interacting with the plays as scripts 
to be acted rather than texts to be read. Drama-
based pedagogy programs like SUFS have been 
show to positively impact students’ academic and 
social outcomes (Lee, Patall, Cawthon, & Steingut, 

2015); through this kind of pedagogy, SUFS in 
particular aims to increase students’ positive 
attitude towards Shakespeare and both their 
interest and ability in reading. As part of the 
evaluation of the SUFS program, surveys were 
developed to measure student attitudes toward 
Shakespeare, to determine whether SUFS 
increased students’ positive attitudes toward 
Shakespeare, and to in turn examine whether 
these positive attitudes facilitated students’ 
knowledge acquisition. This paper will focus on 
the validation of the instrumentation using factor 
analysis to illustrate the impact of using more and 
less appropriate methods, to highlight the salient 
analytical decisions that distinguish each method, 
and to provide guidance for the reader aiming to 
appropriately conduct factor analysis with ordinal 
data. 
 The evaluation used as an example in this 
study aimed to assess the efficacy of a drama-
based approach to teaching Shakespeare. The 
Royal Shakespeare Company created the Stand Up 
for Shakespeare (SUFS) program to change the 
way students encounter Shakespeare in school 
(Strand, 2009). The program prepares teachers to 
help students engage with Shakespeare the way 
actors would—interacting with the plays as scripts 
to be acted rather than texts to be read. Drama-
based pedagogy programs like SUFS have been 
show to positively impact students’ academic and 
social outcomes (Lee, Patall, Cawthon, & Steingut, 
2015); through this kind of pedagogy, SUFS in 
particular aims to increase students’ positive 
attitude towards Shakespeare and both their 
interest and ability in reading. As part of the 
evaluation of the SUFS program, surveys were 
developed to measure student attitudes toward 
Shakespeare, to determine whether SUFS 
increased students’ positive attitudes toward 
Shakespeare, and to in turn examine whether 
these positive attitudes facilitated students’ 
knowledge acquisition. This paper will focus on 
the validation of the instrumentation using factor 
analysis to illustrate the impact of using more and 
less appropriate methods, to highlight the salient 
analytical decisions that distinguish each method, 
and to provide guidance for the reader aiming to 
appropriately conduct factor analysis with ordinal 
data. 
 More specifically, we compared four 
approaches to factor analysis: a traditional 
exploratory factor analysis (EFA), which is 
characteristic of how factor analysis is used in 
evaluation work, a full-information or ordinal EFA 
(Jöreskog & Moustaki, 2006), and two exploratory 
factor analyses within the confirmatory factor 
analysis framework (E/CFA): one according to the 
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Jöreskog model specification search method 
(1969; Jöreskog & Sörbom, 1979) and the other 
according to the Gugiu method (Gugiu, 2011; 
Gugiu, Coryn, Clark, & Kuehn, 2009). These 
methods differed in the observed input correlation 
matrix, the method of estimation used to extract 
factors, the method of factor selection, and the 
method of model modification used in refining the 
models. The appropriateness and strength of the 
four methods were assessed by determining how 
well the extracted models replicated in an 
independent data set. To best illustrate the salient 
analytical differences between these methods, and 
how these differences are more and less 
appropriate for the nature of the data, each will 
first be described in detail before comparing the 
models produced by each method. 
 

Traditional!EFA!
 
Before discussing the traditional EFA method, it is 
worth drawing a distinction between factor 
analysis and components analysis (CA). The two 
methods are similar and often confused, but only 
factor analysis is appropriate for exploring latent 
factor structure such as the SUFS survey of 
attitudes toward Shakespeare. The difference lies 
in how the two methods model variance. CA 
models variance with components, which are a 
linear combination of all of the variance in the set 
of indicators used in the CA. Principal components 
analysis (PCA) is a special case of CA wherein the 
research does not retain all the components. 
Although PCA does not explain all the variability, 
its method for extracting components does not rely 
on the assumption of a latent factor structure. 
Hence, mathematically the model is identical to 
that of CA. Factor analysis, on the other hand, 
models variance using latent factors, a linear 
combination of only the common variance in the 
set of indicators used in the EFA (Tabachnick & 
Fidell, 2001). Thus, the first step is to determine 
whether one is interested in modeling all of the 
variance (CA and PCA) or just the common 
variance (EFA). In general, if a common trait or 
construct is thought to predict a set of behaviors, 
indicators, or responses to a set of items, then the 
appropriate method is EFA, not PCA. 
 The second step is to define the input 
correlation matrix that will be modeled with latent 
factors in the EFA. Input matrixes, unless 
otherwise specified, are always generated using the 
Pearson product-moment correlation coefficient, 
which assumes that the data are continuous. 
However, using the Pearson coefficient to calculate 
correlations for ordinal variables decreases 

variability, as all scores within a given range on the 
latent variable are assigned to the same category of 
the observed variable. This reduced variability 
leads to underestimated associations between 
variables (Gilley & Uhlig, 1993), as well as 
decreased parameter estimates in factor analyses 
using Pearson correlation matrixes as input 
(DiStefano, 2002; Olsson, 1979b). To illustrate the 
impact of inappropriately inputting a Pearson 
correlation matrix with non-normal and non-
continuous data, the matrix was used in the 
traditional EFA with the SUFS data. 
 Factor selection—arguably the most important 
step of factor analysis—uses the correlation matrix 
produced in factor extraction to calculate the 
number of factors that should be retained in 
subsequent analyses. Scree plots and the Kaiser 
criterion are frequently used to select factors 
although the accuracy of these methods is 
questionable (Hayton, Allen, & Scarpello, 2004). 
This study employed parallel analysis to select the 
number of factors (Horn, 1965). This method plots 
the eigenvalues calculated from the actual data 
(identical to the scree plot) against the eigenvalues 
extracted from random data that matches key 
characteristics of the actual data, including the 
sample size and number of variables. Principal 
components analysis is typically used to extract 
eigenvalues from the random dataset, and the 
process of generating random data and extracting 
eigenvalues is repeated between 50 and 1,000 
times, with greater repetitions leading to more 
accurate results (Hayton et al., 2004). The current 
study used 100 repetitions since in our experience 
the decision beyond this number is never altered. 
The 95th percentile of eigenvalues extracted from 
the random data is used to counter the tendency of 
parallel analysis to overfactor (Glorfeld, 1995). 
Finally, the actual eigenvalues and the 95th 
percentile eigenvalues from the random data are 
plotted in descending magnitude. The point at 
which the two plotted lines cross indicates the 
number of factors to retain. A factor is worth 
retaining when its associated eigenvalue is greater 
than the eigenvalue expected by chance alone 
(Gugiu, Coryn, Clark, & Kuehn, 2009; Hayton et 
al., 2004). 
 After the input correlation matrix is specified, 
the next step is to select a method for estimating 
the factor model. The most frequently used 
methods of estimation are principal axis factors 
(PF) and maximum likelihood (ML), which are 
appropriate for use when data are continuous and, 
in the case of ML, normal (Brown, 2006). 
Although PF does not carry a distributional 
assumption, it only produces a limited range of 
goodness-of-fit statistics and does not allow for 
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statistical significance testing, limitations not 
faced by ML (Fabrigar, Wegener, MacCallum, & 
Strahan, 1999). To allow for model-fit comparison 
across the four factor analytic methods, ML was 
used in the traditional EFA despite being 
inappropriate given the ordinal nature of the data. 
 Once estimated, the original model may be 
modified by eliminating items with factor loadings 
that fall below a threshold of 0.3 (Tabachnick & 
Fidell, 2001). Below this threshold, the latent 
factors account for less than 10% of the variance in 
the item. Therefore, these items are not strong 
indicators of the latent variable and can be 
eliminated. Finally, reliability of the final model is 
typically, though problematically, estimated by 
Cronbach’s alpha. Similar to other standard 
procedures, Cronbach’s alpha misestimates 
reliability unless specific conditions hold, such as 
tau equivalence and the absence of correlated 
measurement errors, and underestimates the true 
reliability when data are measured on an ordinal 
scale (Brown, 2006; Zumbo, Gadermann, & 
Zeisser, 2007). 
 

Full2information!EFA!
 
Full-information or ordinal EFA (Jöreskog & 
Moustaki, 2006) differs from the traditional EFA 
in the coefficient used for the input correlation 
matrix and the method of model estimation. First, 
full-information EFA uses the polychoric 
correlation coefficient rather than the Pearson 
correlation coefficient. This coefficient is estimated 
from the bivariate frequency distribution 
(crosstab) of the observed ordinal scores, under 
the assumption of bivariate normality. The 
estimated relationships are closer to the Pearson 
correlations that would be found if the variables 
were measured on an interval rather than ordinal 
scale (Brown, 2006; Olsson, 1979a), Consequently, 
the coefficients are more accurate, yielding less 
attenuated parameter estimates in factor analysis. 
 As with the traditional EFA, parallel analysis 
was used in the full-information EFA to select 
factors. However, the full-information EFA uses a 
different factor extraction method; namely, 
diagonal weighted least squares (DWLS) in 
conjunction with the asymptotic covariance 
matrix. Unlike ML, DWLS and the asymptotic 
covariance matrix adjust parameter estimates for 
violations of normality and so are appropriate for 
use with non-normal and categorical data (Brown, 
2006). The asymptotic covariance matrix is used 
to compute a weight matrix used to adjust the fit 
statistics and standard errors for nonnormality 
(Brown, 2006). Essentially, items with less 

asymptotic variance (i.e., greater precision) are 
given more weight than variables with more 
variance (i.e., more sampling error) (Schumacker 
& Lomax, 2010). After factor selection and model 
estimation, items with loadings less than 0.3 are 
eliminated (Tabachnick & Fidell, 2001), paralleling 
the modification process in the traditional EFA 
method. 
 The inter-item reliability of the full-
information EFA model is reported in terms of 
Raykov’s (2001, 2004) coefficient of scale 
reliability ρ, which avoids many of the problems 
associated with Cronbach’s alpha. The coefficient 
represents the proportion of true score variance to 
total score variance and is calculated by the 
expression: 

 

 

 
where λi represents the unstandardized factor 
loading for the ith item, θii the unstandardized 
measurement error variances for the ith item, and 
θij any correlated  measurement errors between 
items i and j. 
 

E/CFA!
 
As a method, exploratory factor analysis within the 
CFA framework falls between EFA and CFA, 
utilizing a CFA imposed with the same limitations 
as an EFA (Jöreskog, 1969). Specifically, factor 
variances are set to unity; the item with the highest 
loading on a factor is chosen as an anchor and its 
cross-loadings are fixed to zero; and factor 
covariances are freely estimated. Although the 
model fit of the E/CFA is the same as that of a 
parallel EFA, the E/CFA provides additional 
information, such as modification indices and the 
statistical significance of factor loadings, which 
can be used to refine the model before validating it 
in a CFA. This specification search tends to 
produce better fitting initial models that are more 
likely to replicate in an independent CFA (Brown, 
2006; for applied examples, see Gugiu, Coryn, 
Clark, & Kuehn, 2009; Brown, White, Forsyth, & 
Barlow, 2005). 
 Similar to the full-information EFA, the 
Jöreskog and Gugiu E/CFA methods utilize the 
polychoric correlation matrix as input, DWLS and 
the asymptotic covariance matrix to extract 
factors, and parallel analysis to select factors. The 
two methods of E/CFA are similar in specification 
search and extraction method but differ in model 

ρ =
Σλi( )2

Σλi( )2 + Σθii + 2Σθij
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modification. The Jöreskog approach (1969; 
Jöreskog & Sörbom, 1979) relies on identifying 
large modification indices (MI) in an initial model. 
MIs represent the amount the model chi-square 
will decrease if the corresponding correlated error 
is freed. Freeing errors with MIs greater than 3.84, 
the critical chi-square value at α = 0.05, will result 
in significantly better model fit, as indicated by a 
significant χ2 difference test between the simpler 
(nested) and more complex (null) model. Because 
freeing a single significant MI can have substantial 
and unpredictable effects on model fit indices, 
significant MIs should be freed one at a time in an 
iterative process. Furthermore, the correlated 
errors corresponding to the MI should only be 
freed if substantially justified by theory. After the 
highest correlated error is freed, the modified 
model is compared to the previous model using a 
χ2 difference test, and this process is repeated until 
both the χ2 for the model and the χ2 difference test 
are nonsignificant, indicating that the last freed 
error covariance did not significantly improve 
model fit. 

An alternative method of model specification 
within the E/CFA framework is the Gugiu 
approach (Gugiu, 2011; Gugiu, Coryn, Clark, & 
Kuehn, 2009). Rather than freeing correlated 
errors, this approach deletes items from the model 
that contribute to model misfit. Candidates for 
deletion are selected by examining the residual 
table for the largest misfitting standardized 
residual. Standardized residuals represent the 
difference between the estimated and observed 
covariances divided by the asymptotic standard 
errors—the square root of the asymptotic variance. 
Thus, when a standardized residual is greater than 
1.96 in absolute value (critical value at α = 0.05), 
the two items that correspond to this covariance 
contribute a great deal to the model misfit 
(Schumacker & Lomax, 2010). To reduce model 
misfit using the Gugiu E/CFA method, the item 
with the greatest number of misfitting 
standardized residuals is removed from the model. 
Similar to the Jöreskog method, each reduced 
model is compared to the previous models, and the 
process is repeated until the χ2 difference test is 
nonsignificant (Gugiu, 2011; Gugiu, Coryn, Clark, 
& Kuehn, 2009). Although the Jöreskog method 
relies primarily on MIs whereas the Gugiu method 
relies on standardized residuals, both approaches 
use additional information provide by the CFA 
framework to refine the initial models. 
 
 
 
 

Model!Comparison!
 
In the current study, models of the SUFS pretest 
data were specified according to the four methods 
of factor analysis and then a confirmatory factor 
analysis (CFAs) was performed on the posttest 
data. SAS 9.3 was used to specify the traditional 
EFA model and the full-information EFA model; 
all other model specification and validation was 
conducted in LISREL 8.8. The EFAs specified in 
SAS were also run in LISREL to obtain model fit 
statistics, which are not normally produced in an 
EFA framework. 
 Models were compared based on four 
goodness-of-fit statistics, the number of misfitting 
standardized residuals and significant MIs, and 
reliability. The first goodness-of-fit statistic used 
was the χ2 statistic for the model, which indicates 
whether the difference between the observed and 
estimated model is significant. A nonsignificant χ2 
statistic suggests that the model fits the data well. 
The normal theory weighted least squares χ2 
(NTWLS χ2) is appropriate when data are normal, 
whereas the Satorra-Bentler scaled χ2 (SB χ2; 
Satorra & Bentler, 1994) is appropriate when data 
do not meet the normality assumption. The 
models were also compared in terms of the root 
mean square error of approximation (RMSEA), 
which measures absolute fit with a penalty for 
non-parsimonious models (Brown, 2006). A 
RMSEA value of 0 indicates perfect fit, while 
values less than or equal to 0.05 indicate that the 
model fits the data well (Browne & Cudeck, 1993; 
Steiger & Lind, 1980). The standardized root mean 
square residual (SRMR), a measure of absolute fit, 
was also used to compare the models. SRMR 
values below 0.05 indicate good model fit, with 
smaller values indicating better fit (Schumacker 
& Lomax, 2010). The last goodness-of-fit statistic 
used was the Tucker-Lewis index (TLI; Tucker & 
Lewis, 1973). Like RMSEA, TLI also includes a 
penalty for model complexity but measures model 
fit relative to the null model. The closer the TLI 
value is to 1.0 the better the model; TLI values 
above 0.95 are desirable (Hu & Bentler, 1999). 
 Models were also compared in terms of the 
number of observed and expected misfitting 
standardized residuals and significant MIs. The 
number of misfitting residuals or significant MIs 
expected by chance may be calculated by 

, where k denotes the number of 

variables,  is the total number of 

residuals or MIs, and p is the Type I error rate 
(Gugiu, Coryn, Clark, & Kuehn, 2009). A larger-
than-expected number of observed misfitting 

p∗ k(k −1) / 2
k(k −1) / 2
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standardized residuals or significant MIs suggests 
that the model does not capture important 
relationships in the data. Models were compared 
in terms of whether and by how much they 
exceeded the number of misfits expected by 
chance. Finally, the reliabilities of the models were 
also compared to assess the stability of the latent 
scores produced by each model. Comparing the 
models produced through each of the four 
methods will highlight the impact of these 
different analytical decisions. 
 

Method!
Sample!
 
Schools and teachers in a large, midwestern city 
were recruited to participate in the SUFS drama-
based pedagogy program: 503 students 
participated in the study (54% female; 5% Asian, 
15% Black or African American, 4% Hispanic, 18% 
multi-racial, 49% white, 10% not reported). These 
students ranged from grades 3 to 8 and were 
drawn from the classrooms of 14 teachers across 5 
schools in 2 public school districts. 
 
Instrument!
 
The primary purpose of the evaluation was to 
determine whether the drama-based pedagogy 
intervention improved students’ positive attitudes 
towards Shakespeare. Thus, students were 
administered a survey about their exposure to 
Shakespeare, attitudes toward Shakespeare, and 
attitude toward school in September 2011 and May 
2012. This was modeled on the survey used during 
the original implementation of the SUFS program 
in England (Strand, 2009). Questions pertaining 
to Shakespeare were measured on a 3-point scale: 
“No” (1), “Don’t Know” (2), and “Yes” (3). 
Although it is unclear where “Don’t Know” should 
logically fall on the dimension of “No” to “Yes,” it 
appeared as the middle anchor point on the survey 
(see Appendix), and a Rasch analysis confirmed 
that students indeed treated “Don’t Know” as a 
middle point (Yeomans-Maldonado, Gugiu, & 
Enciso, 2013). Thus, instead of dichotomizing the 
scale by collapsing the “Don’t Know” responses 
into the “No” category, the 3-point ordinal scale 
was retained. This study focused on the 12 
questions about student attitudes toward 
Shakespeare. 
 
 
 
 

Procedure!
 
Teachers collected permission from parents for 
students to participate in the study. A survey was 
administered before students had been exposed to 
the SUFS pedagogy and again after teachers had 
implemented SUFS pedagogy. Research assistants 
read the questions out loud to students at the end 
of a regular class period, and students who did not 
have permission to participate were asked to sit 
quietly. 
 

Results!
Factor!Selection!
 
First, missing values were imputed so as to prevent 
the sampling bias that would have resulted from 
listwise deletion. Then, parallel analysis was used 
to select factors from the Pearson correlation 
matrix, in the case of the traditional EFA, and 
from the polychoric correlation matrix, in the case 
of the full-information EFA, the Jöreskog E/CFA, 
and the Gugiu E/CFA. The resulting plot indicated 
that in both the case of the Pearson and the 
polychoric correlation matrix, one factor should be 
retained. 
 

Model!Specification!Search!
 
Traditional EFA. All 12 items in the traditional 
EFA loaded on the latent factor above the 0.3 
threshold and so were retained in the model. The 
goodness of fit statistics indicated that the final 
model did not fit the observed data particularly 
well (see Table 1). Furthermore, the observed 
number of misfitting residuals (20) and significant 
MIs (20) in the EFA model exceeded the number 
expected (3.3), suggesting considerable model 
misfit. The model reliability was acceptable as 
measured by Cronbach’s alpha, α = 0.845 and 
acceptable according to Raykov’s ρ = 0.847 
(calculated so the reliability of all four models 
could be compared). 
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Table!1!

Goodness(of(Fit!Indices!for!Models!of!Attitude!Toward!Shakespeare!(n=400)!
!

Model!Building:!Pretest!Sample!

Final!Model! c
2
! df!

RMSEA!!!!

(90%!CI)! SRMR!

NNFI!

(TLI)!

Expected!

Misfits
c
!

Observed! Misfits!

(Residuals,!MI)!

Raykov’s!

Reliability!

EFA!

(traditional)! 207.599***
a
! 54!

0.084!!!!!

(0.072,!

0.097)! 0.056! 0.948! 3.3! 20,!20! 0.847!!

EFA!

(fullWinfo.)! 146.675***
b
! 54!

0.066!!!!!

(0.053,!

0.078)! 0.063! 0.978! 3.3! 8,!13! 0.903!

E/CFA!

(Jöreskog)! 46.516
b
! 45!

0.009!!!!!

(0.000,!

0.035)! 0.038! 1.000! 3.3! 0,!1! 0.951!

E/CFA!(Gugiu)! 4.569
b
! 14!

0.000!!!

(0.000,!

0.000)! 0.020! 1.007! 1.1! 0,!0! 0.862!

Model!Validation:!Posttest!Sample!

Final!Model! c
2
! df!

RMSEA!!!!

(90%!CI)! SRMR!

NNFI!

(TLI)!

Expected!

Misfits
c
!

Observed!Misfits!

(Residuals,!MI)!

Raykov’s!

Reliability!

TestW

Retest!

EFA!

(traditional)! 291.886***
a
! 54!

0.105!

(0.093,!

0.117)! 0.065! 0.914! 3.3! 23,!23! 0.833!! 0.495!

EFA!

(fullWinfo.)! 151.127***
b
! 54!

0.067!!!!!

(0.055,!

0.080)! 0.069! 0.979! 3.3! 8,!14! 0.910! 0.544!

E/CFA!

(Jöreskog)! 74.014**
b
! 45!

0.040!

(0.023,!

0.056)! 0.048! 0.993! 3.3! 3,!8! 0.938! 0.559!

E/CFA!

(Gugiu)! 28.896*
b
! 14!

0.052!!!

(0.024,!

0.078)! 0.050! 0.989! 1.1! 1,!6! 0.864! 0.525!
a!
Normal!Theory!Weighted!Least!Squares!c

2
.!
b!
SatorraWBentler!c

2
.!
c
!Refers!to!either!the!number!of!expected!misfitting!!

standardized!residuals!or!the!number!of!expected!significant!modification!indices,!not!the!total!number!of!misfits.
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Full-information EFA. As was the case in the 
traditional EFA, all 12 items in the full-
information EFA loaded on the latent factor above 
the 0.3 threshold and thus were retained in the 
model (see Figure 1). Although the conceptual 
model was the same for both the traditional and 
the full-information EFAs, the goodness-of-fit 
indices and model reliability improved as a result 
of employing the polychoric correlation matrix and 
DWLS estimation method. Furthermore, both the 
8 observed misfitting standardized residuals and 
the 13 significant MIs were closer to the expected 

number of misfits (3.3) (see Table 1). Similarly, the 
reliability of the full-information EFA was greater 
than that of the traditional EFA, ρ = 0.903. 
Moreover, the parameter estimates differed 
between the traditional EFA and the full-
information EFA. Systematically, the full-
information EFA produced factor loadings that 
were, on average, greater by 0.1 than the 
traditional EFA, while the full-information EFA 
error variance estimates were smaller. 
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Figure!1.!Final!conceptual!models!of!attitude!toward!Shakespeare!resulting!from!the!four!model2building!methods!

 
Jöreskog E/CFA. In the SUFS dataset, all items 
could reasonably be related to one another, as all 
focused on some aspect of students’ attitude 
toward Shakespeare. Therefore, correlated errors 
were freed beginning with the error associated 
with the largest MI until both the SB χ2 for the 
model and the SB χ2 difference test were 
nonsignificant. Following this approach resulted in 
a final modified model with 9 freed error 
covariances (see Figure 1). The goodness-of-fit 
indices for the model built with this approach 
showed significant improvement over the previous 
EFAs (see Table 1). Examination of the 
standardized residuals and MIs also indicated very 
good model fit with no misfitting standardized 
residuals and fewer than expected significant MIs. 
Furthermore, the reliability of the E/CFA model 
was higher, ρ = 0.951, and the parameter estimates 
greater than in the traditional EFA. 
 

Gugiu E/CFA. Through the process of identifying 
large residuals, deleting corresponding items, and 
computing the SB χ2 difference test, 5 items were 
removed, resulting in a final model that included 7 
items (see Figure 1). To avoid overfitting the 
model, a reasonable case could have been made for 
retaining the last item (question 9), given the very 
small and nonsignificant SB χ2 value, the well-
fitted model indicated by the goodness-of-fit 
indices, and the fewer-than-expected observed 
misfitting standardized residuals and significant 
MI. However, the 7-item model was used as the 
final model because model fit improved and the 
construct validity was not adversely affected by the 
removal of item 9; the domain of “attitudes toward 
Shakespeare” was still well represented by the 
other questions (see Appendix). 
 The final model created by the Gugiu E/CFA 
approach also fit the data much better than the 
models created through EFA (see Table 1), 
underscored by the lack of any misfitting 
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standardized residuals or significant MIs, despite 
1.1 misfits expected by chance. Although the 
goodness-of-fit indices trump the other models, 
the reliability of this model was somewhat lower, ρ 
= 0.862, owing to the fewer number of items. 
Hence, to make the basis of comparison more 
even, the Spearman-Brown prophecy formula was 
used to calculate the reliability under the 
assumption that a revised survey would contain 12 
items of equal psychometric quality as the 7 items 
retained in this analysis. Under this assumption, 
the model reliability jumped to ρ = 0.914; the 
implication of this statistic, however, is that 5 new 
items would need to be written. 
 

Model!Validation!
 
Posttest scores were used to test the models 
specified on the pretest data (see Table 1). Not 
unexpectedly, the model created through 
traditional EFA was not validated in the CFA. 
Several goodness-of-fit indices suggested poor 
model fit, echoed by the large number of misfitting 
standardized residuals (23) and significant MIs 
(23). The reliability of the validated model was 
acceptable according to Cronbach’s alpha (0.840) 
and Raykov’s ρ (0.833), with a low test-retest 
reliability of 0.495.  

The CFA of the model created through the full-
information EFA suggested that this model was 
better able to capture the relationships in the 
posttest data than the traditional EFA model (see 
Table 1). Although the traditional and the full-
information EFA models were the same, the model 
created through full-information EFA utilized the 
polychoric correlation rather than the Pearson 

correlation in the input matrix, which resulted in 
less attenuated parameters and better model fit. 
However, although the goodness-of-fit indices 
suggest moderate fit of the full-information EFA 
model, the number of misfitting standardized 
residuals and significant MIs (8 and 14, 
respectively) was greater than the expected 
number (3.3). The reliability was greater than that 
of the traditional EFA, ρ = 0.910, as was the test-
retest reliability, ρ = 0.544. 

The models created by the two E/CFA 
methods both fared better in validation than the 
models created through EFA. The model specified 
by the Jöreskog method was able to capture the 
relationships in the posttest data very well, as 
demonstrated by the goodness-of-fit indices (see 
Table 1), but examination of the standardized 
residuals and MIs suggested there were 
associations in the posttest data that were not well 
represented by the model (8 significant MIs 
observed and 3.3 expected). In particular, the 
pattern of significant MI and corresponding error 
covariances to free differed between the pretest 
and posttest data. Of the nine freed correlated 
errors in the model of the pretest data, only four 
were significantly different from zero in the 
posttest data (see Table 2). Similarly, the posttest 
CFA highlighted eight large MI that were 
negligible in the pretest model. Of the 132 possible 
MI, the pre- and posttest models differ on 13, 
representing 10% disagreement. Despite these 
inconsistencies, the model showed a high degree of 
reliability, ρ = 0.938, and an acceptable level of 
test-retest reliability, ρ = 0.559. 
 

 
! !
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Table!2!

Correlated!Errors!for!the!Model!of!Attitude!Toward!Shakespeare!(E/CFA,!Jöreskog!Method)!in!PreJ!and!Posttest!
Samples!

!

Error!Covariances!Significant!at!Pre!

Error!Covariances!Significant!at!Post!

but!Not!Pre!(Modification!Indices)
a
!

Freed!Error!

Covariance! Pretest! Posttest! !

Freed!Error!

Covariance! Pretest! Posttest!

1!and!8! 0.235! ***! 0.235! ***! 1!and!2! 0.001! 4.145!

6!and!10! 0.202! ***! 0.238! ***! 1!and!10! 0.020! 5.044!

4!and!8! 0.196! ***! 0.224! ***! 2!and!7! 0.022! 4.605!

1!and!4! 0.171! **! 0.058! ! 3!and!10! 0.031! 5.426!

7!and!9! 20.196! ***! 0.050! ! 4!and!10! 0.231! 4.899!

6!and!8! 0.152! **! 0.064! ! 4!and!11! 0.000! 4.267!

6!and!12! 0.138! **! 0.088! ! 7!and!12! 3.069! 6.059!

4!and!12! 0.130! *! 0.212! ***! 9!and!11! 2.072! 6.711!

1!and!3! 20.143! **! 20.082! ! ! ! !
a
!Modification!indices!greater!than!3.84,!the!critical!value!for!a!chi!square!distribution!with!df=1,!!

indicate!correlated!errors!that!are!likely!to!significantly!improve!model!fit!if!allowed!to!freely!covary.!!

*!p!<!.05.!**!p!<!.01.!***!p!<!.001.!

 
The Gugiu E/CFA model also fit the posttest 

data associations better than the EFAs, but slightly 
less well than the Jöreskog E/CFA model (see 
Table 1). As with the other models, the misfitting 
standardized residuals (1) and significant MIs (6) 
suggested some lack of fit (1.1 expected). The 
reliability was lower than that of the Jöreskog 
E/CFA model, ρ = 0.864, as was the test-retest 
reliability, ρ = 0.525. However, when estimated 
with 12 items instead of 7 using the Spearman-
Brown prophecy formula, the internal (ρ = 0.916) 
and test-retest (ρ = 0.655) reliabilities were 
comparable to those of the Jöreskog E/CFA model. 
 

Discussion!

Repercussions!of!Inappropriate!Analyses!
 
Several lessons can be learned from the results of 
these models. First, it is clear that using analyses 
that have assumptions that are incompatible with 
the nature of the data can have severe implications 
for the results. In the case of the traditional EFA, 
an inappropriate correlation matrix resulted in 
underestimated factor loadings and contributed to 
poor model fit, as compared to the results of the 
full-information EFA. Unfortunately, ordinal 
data—the norm in evaluation survey studies—does 
not meet the assumptions of most of the methods 
of statistical analysis. Thus, traditional EFAs are 
generally not recommended unless data are 
continuous. 

 The goodness-of-fit indices suggest that the 
full-information EFA estimates did a slightly 
better job of capturing the observed relationships 
than those produced by the traditional EFA. The 
impact of using a polychoric correlation matrix 
rather than the Pearson correlation matrix is 
highlighted by the difference in the parameter 
estimates between the traditional EFA and full-
information EFA. Because the Pearson estimates 
relationships from the coarse categories rather 
than continuous scores, it underestimates the 
associations between variables, which manifests in 
smaller parameter estimates and poorer model fit 
statistics. Although the full-information EFA is 
appropriate given the nature of the data and 
provides better model fit than the traditional EFA, 
it does not share the benefits of the E/CFA models. 
Without the ability to refine EFA models, not only 
does the model exhibit relatively poor fit, but it 
may also not be validated by a CFA, as was 
illustrated in this study. Thus, the EFA approach 
to model specification is not ideal. Although the 
full-information EFA should be chosen over the 
traditional EFA, the two methods of E/CFA are 
preferable for the purpose of establishing internal 
validity of a survey instrument, particularly when 
the stability of the latent construct over time is 
important. 
 Both E/CFA methods avoided the problems 
encountered by the two EFAs, thereby yielding 
robust initial models that also fit the data well in a 
CFA context. However, the Jöreskog method faced 
a challenge not faced by the other three methods; 
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namely, what constitutes a sufficiently substantive, 
theory-based rationale for freeing correlated 
errors. In the case of this study, it is unclear how 
the presence of so many correlated errors can be 
justified, particularly because the reason used to 
justify the presence of a correlated error must also 
explain why it does not apply in the case of absent 
correlated errors. On this basis, it is not intuitive 
why these nine pairs of questions share significant 
amounts of variance with each other but not the 
other items (see Appendix), and an a priori 
theoretical prediction of these relationships is 
highly unlikely. If only the errors that could be 
substantively justified were freed, as is often 
recommended, then the Jöreskog model in this 
study would have resembled that of the full 
information EFA as few, if any, of the correlated 
errors could be substantiated on theoretical 
grounds.  
 Furthermore, not only is the pattern of 
correlated errors difficult to justify and interpret, 
but the overall model is less stable. The size and 
significance of 10% of the MI differed between the 
pre- and posttest models, representing a small but 
non-ignorable amount of instability. This may 
result from the use of a 3.84 (critical value at α = 
0.05) cut-off for large MIs, which may not be 
appropriate when used in conjunction with DWLS. 
The interpretation of MIs as chi-square difference 
is only appropriate for ML or robust maximum 
likelihood (RML) estimation methods with 
continuous variables; MI values are not directly 
analogous to chi-square differences under DWLS 
(K. Jöreskog, personal communication, June 23, 
2013). In other words, the significance of MIs 
cannot be interpreted in the same way with the 
type of data found in the SUFS study. Therefore, 
even though the Jöreskog E/CFA method 
produced well-fitting models that were validated 
by a CFA on posttest data, the interpretability and 
instability of the models, as well as the uncertain 
appropriateness of the MI criteria, suggest that 
this method may also not yield stable results in the 
context of evaluation work. 
 The Gugiu E/CFA method is not limited by the 
issues of other methods but still produced well-
fitting models that replicated in posttest CFAs. To 
its credit, the method produces models without 
correlated errors that are more easily interpretable 
than Jöreskog E/CFA models and that do not 
require ad hoc theoretical justifications. The 
method places a greater emphasis on standardized 
residuals than on MIs as a modification criterion 
and thus may be used with categorical and non-
continuous data without concerns regarding the 
interpretation of the modification criteria. 

However, the limited number of items retained by 
this method does raise two concerns. First, with 
fewer items, models may be less reliable, a fact 
reflected in the models of the SUFS data. Second, 
iteratively reducing the number of items runs the 
risk of decreasing the model’s construct validity. 
Fortunately, these issues can be easily addressed 
by adding more items and retaining items that are 
theoretically important for the construct. As 
suggested by the Spearman-Brown prophecy 
formula, adding more items with parallel 
psychometric properties will increase the 
reliability of these models to levels comparable to, 
if not better than, the reliability of models created 
through the other methods. 
 

Recommendations!for!Practice!
 
The model comparisons from the SUFS 
evaluation-based example illustrate a number of 
important take-aways for evaluation practice. First 
of all, these model comparisons demonstrate that 
using the appropriate analyses makes a 
meaningful difference, both in the resulting factor 
structure and in its stability over time. When this 
is considered in light of the fact that survey data is 
ubiquitous in evaluation work, utilized in 45% of 
the reviewed articles, it is clear that using the 
appropriate factor analytic method is fundamental 
in determining the quality of the data. From the 
current study, there are several steps that 
evaluators can take to help ensure well-fitting, 
stable factor structures. 
 First, for many of the constructs of interest 
within the field, including attitudes, beliefs, and 
knowledge, factor analysis is more appropriate 
than principal components analysis. When 
choosing a correlation coefficient for use in the 
input correlation matrix, the polychoric 
correlation coefficient is most appropriate for 
ordinal data (Brown, 2006), and the Pearson 
correlation coefficient is most appropriate for data 
that is truly continuous, with at minimum 15 
answer choices (Jöreskog & Sörbom, 1996; 
Schumacker & Lomax, 2010). Parallel analysis 
should be utilized for factor selection, because it is 
more accurate and more clearly interpretable than 
Scree plots or the Kaiser criterion (Hayton, Allen, 
& Scarpello, 2004). For the method of estimation, 
diagonal weighted least squares (DWLS) in 
conjunction with the asymptotic covariance matrix 
is best used when the data are ordinal, whereas 
maximum likelihood can be used when data are 
continuous. For all types of data, the model can be 
modified using the 0.3 cut-off (Tabachnick & 
Fidell, 2001). The results of the current study also 
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suggest that the Gugiu method may be a 
particularly effective way of modifying the model, 
without some of the disadvantages of other 
methods. Taken together, these recommendations 
can ensure that the surveys used in evaluation 
work have well-fitting and stable factor structures, 
which in turn will ensure that clear and accurate 
conclusions are drawn from the data. 
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Appendix!

Attitudes!Toward!Shakespeare!Survey,!Based!on!Warwick!Survey!(Strand,!2009)!
!

What!I!think!about!Shakespeare! ! No!

Don’t!

know! Yes!

1. Everyone!should!read!Shakespeare! ! !!! !! !!!

2. Shakespeare!is!fun! ! !!! !! !!!

3. Shakespeare’s!plays!are!difficult!for!me!to!understand! ! !!! !! !!!

4. Shakespeare’s!plays!help!us!understand!each!other!better!! ! !!! !! !!!

5. I!would!like!to!do!more!Shakespeare!! ! !!! !! !!!

6. Some!of!the!people!in!Shakespeare’s!plays!are!like!people!you!meet!

today!! ! !!! !! !!!

7. I!tell!my!friends!in!other!classes!about!Shakespeare!! ! !!! !! !!!

8. It!is!important!to!study!Shakespeare’s!plays! ! !!! !! !!!

9. Shakespeare!is!only!for!old!people! ! !!! !! !!!

10. Things!that!happen!in!Shakespeare’s!plays!can!happen!in!real!life! ! !!! !! !!!

11. Shakespeare!is!boring! ! !!! !! !!!

12. I! have! learned! something! about! myself! by! learning! about!

Shakespeare! ! !!! !! !!!

 
 


