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Background:	   This	   paper	   provides	   an	   introduction	   to	  
propensity	  scores	  for	  evaluation	  practitioners.	  
	  
	  
Purpose:	   The	   purpose	   of	   this	   paper	   is	   to	   provide	   the	   reader	  
with	   a	   conceptual	   and	   practical	   introduction	   to	   propensity	  
scores,	   matching	   using	   propensity	   scores,	   and	   its	  
implementation	  using	  statistical	  R	  program/software.	  
	  
Setting:	  Not	  applicable	  
	  
Intervention:	  Not	  applicable	  
	  
Research	  Design:	  Not	  applicable	  
	  
	  
	  

Data	  Collection	  and	  Analysis:	  Not	  applicable	  
	  
Findings:	   In	   this	   demonstration	   paper,	   we	   describe	   the	  
context	   in	   which	   propensity	   scores	   are	   used,	   including	   the	  
conditions	   under	   which	   the	   use	   of	   propensity	   scores	   is	  
recommended,	  as	  well	  as	  the	  basic	  assumptions	  needed	  for	  a	  
correct	   implementation	   of	   the	   technique.	   Next,	   we	   describe	  
some	   of	   the	   more	   common	   techniques	   used	   to	   conduct	  
propensity	  score	  matching.	  We	  conclude	  with	  a	  description	  of	  
the	   recommended	  steps	  associated	  with	   the	   implementation	  
of	   propensity	   score	   matching	   using	   several	   packages	  
developed	   in	   R,	   including	   syntax	   and	   brief	   interpretations	   of	  
the	  output	  associated	  with	  every	  step.	  
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Introduction	  
 
The aim of this paper is to provide the reader with 
a conceptual and practical introduction to 
propensity scores, matching using propensity 
scores, and its implementation using a statistics 
program. We start with a description of the 
context in which propensity scores have been used, 
the basic assumptions needed to use propensity 
scores, and a brief description of some of the most 
useful techniques for propensity score matching. 
We then provide a detailed description of how to 
estimate propensity scores, matching using 
propensity scores, and brief examples of the 
results of implementing propensity scores 
matching using several packages developed in R. 
 

Context	  for	  Propensity	  Scores	  
 
We live in a period with serious social problems, 
such as low academic achievement, obesity, 
homelessness, and drug addiction, to name a few. 
This era is also characterized by accountability. 
Social programs intended to address these social 
problems need to demonstrate their effectiveness 
(Weiss, 1998). It is in this environment of social 
responsibility and social accountability that 
program evaluation plays a crucial role. Evaluation 
is defined as: “the process of determining the 
merit, worth and value of things” (Scriven, 1991, 
p. 1), and the aim of program evaluation is to 
“systematically assess the merit or worth of 
something” (Guskey, 1999, p. 37). Program 
evaluation is used to assess results and help 
improve outcomes intended for programs.  

The stress on accountability has led to the 
development of interventions that are considered 
evidence-based practices. For example, in mental 
health, evidence-based practices are defined as 
“interventions for which there is consistent 
scientific evidence showing that they improve 
client outcomes” (Drake et al., 2001, page 180). A 
centerpiece of evidence-based practices is proof of 
causality. That is, evidence-based practices require 
a demonstration that the improvement/changes 
observed in individuals is due to the intervention.  

According to Guo and Fraser, (2015), causal 
inferences have four requirements: (1) there is a 
statistical relationship between the treatment and 
the outcome, (2) the presumed cause happens 
before the effect, (3) the researchers are able to 
rule-out alternative explanations for the observed 
change, and (4) there is a reasonable 
counterfactual. 

The first three requirements are 
straightforward. For example, regarding a 

statistical relationship, we should be able to detect 
it using some statistical method, often correlation. 
Similarly for precedence: careful observation 
should be helpful in establishing whether the 
cause precedes in time the effect/outcome. With 
regard to ruling out alternative explanations, there 
are multiple strategies that can be implemented. 
Cook and Campbell (1979), and more recently, 
Shadish, Cook, and Campbell (2002) have 
described multiple strategies to rule out 
alternative explanations, random assignment 
being one strategy. Although more involved, the 
counterfactual is still straightforward. In every 
study, each subject can be assigned to one of two 
(or more) treatment alternatives. For example, if 
the study is a comparison between an online 
versus a traditional course, the alternatives are 
whether a student is assigned to online or 
traditional. Although the assigned treatment will 
affect the outcome of the study (e.g., the final 
grade), we know that each student has two 
potential outcomes (one for each treatment 
option), even though we can only observe the 
outcome for one of them at any point in time.  

A counterfactual is defined as “knowledge of 
what would have happened to those same people 
if they simultaneously had not received 
treatment” (Shadish et al., 2002, p. 5). Thus the 
counterfactual is a thought experiment. The 
estimate of the effect is the difference between 
what happen (the real outcome) and what would 
have happened (the potential outcome) if the 
assignment had been reversed. This is what is 
known as the Neyman-Rubin (Guo & Fraser, 2015) 
framework: Individuals selected into a 
treatment/control condition have potential 
outcomes in both states, or  

 
However, this is a thought experiment. In 

practice, one of the outcomes proposed by the 
counterfactual is not observed (Holland, 1986; 
Morgan & Winship, 2012) which is the 
fundamental problem of causal inference. 
However, the Neyman-Rubin counterfactual 
framework holds that we can estimate the 
counterfactual by examining: 𝑥!" − 𝑥!"#$%"&. Since 
both outcomes are observable, we can then define 
the treatment effect as a mean difference.  

A way to guarantee that the counterfactual 
works as planned is to assure that the only 
difference between the two groups is the 
treatment. That means that all extraneous 
variables are controlled/eliminated. And the best 
way to control for the effect of extraneous 
variables is by random assignment. 
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Given the importance of causality, and the 
requisites needed to assign it with confidence, 
evidence-based programs tend to rely on the use of 
experimental approaches. The experimental 
approach has two characteristics: 1) it manipulates 
the independent variable, that is, whether an 
individual receives (or not) the intervention under 
scrutiny. 2) Individuals are randomly assigned to 
the independent variable. The first characteristic 
does not define the experimental approach: most 
of the so-called quasi-experiments (Shadish et al., 
2002) also manipulate the independent variable. 
What defines the experimental method is the use 
of random assignment. In particular, the use of 
random assignment helps to prove causality by 
improving the chances that we have ruled out 
alternative explanations. Another way to think 
about the importance of random assignment is 
that it increases the chances that groups are 
probabilistically balanced on some variables that 
otherwise may affect the final outcome 
(D’Agostino & D’Agostino, 2007; Shadish et al., 
2002), and, therefore, the Neyman-Rubin 
counterfactual framework holds. For example, in 
an obesity-reduction program, there may be 
several reasons for weight loss (such as peer 
support, level of motivation), that are not 
associated with the intervention, and that may 
affect weight reduction. Balancing through 
random assignment becomes important because 
then we can determine with a high degree of 
certainty that the reason we observe the weight 
change in this obesity reduction program is 
because of the intervention, and not because of 
some other reason (Bonell et al., 2009). 

However, if one of these two conditions 
(manipulating the independent variable, or 
random assignment to rule out alternative 
explanations) is not met, our confidence about the 
causal relationship between independent and 
dependent variable is substantially reduced. There 
are several reasons why we may not be able to 
meet these two assumptions: 1) Despite the use of 
random assignment, equivalent groups are not 
achieved. 2) Due to ethical or logistical reasons 
random assignment is not possible (Bonell et al., 
2009). 

The first reason is known as randomization 
failure (Bonell et al., 2009), and sometimes can go 
undetected. Usual reasons why randomization can 
fail are associated with missing data which 
happened in a systematic way. In the obesity 
reduction example, some individuals in the control 
group may drop out because they are not losing 
weight. Or individuals in the treatment group may 
drop out because they lost the weight they had as a 
goal, and therefore are not motivated to continue 

with the program. In both instances, an analysis 
based only on the outcomes of the individuals who 
stayed until the end of the program may produce 
biased results (i.e., the average weight loss 
observed across groups is either under-estimated 
or over-estimated with respect to the real weight 
loss, had all the individuals in the original sample 
stayed until the end of the study).  

Sometimes random assignment cannot be 
accomplished because of ethical or logistical 
reasons. For example, it will be unethical to 
randomly assign individuals to either a control or 
treatment condition if those assigned to the 
control condition were to lose access to some 
important resource (e.g., a drug that may save or 
prolong their lives), or those in the treatment 
group could risk to lose some benefit they might 
already have (e.g., Medicare or Medicaid benefits). 
Logistically, there are multiple treatment 
conditions that are attributes (i.e., intrinsic to the 
individual such as gender, ethnicity, socio-
economic status, disability (Gliner, Morgan & 
Leech, 2009) which cannot be manipulated by the 
evaluator (i.e., individuals cannot be assigned to a 
different gender). In both cases, individuals are 
not assigned to a treatment condition at random, 
thus confidence regarding causality is 
compromised and the study becomes a quasi-
experiment. 

There are some steps we can take to improve 
quasi-experiments:  

 
1. We can try to rule-out alternative explanations 

by adding elements to the research design; for 
example, we can add: (a) observations (pretest 
and posttests), (b) comparison groups 
(control, placebo, other treatments); (c) other 
factors that may be related to outcomes, and 
(d) other outcome variables that should not be 
affected by the intervention.  

2. We can use statistical adjustments to try to 
control alternative explanations. For example: 
(a) matching, stratification, weighting, using 
covariates with ANCOVA or regression 
models; (b) single, multiple, or aggregate 
covariates; or (c) propensity scores 

 
As a consequence of randomization failure, or 
because of the logistical or ethical reasons just 
described, in a very large number of real-world 
interventions, experimental approaches are 
impossible or very difficult to implement. If we are 
still interested in demonstrating the causal link 
between our intervention and the observed 
change, our options become limited. Some options 
include regression discontinuity designs (Trochim, 
1984; Shadish et. al., 2002) which can strengthen 
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our confidence about causality by selecting 
individuals to either the control or treatment 
condition based on a cutoff score. Another 
alternative when random assignment fails, or 
when we cannot randomly assign people to 
treatment conditions because of ethical or 
logistical reasons, is propensity scores.  
 

Propensity	  Scores 
 
Propensity scores is a statistical technique that has 
proven useful to evaluate treatment effects when 
using quasi-experimental or observational data 
(Austin, 2011; Rubin, 1983). Some of the benefits 
associated with propensity scores are: (a) Creating 
adequate counterfactuals when random 
assignment is infeasible or unethical, or when we 
are interested in assessing treatment effects from 
survey, census administrative, or other types of 
data, where we cannot assign individuals to 
treatment conditions (Austin, 2011). (b) The 
development and use of propensity scores reduces 
the number of covariates needed to control for 
external variables (thus reducing its 
dimensionality) and increasing the chances of a 
match for every individual in the treatment group. 
(c) The development of a propensity score is 
associated with the selection model, not with the 
outcomes model, therefore the adjustments are 
independent of the outcome.  
Propensity scores are defined as the conditional 
probability of assigning a unit to a particular 
treatment condition (i.e., likelihood of receiving 
treatment), given a set of observed covariates:  
(𝑧=𝑖|X) 

Where z = treatment, i = treatment condition, 
and X = covariates. In a two-group (treatment, 
control) experiment with random assignment, the 
probability of each individual in the sample to be 
assigned to the treatment condition is:  
(𝑧=𝑖│X)=0.5. In a quasi-experiment, the 

probability (𝑧=𝑖│X) is unknown, but it can be 
estimated from the data using a logistic regression 
model, where treatment assignment is regressed 
on the set of observed covariates (the so-called 
selection model). The propensity score then allows 
matching of individuals in the control and 
treatment conditions with the same likelihood of 
receiving treatment. Thus, a pair of participants 
(one in the treatment, one in the control group) 
sharing a similar propensity score are seen as 
equal, even though they may differ on the specific 
values of the covariates (Holmes, 2014).  
 
 

Why	  not	  Use	  Covariates? 
 
Conventional matching using covariates can work 
well; however, as the number of covariates 
increases, it becomes difficult to find good matches 
for subjects in the treatment group. Thus matching 
using covariates can result in dropping cases and, 
when there are many covariates or lots of 
variation, matching may be impossible. As 
described earlier, propensity scores provide an 
advantage in this case because they reduce the 
dimensionality by summarizing many covariates 
into a single score. Rosenbaum and Rubin (1983) 
explain that propensity scores summarize many 
fine scores into a single coarse score. They have 
also shown that a coarse score can balance 
differences observed in the fine scores between 
treated and control participants. 
 

Endogeneity	  and	  the	  Ignorable	  
Treatment	  Assignment	  Assumption	  
(ITAA) 
 
There are two assumptions associated with 
causality that we need to understand before we can 
use propensity scores: 
 

Endogeneity	  
 
In order to work, regression models need to meet 
some assumptions (Draper & Smith, 1998). One of 
them calls for independence between the 
independent variables in the model and the error 
term. Violations of this assumption are usually 
associated with omitted variables. That is, there is 
some other variable that is not included in the 
model which is correlated with both the dependent 
and the independent(s) variables. Omitted 
variables are one of the major problems in non-
experimental (observational/quasi-experimental) 
studies, because if we do not take them into 
account, they will create a biased estimate of the 
effect. That is, our interpretation of the regression 
model will either under-estimate or over-estimate 
the relationship between the independent and 
dependent variables. Omitted variables represent a 
form of endogeneity which affects our ability to 
establish accurate causal relationships.  
 
Ignorable	  Treatment	  Assignment	  Assumption	  
 
One of the four requirements needed to 
demonstrate causality is the counterfactual, which 
is supported by the Neyman-Rubin counterfactual 
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model (Rubin, 2005). This framework relies in one 
important assumption known as the Ignorable 
Treatment Assignment Assumption, which states 
that conditional on covariates, the assignment of 
study participants to treatment conditions is 

independent of the outcome: . 
Under random assignment, this assumption holds, 
but it does not necessarily hold under quasi-
experiments, where it may be important to 
investigate how participants were assigned to the 
treatment conditions. Although some of the 
processes by which individuals select/are assigned 
to specific treatment conditions can be examined 
empirically, a full account of treatment selection is 
sometimes impossible (e.g., when subjects are 
motivated to select one treatment condition, and 
the researcher does not have a valid measure/is 
not aware of their motivation).  

If we cannot determine all the reasons why a 
participant is assigned to a treatment, then we will 
have an endogeneity problem (Morgan & Winship, 
2012). Thus it is important to make sure that we 
can identify all of the reasons why participants are 
in the treatment or control conditions.   
 

Conventional	  Matching	  in	  R 
 
Conventional forms of matching allow researchers 
to create two groups of individuals (control, 
treatment groups) that are matched in variables 
that are believed to be critical in the selection 
process, thus creating counterfactuals for the 
individuals in the opposite group. Below, we 
briefly describe two of the conventional ways of 
matching, as well as R code to conduct it. 
However, a more thorough description of the 
interpretation will be included in the section: 
"Implementing a propensity score analysis with 
R." The following code and examples use the 
dataset “Lalonde,” included and described in the 
packages MatchIt (Ho, Imai, King & Stuart, 2011) 
and matching (Sekhon, 2011).   
 
	  
	  
	  

Mahalanobis	  Metric	  Matching	  
 
Mahalanobis metric distance matching is based on 
the Mahalanobis distance, which calculates 
distances in a multidimensional space (Guo & 
Fraser, 2015). In the context of matching, once 
participants in the control group are selected at 
random, we calculate distances between treated 
and control participants: 

 where u (treatment) 
and v (control) are the matrices with covariates, 
and C-1 is the inverse variance-covariance matrix 
for the control subjects. The control subject with 
the minimum distance d(i,j) is chosen as the 
match for a treated subject. Both subjects are 
removed from the pool, and the process repeats 
until we match all treated subjects. Notice that this 
approach does not lose participants, because we 
are selecting participants from the control group 
who have a minimum distance to participants in 
the treatment group. However, it is possible that 
an individual from the control group who is 
selected as the match for a participant in the 
treatment group, is not close in a 
multidimensional space. In fact, as the number of 
covariates increases, the average Mahalanobis 
distance between observations also increases (Gu 
& Rosenbaum, 1993; Stuart, 2010; Zhao, 2004).  
 

Mahalanobis	  Metric	  Matching	  with	  Calipers	  
 
A proposed solution to this distance problem is the 
use of Mahalanobis matching but where the 
distance is estimated based on a caliper. In this 
context, the selection of the closest match is 
determined by 𝑑(𝑖, 𝑗) < 𝜀 where epsilon is a pre-
specified tolerance for matching (a “caliper”). 
Cochran and Rubin (1973) suggested using a 
caliper size of one-fourth of a standard deviation of 
the sample estimated propensity scores (i.e., ε < 

.25 σp, where σp denotes standard deviation of the 
estimated propensity scores of the sample). Figure 
1 below presents the commands used to conduct 
matching using Mahalanobis distance in the 
package Matchit (Ho, Imai, King & Stuart, 2011). 

 

m.mahal	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  mahvar
s	  =	  c("age",	  "educ",	  "nodegree",	  "re74",	  "re75"),	  caliper	  =	  0.25,	  replace	  =	  FALSE,	  di
stance=	  "mahalanobis")	  
summary(m.mahal)	  

Figure	  1.	  Conventional	  matching	  using	  Mahalanobis	  distance	  with	  the	  package	  MatchIt
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In this figure it can be observed that a caliper is 
included (i.e., caliper = 0.25). As recommended by 
Rosenbaum and Rubin, 1985, the default is 0.25 
εp.	  
 

Types	  of	  Matching	  Using	  Propensity	  
Scores 
 
Conventional matching techniques work well in 
many conditions. However, as described earlier, 
the use of propensity scores for matching has some 
advantages such as coarse score balancing 
(Rosenbaum and Rubin, 1983). Once propensity 
scores have been calculated, we proceed to find 
participants in the control group that will have 
similar propensity scores to those in the treatment 
group. We use a typology similar to that proposed 
by Bai and Clark (2012) to differentiate between 
greedy matching and more complex forms of 
matching. 
 
Greedy	  Matching	  
 
This type of matching is called greedy because the 
match for a participant in the treatment group is 
based on the first case of the control group that 
meets the criteria for matching. Even if that 
participant in the control group would serve as a 
better match for a subsequent participant in the 
treatment group, the match will still be based on 
the first case. Most algorithms will select 
participants from both the control and treatment 
group at random; thus, the match from one run to 

the next will render different groups with different 
degrees of matching. The most common greedy 
matching algorithms and their code in R are 
described below:  
 

Near	  Neighbor	  Matching	  
 
The near neighbor matching procedure matches 
participants from the control group to participants 
from the treatment group based on closeness. A 
participant (j) with propensity score Pj in the 
control sample (I0) is a match for a participant (i) 
with propensity score Pi in the treatment group, if 
the absolute difference between their propensity 
scores is the smallest 𝐶 𝑃! = min! 𝑃! − 𝑃! , 𝑗 ∈ 𝐼!. 
The most traditional matching is of one participant 
in the control to one participant in the treatment. 
In those cases, we speak about 1-to-1 (1:1) 
matching. However, it is possible to have more 
than one participant from the control group to be 
matched with a participant in the treatment group. 
In those cases, we speak about an m-to-1 (m:1) 
matching. Having more individuals from the 
control group matched to every individual in the 
treatment group means better estimates for the 
counterfactual in the control group. However, this 
approach requires a sample size for the control 
group several times larger than the number of 
individuals in the treatment group. Figure 2 
presents the commands to estimate near neighbor 
using the default (1:1) using the package MatchIt. 
Figure 3 presents the commands to estimate near 
neighbor using a 2:1 ratio: 

#-‐-‐-‐Match	  using	  near-‐neighbor	  
m.nn	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  "
nearest",	  ratio	  =	  1)	  
summary(m.nn)	  

Figure	  2.	  Propensity	  score	  matching	  using	  near	  neighbor	  for	  a	  1:1	  ratio	  with	  the	  package	  MatchIt	  
	  

#-‐-‐-‐match	  using	  near-‐neighbor	  with	  ratio	  =	  2	  
m.nn2	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  
"nearest",	  ratio	  =	  2)	  
summary(m.nn2)	  

Figure	  3.	  Propensity	  score	  matching	  using	  near	  neighbor	  for	  a	  2:1	  ratio	  with	  the	  package	  MatchIt	  
 
The keyword to change the ratio from the default 
(1:1) to a (2:1) ratio is the subcommand: ratio = 2 
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Near	  Neighbor	  with	  Caliper	  Matching	  
 
Similarly to the case defined for Mahalanobis 
distance, in near neighbor matching, sometimes 
individuals who are not close in terms of their 
propensity scores, can be matched. Thus, in this 
case, near neighbor-match can be considered only 
if the absolute distance between treatment and 
control participants meets the 
condition:   𝑃! − 𝑃! < 𝜀,   𝑗 ∈ 𝐼! where Pi and Pj are 

propensity scores for treatment and control, є is 

the caliper. As described earlier, Rosenbaum and 
Rubin (1985) have suggested that є < 0.25 σp, 

where σp = standard deviation of the estimated 
propensity scores of the sample. This approach is 
popular because multivariate analyses using the 
matched sample can be undertaken, if the sample 
is sufficiently large. Figure 4 presents the 
commands to estimate near neighbor using a 
caliper matching of 0.1 σp using MatchIt: 

	  

#-‐-‐-‐Match	  using	  near	  neighbor	  with	  calipers	  
m.nnc	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  
"nearest",	  caliper	  =.1)	  
summary(m.nnc)	  

Figure	  4.	  Propensity	  score	  matching	  using	  near	  neighbor	  with	  a	  caliper	  of	  0.1	  with	  the	  package	  MatchIt	  
 
The default caliper in MatchIt is 0.25.  
 
Combining	  Propensity	  Scores	  and	  
Mahalanobis	  Matching 
 
This strategy combines propensity scores and the 
Mahalanobis distance for matching. After 
propensity scores have been calculated in all the 
participants, the estimates are added to the 
datafile. Next, participants in the treatment group 

are randomly ordered. Afterwards, the 
Mahalanobis distances for the participants in the 
control and treatment groups are calculated using 
the combination of variables (x) and the 
propensity score 𝑒 𝑥  (Guo & Fraser, 2015). Figure 
5 presents the commands to estimate the 
propensity scores, and the Mahalanobis distance 
plus propensity scores using MatchIt. The steps 
are recounted below:  
 

#-‐-‐-‐Compute	  Propensity	  score	  
ps<-‐	  glm(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  family	  =	  binomia
l())	  
summary(ps)	  

#-‐-‐-‐Attach	  the	  predicted	  propensity	  score	  to	  the	  datafile	  
lalonde$psvalue	  <-‐	  predict(ps,	  type	  =	  "response")	  
	  

#-‐-‐-‐match	  using	  Mahalanobis	  distance	  including	  Propensity	  score	  
m.mahalp	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75	  +	  psvalue,	  data	  =lalo
nde,	  mahvars	  =	  c("age",	  "educ",	  "nodegree",	  "re74",	  "re75",	  "psvalue"),	  caliper	  =	  0.2
5,	  replace	  =	  FALSE,	  distance=	  "mahalanobis")	  
summary(m.mahalp)	  

Figure	  5.	  Propensity	  scores	  plus	  Mahalanobis	  distance	  using	  MatchIt	  
 

Optimal	  Matching	  
 
This is a more complex approach to propensity 
score matching, which is possible because of fast 
computer processing speed that can make the 
implementation of these algorithms possible. The 
main goal of this approach is to find the matched 

samples with the smallest average absolute 
propensity score distance across all the matched 
pairs. To accomplish this goal, matched sets of 
treatment and control participants are identified 
so that the matching minimizes the total 
propensity score distance (Δ) for a given data set 
according to the following equation:  
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Δ = 𝜔
!

!!!

𝐴! , 𝐵! 𝛿 𝐴!,𝐵!  

 
where ω is the weight of the number of subjects in 
the stratum, |As| or |Bs| represent the number of 
elements in the stratum that belongs to A/B, and δ 
is the distance between elements in the stratum. 
The optimal matching approach identifies sets of 

participants with the aim of minimizing the total 
distance between their propensity scores. A very 
important characteristic of this approach is that 
the match among participants can change, if it is 
found that a different match will in fact minimize 
the total distance even further. Figure 6 presents 
the commands to estimate Optimal distance using 

MatchIt. 

	  
#-‐-‐-‐Optimal	  matching	  with	  1:1	  ratio	  
m.om	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  "
optimal",	  ratio	  =	  1)	  
summary(m.om)	  
	  
Figure	  6.	  Optimal	  matching	  using	  MatchIt.
 
Be aware that MatchIt calls the package optmatch 
(Hansen, Fredrickson, Bertsekas & Tseng, 2013). 
Thus, it may be best to install the package 
optmatch in advance. Figure 6 also shows that 
different matching ratios can be set using the 
subcommand ratio.    
 
Full	  Matching	  
 
Full matching is a form of optimal matching where 
participants in either the control or treatment 
groups will be matched to one or more individuals 
in the opposite group (Hansen, 2004; Stuart, 

2010). This matching is accomplished by creating 
subclasses automatically, and then assigning at 
least one individual from either the control or 
treatment group, and as many individuals of the 
opposite group. Similarly to optimal matching this 
approach is intended to minimize the average of 
the distances between treatment and control 
individuals within each set (Stuart, 2010). This 
approach is ideal for researchers who would rather 
not discard any participant in either sample. 
Figure 7 presents the commands to estimate Full 
distance using MatchIt. 
 

 
	  
#-‐-‐-‐Full	  matching	  	  
m.fl	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  "
full",	  min.controls	  =	  1,	  max.controls	  =	  10,	  discard	  =	  "both")	  
summary(m.fl)	  
	  
Figure	  7.	  Full	  matching	  using	  MatchIt.
 
Just like for optimal matching, MatchIt calls the 
package optmatch (Hansen et. al., 2013). Figure 7 
also shows that a minimum number and a 
maximum number of control cases can be 
specified.    
 

Implementing	  a	  Propensity	  Score	  
Analysis	  with	  R	  
 
In this section, we provide some suggestions for 
the implementation of a propensity score analysis. 
We use the statistical program R (R Core Team, 
2014), because it has multiple packages intended 

to calculate propensity scores, interpret the results 
using both statistical and graphical procedures, 
and it can also estimate post-matching outcomes 
analysis.  

The analysis of quasi-experimental or 
observational data using propensity scores 
involves the development of two models: 1) the so-
called selection model (which is intended to 
balance the groups using variables that affect only 
the selection process), and 2) the outcomes model 
(which will include variables that are associated 
with the outcomes only). The result of the selection 
model affects the outcome model through the 
propensity scores. Thus several of the steps 
described below are aimed exclusively to the 
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selection process, and some others are intended 
for the outcomes model. 
 
Steps	  Suggested	  for	  Conducting	  a	  Propensity	  
Score	  Analysis	  
 
When conducting a propensity score analysis, the 
authors follow these steps: 
 

1. Preliminary analysis 
2. Estimation of Propensity scores 
3. Propensity Score matching 
4. Outcome analysis  
5. Sensitivity analysis  

 

1.	  Preliminary	  Analysis	  
 
Before propensity scores are calculated, it is a good 
practice to determine if the two groups are 
balanced. The best practice to determine the 

covariates that influence group assignment is 
based on theoretical evidence. In addition, 
statistical tests can also be used to determine if the 
covariates are imbalanced across groups. 
Traditional statistical approaches include the 
estimation of a normalized difference (Imbens & 
Wooldridge, 2009), which calculates the difference 
between the control and treatment group for every 
variable included in the selection model. Hansen 
and Bowers (2008) suggested the equivalent of an 
omnibus test that checks if there is at least one 
variable in the selection model for which the two 
groups are different. The package RItools (Bowers, 
Fredrickson & Hansen, 2014) includes the routine 
“XBalance” that estimates a chi-square test to 
perform this omnibus test. Figure 8 includes 
examples of the code and the output generated by 
R when estimating the standardized/normalized 
difference and the Chi-square test using XBalance: 
 

 

#-‐-‐-‐Computing	  indices	  of	  covariate	  imbalance	  before	  matching	  
###	  1.	  Standardized	  difference	  
treated	  <-‐	  (lalonde$treat==1)	  
cov	  <-‐	  lalonde[,2:9]	  
std.diff	  <-‐	  apply(cov,2,function(x)	  100*(mean(x[treated])-‐	  mean(x[!treated]))/(sqrt(0
.5*(var(x[treated])	  +	  var(x[!treated])))))	  
abs(std.diff)	  

##	  	  	  	  	  	  	  	  age	  	  	  	  	  	  	  educ	  	  	  	  	  	  black	  	  	  	  	  hispan	  	  	  	  married	  	  	  nodegree	  	  
##	  	  24.190362	  	  	  4.475509	  166.771881	  	  27.693960	  	  71.949196	  	  23.504820	  	  
##	  	  	  	  	  	  	  re74	  	  	  	  	  	  	  re75	  	  
##	  	  59.575159	  	  28.700211	  

###	  2.	  chi-‐square	  test	  
library("RItools")	  

xBalance(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =	  lalonde,	  report	  =	  c("chi
square.test"))	  

##	  -‐-‐-‐Overall	  Test-‐-‐-‐	  
##	  	  	  	  	  	  	  	  	  chisquare	  df	  	  p.value	  
##	  unstrat	  	  	  	  	  	  50.3	  	  5	  1.19e-‐09	  
##	  -‐-‐-‐	  
##	  Signif.	  codes:	  	  0	  '***'	  0.001	  '**	  '	  0.01	  '*	  	  '	  0.05	  '.	  	  '	  0.1	  '	  	  	  '	  1	  

Figure	  8.	  Testing	  imbalance	  before	  matching	  	  
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For the standardized difference, absolute scores 
higher than 25% are considered suspect, and may 
indicate an imbalance for that specific variable 
(Stuart & Rubin, 2008).  A statistically significant 
chi-square will indicate that at least one of the 
variables included in the model is creating an 
imbalance between the two groups. Variables that 
create imbalance should be included in the 

selection model.Also as part of the preliminary 
analysis it is a good practice to assess the effects of 
the treatment on the outcome variable by running 
the outcome model. This assessment can be based 
on the treatment variable only (using a t-test), or 
include covariates (using a regression model) 
Figure 9 includes examples of the code and the 
output of a regression analysis. 

	  

#-‐-‐-‐	  Outcome	  model	  using	  Regression	  analysis	  	  
reg	  <-‐lm(re78	  ~	  treat	  +	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75	  +	  married	  +	  black	  +	  hispa
n,	  data	  =	  lalonde)	  
summary(reg)	  

##	  	  
##	  Call:	  
##	  lm(formula	  =	  re78	  ~	  treat	  +	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75	  +	  	  
##	  	  	  	  	  married	  +	  black	  +	  hispan,	  data	  =	  lalonde)	  
##	  	  
##	  Residuals:	  
##	  	  	  	  Min	  	  	  	  	  1Q	  Median	  	  	  	  	  3Q	  	  	  	  Max	  	  
##	  -‐13595	  	  -‐4894	  	  -‐1662	  	  	  3929	  	  54570	  	  
##	  	  
##	  Coefficients:	  
##	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Estimate	  Std.	  Error	  t	  value	  Pr(>|t|)	  	  	  	  	  
##	  (Intercept)	  	  6.651e+01	  	  2.437e+03	  	  	  0.027	  	  	  0.9782	  	  	  	  	  
##	  treat	  	  	  	  	  	  	  	  1.548e+03	  	  7.813e+02	  	  	  1.982	  	  	  0.0480	  *	  	  	  
##	  age	  	  	  	  	  	  	  	  	  	  1.298e+01	  	  3.249e+01	  	  	  0.399	  	  	  0.6897	  	  	  	  	  
##	  educ	  	  	  	  	  	  	  	  	  4.039e+02	  	  1.589e+02	  	  	  2.542	  	  	  0.0113	  *	  	  	  
##	  nodegree	  	  	  	  	  2.598e+02	  	  8.474e+02	  	  	  0.307	  	  	  0.7593	  	  	  	  	  
##	  re74	  	  	  	  	  	  	  	  	  2.964e-‐01	  	  5.827e-‐02	  	  	  5.086	  4.89e-‐07	  ***	  
##	  re75	  	  	  	  	  	  	  	  	  2.315e-‐01	  	  1.046e-‐01	  	  	  2.213	  	  	  0.0273	  *	  	  	  
##	  married	  	  	  	  	  	  4.066e+02	  	  6.955e+02	  	  	  0.585	  	  	  0.5590	  	  	  	  	  
##	  black	  	  	  	  	  	  	  -‐1.241e+03	  	  7.688e+02	  	  -‐1.614	  	  	  0.1071	  	  	  	  	  
##	  hispan	  	  	  	  	  	  	  4.989e+02	  	  9.419e+02	  	  	  0.530	  	  	  0.5966	  	  	  	  	  
##	  -‐-‐-‐	  
##	  Signif.	  codes:	  	  0	  '***'	  0.001	  '**'	  0.01	  '*'	  0.05	  '.'	  0.1	  '	  '	  1	  
##	  	  
##	  Residual	  standard	  error:	  6948	  on	  604	  degrees	  of	  freedom	  
##	  Multiple	  R-‐squared:	  	  0.1478,	  Adjusted	  R-‐squared:	  	  0.1351	  	  
##	  F-‐statistic:	  11.64	  on	  9	  and	  604	  DF,	  	  p-‐value:	  <	  2.2e-‐16	  

Figure	  9.	  Outcome	  model	  using	  a	  Regression	  analysis	  
	  
2. Estimation	  of	  the	  Propensity	  Scores	  
 
In this step, the propensity score is estimated. 
Although propensity scores can be estimated using 
models such as discriminant analysis, probit 
regression, boosted regression (McCaffrey, 
Ridgeway & Morral, 2004), and even genetic 
algorithms (Sekhon, 2011), logistic regression is 
widely used. Packages such as MatchIt (Ho, Imai, 

King & Stuart, 2011) and Matching (Sekhon, 2011) 
estimate propensity scores using logistic 
regression as the default option. However, when 
estimating propensity scores using the default 
option, the fit of the model cannot be assessed. 
Therefore, it is recommended that a logistic 
regression is run to determine the model fit. 
Figure 10 includes the estimation of the propensity 
scores using logistic regression  
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#-‐-‐-‐Calculates	  the	  propensity	  score	  
ps	  <-‐	  glm(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  family	  =	  binomi
al())	  
summary(ps)	  

##	  	  
##	  Call:	  
##	  glm(formula	  =	  treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  family	  =	  binomial(),	  	  
##	  	  	  	  	  data	  =	  lalonde)	  
##	  	  
##	  Deviance	  Residuals:	  	  
##	  	  	  	  	  Min	  	  	  	  	  	  	  1Q	  	  	  Median	  	  	  	  	  	  	  3Q	  	  	  	  	  	  Max	  	  	  
##	  -‐1.2559	  	  -‐0.9053	  	  -‐0.6053	  	  	  1.2060	  	  	  2.9809	  	  	  
##	  	  
##	  Coefficients:	  
##	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Estimate	  Std.	  Error	  z	  value	  Pr(>|z|)	  	  	  	  	  
##	  (Intercept)	  -‐2.694e+00	  	  7.989e-‐01	  	  -‐3.372	  0.000746	  ***	  
##	  age	  	  	  	  	  	  	  	  	  	  2.464e-‐03	  	  1.025e-‐02	  	  	  0.240	  0.810019	  	  	  	  	  
##	  educ	  	  	  	  	  	  	  	  	  1.569e-‐01	  	  5.299e-‐02	  	  	  2.962	  0.003059	  **	  	  
##	  nodegree	  	  	  	  	  8.502e-‐01	  	  2.813e-‐01	  	  	  3.023	  0.002503	  **	  	  
##	  re74	  	  	  	  	  	  	  	  -‐1.225e-‐04	  	  2.576e-‐05	  	  -‐4.756	  1.98e-‐06	  ***	  
##	  re75	  	  	  	  	  	  	  	  	  2.574e-‐05	  	  3.955e-‐05	  	  	  0.651	  0.515252	  	  	  	  	  
##	  -‐-‐-‐	  
##	  Signif.	  codes:	  	  0	  '***'	  0.001	  '**'	  0.01	  '*'	  0.05	  '.'	  0.1	  '	  '	  1	  
##	  	  
##	  (Dispersion	  parameter	  for	  binomial	  family	  taken	  to	  be	  1)	  
##	  	  
##	  	  	  	  	  Null	  deviance:	  751.49	  	  on	  613	  	  degrees	  of	  freedom	  
##	  Residual	  deviance:	  692.88	  	  on	  608	  	  degrees	  of	  freedom	  
##	  AIC:	  704.88	  
##	  	  
##	  Number	  of	  Fisher	  Scoring	  iterations:	  5	  

Figure	  10.	  Propensity	  score	  estimation	  using	  logistic	  regression
 
Statistically significant estimates are identified by 
low (i.e., < 0.05) p-values. There are no clear 
suggestions as to whether to include in the final 
model all the variables (even non-significant). 
Some authors (Austin, Grootendorst & Anderson, 
2007; Caliendo & Kopeinig, 2008) suggest that the 
final model should include not only statistically 
significant variables, but also variables known to 
be associated with selection.  

Once the propensity scores have been 
calculated, a graphical approach can be used to 
assess the distributional similarity between score 
distributions. This graphical approach uses back to 
back histograms such as those created through the 
package Hmisc (Harrell, 2015). Back to back 
histograms cannot be used with Mahalanobis 
distance, because it is a multidimensional 
technique. Figure 11 presents the commands and 
the histograms Hmisc generates. 
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#-‐-‐-‐Attach	  the	  predicted	  propensity	  score	  to	  the	  datafile	  
lalonde$psvalue	  <-‐	  predict(ps,	  type	  =	  "response")	  
#-‐-‐-‐Back	  to	  back	  histogram	  
histbackback(split(lalonde$psvalue,	  lalonde$treat),	  main=	  "Propensity	  score	  before	  ma
tching",	  xlab=c("control",	  "treatment"))	  

	  

	  
	  
Figure	  11.	  Back	  to	  back	  histogram	  using	  Hmisc	  
	  
Important parameters to determine the fit are not 
only the shape, but also degree of overlap between 
the two distributions (known as the common 
support region (Lehner, 2008)). Matching is best 
when there is a common support region.  
 
3. Propensity	  Score	  Matching	  
 
The code for running propensity score matching 
was provided earlier, therefore, in this section, the 
aim is to describe some key issues in reviewing the 
output of the matching algorithms. For example, it 
is important to check how well matching worked. 
Packages such as MatchIt provide summary tables 
that include means and standard deviations for the 
two groups both before and after the matching was 
completed. It also includes percent improvement, 
and finally, it provides a summary of the number 

of individuals included in the final sample, and 
cases that were not matched. The number of 
matched and unmatched cases is usually 
dependent on the match ratio imposed by the user, 
and the number of cases in the treatment group. 
For example, if the match ratio was 1:1, and there 
were 500 individuals in the control group and 250 
in the treatment group, then 250 individuals from 
the control group will not be matched. Figure 12 is 
an output summary for near neighbor matching.  
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#-‐-‐-‐Match	  using	  near-‐neighbor	  
m.nn	  <-‐	  matchit(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =lalonde,	  method=	  "
nearest",	  ratio	  =	  1)	  
summary(m.nn)	  

##	  	  
##	  Call:	  
##	  matchit(formula	  =	  treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  	  
##	  	  	  	  	  data	  =	  lalonde,	  method	  =	  "nearest",	  ratio	  =	  1)	  
##	  	  
##	  Summary	  of	  balance	  for	  matched	  data:	  
##	  	  	  	  	  	  	  	  	  	  Means	  Treated	  Means	  Control	  SD	  Control	  Mean	  Diff	  	  eQQ	  Med	  
##	  distance	  	  	  	  	  	  	  	  0.3650	  	  	  	  	  	  	  	  0.3603	  	  	  	  	  0.1092	  	  	  	  0.0047	  	  	  0.0016	  
##	  age	  	  	  	  	  	  	  	  	  	  	  	  25.8162	  	  	  	  	  	  	  24.7838	  	  	  	  	  9.6480	  	  	  	  1.0324	  	  	  3.0000	  
##	  educ	  	  	  	  	  	  	  	  	  	  	  10.3459	  	  	  	  	  	  	  10.1676	  	  	  	  	  2.6166	  	  	  	  0.1784	  	  	  0.0000	  
##	  nodegree	  	  	  	  	  	  	  	  0.7081	  	  	  	  	  	  	  	  0.7459	  	  	  	  	  0.4365	  	  	  -‐0.0378	  	  	  0.0000	  
##	  re74	  	  	  	  	  	  	  	  	  2095.5737	  	  	  	  	  2218.4725	  	  4371.6213	  -‐122.8988	  104.5930	  
##	  re75	  	  	  	  	  	  	  	  	  1532.0553	  	  	  	  	  1428.9774	  	  2297.0371	  	  103.0779	  172.5310	  
##	  	  	  	  	  	  	  	  	  	  eQQ	  Mean	  	  	  	  eQQ	  Max	  
##	  distance	  	  	  0.0052	  	  	  	  	  0.0303	  
##	  age	  	  	  	  	  	  	  	  2.9568	  	  	  	  	  8.0000	  
##	  educ	  	  	  	  	  	  	  0.5351	  	  	  	  	  4.0000	  
##	  nodegree	  	  	  0.0378	  	  	  	  	  1.0000	  
##	  re74	  	  	  	  	  445.2718	  	  9177.7500	  
##	  re75	  	  	  	  	  409.0697	  13737.8900	  
##	  	  
##	  Percent	  Balance	  Improvement:	  
##	  	  	  	  	  	  	  	  	  	  Mean	  Diff.	  	  	  eQQ	  Med	  eQQ	  Mean	  	  	  eQQ	  Max	  
##	  distance	  	  	  	  94.8731	  	  	  98.2359	  	  94.3852	  	  	  82.4986	  
##	  age	  	  	  	  	  	  	  	  	  53.3698	  -‐200.0000	  	  	  9.4371	  	  	  20.0000	  
##	  educ	  	  	  	  	  	  	  -‐61.4069	  	  100.0000	  	  23.8462	  	  	  	  0.0000	  
##	  nodegree	  	  	  	  66.0256	  	  	  	  0.0000	  	  66.6667	  	  	  	  0.0000	  
##	  re74	  	  	  	  	  	  	  	  96.5122	  	  	  95.6879	  	  87.7028	  	  	  	  0.4204	  
##	  re75	  	  	  	  	  	  	  	  88.9689	  	  	  82.4145	  	  61.4325	  -‐102.1762	  
##	  	  
##	  Sample	  sizes:	  
##	  	  	  	  	  	  	  	  	  	  	  Control	  Treated	  
##	  All	  	  	  	  	  	  	  	  	  	  	  429	  	  	  	  	  185	  
##	  Matched	  	  	  	  	  	  	  185	  	  	  	  	  185	  
##	  Unmatched	  	  	  	  	  244	  	  	  	  	  	  	  0	  
##	  Discarded	  	  	  	  	  	  	  0	  	  	  	  	  	  	  0	  

match.data	  =	  match.data(m.nn)	  

Figure	  12.	  Near	  neighbor	  matching	  using	  MatchIt	  
 
Graphical approaches (such as the jitter type in the 
package MatchIt), will help the user get some idea 
of whether the individuals not matched are in 
some specific part of the propensity-score 
continuum. Figure 13 shows an example of such a 
plot: 
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plot(m.nn,	  type	  =	  "jitter")	  

	  

##	  [1]	  "To	  identify	  the	  units,	  use	  first	  mouse	  button;	  to	  stop,	  use	  second."	  

##	  integer(0)	  

Figure	  13.	  Jitter-‐type	  plot,	  package	  MatchIt	  
 
As can be observed in this figure, the section 
labeled “Unmatched control Units” shows that 
most of the non-matched individuals were in the 
lower (0.0 to 0.4) part of the propensity scores. 
However, there were a few cases in a higher range 
(0.5-0.6). 

It is important to determine that the groups 
are balanced, thus eliminating (or substantially 
reducing) the initial selection bias. In step 1 in this 
section (preliminary analysis) it was mentioned 
that there are both statistical as well as graphical 
approaches that can be used to determine the 
degree of imbalance. After the match has been 
conducted, both techniques are used again to 
determine that all the critical variables have been 
balanced. Figure 14 shows the output after the 
original match. 
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#-‐-‐-‐Computing	  indices	  of	  covariate	  imbalance	  after	  matching	  
	  
###	  1.	  Standardized	  difference	  
treated1	  <-‐	  (match.data$treat==1)	  
cov1	  <-‐	  match.data[,2:9]	  
std.diff1	  <-‐	  apply(cov1,2,function(x)	  100*(mean(x[treated1])-‐	  mean(x[!treated1]))/(sq
rt(0.5*(var(x[treated1])	  +	  var(x[!treated1])))))	  
abs(std.diff1)	  

##	  	  	  	  	  	  	  	  age	  	  	  	  	  	  	  educ	  	  	  	  	  	  black	  	  	  	  	  hispan	  	  	  	  married	  	  	  nodegree	  	  
##	  	  12.155616	  	  	  7.644579	  154.578773	  	  34.492122	  	  38.194233	  	  	  8.478250	  	  
##	  	  	  	  	  	  	  re74	  	  	  	  	  	  	  re75	  	  
##	  	  	  2.650808	  	  	  3.686064	  

###	  2.	  chi-‐square	  test	  
xBalance(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75,	  data	  =	  match.data,	  report	  =	  c("
chisquare.test"))	  

##	  -‐-‐-‐Overall	  Test-‐-‐-‐	  
##	  	  	  	  	  	  	  	  	  chisquare	  df	  p.value	  
##	  unstrat	  	  	  	  	  	  2.64	  	  5	  	  	  0.755	  
##	  -‐-‐-‐	  
##	  Signif.	  codes:	  	  0	  '***'	  0.001	  '**	  '	  0.01	  '*	  	  '	  0.05	  '.	  	  '	  0.1	  '	  	  	  '	  1	  

Figure	  14.	  Post-‐match	  analysis	  using	  standard	  difference	  and	  the	  overall	  chi-‐square	  test	  
	  
As can be observed in this figure, although the chi-
square test indicates no significance, thus 
suggesting equivalence between the groups, the 
standardized difference test shows that there are 
some variables with a large difference (i.e., black, 
hispan, married) that can still be improved. 
Potential suggestions might include the use of 
interactions terms, or polynomial terms to try to 
reduce their imbalance. McCaffrey, Ridgeway, and 
Morral (2004) has suggested the use of 
Generalized Boosted Models (GBM) to improve 
the fit. This approach uses decision trees that 
combine simpler models into a more powerful 
model. Similarly, Sekhon (2011) proposes the use 
of a genetic algorithm to develop the best possible 

model. Readers are directed to the original sources 
for more information about these techniques.  

Other methodologists (Austin, Grootendorst, 
& Anderson, 2007) suggest that when balance in 
the selection model cannot be achieved on all the 
variables, those variables where balance was not 
achieved, and that may also be associated with the 
dependent variable could be included in the 
outcome model as covariates.  

Another graphical approach that can be used 
to determine the match between groups is the back 
to back histograms. Figure 15shows a back to back 
histogram after the match: 
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histbackback(split(match.data$psvalue,	  match.data$treat),	  main=	  "Propensity	  score	  aft
er	  matching",	  xlab=c("control",	  "treatment"))	  

	  
	  
Figure	  15.	  Back	  to	  back	  histogram	  after	  match	  
	  
As can be observed in this figure, there is a 
remarkable improvement in the match between 
the two distributions of propensity scores after the 
match (compared to Figure 11, which shows the 
histograms for the same data before the match). 
This match suggests that the two groups are much 
more similar in terms of their propensity scores, 
and thus, the selection bias has been reduced 
substantially.  
 

4. Outcomes	  Analysis	  
 
Once the researcher is satisfied with the 
propensity score matching, it is time to proceed 
with the outcome model. Several of the more 
frequently used techniques such as near neighbor, 
and Mahalanobis distances, can be used with 
analytic techniques such as linear regression 
models, ANCOVA, or even matched t-tests. 
However, the selection of any analytic approach to 
estimate the treatment effect and statistical 
significance should take into account the fact that 

the propensity score creates matched samples 
(Austin, 2008). Figure 16 shows the outcome 
analysis using  paired t-test.   
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#-‐-‐-‐Outcome	  analysis	  using	  paired	  t-‐test	  
#	  this	  command	  saves	  the	  data	  matched	  
matches	  <-‐	  data.frame(m.nn$match.matrix)	  
#these	  commands	  find	  the	  matches.	  one	  for	  group	  1	  one	  for	  group	  2	  
group1	  <-‐	  match(row.names(matches),	  row.names(match.data))	  
group2	  <-‐	  match(matches$X1,	  row.names(match.data))	  
#	  these	  commands	  extract	  the	  outcome	  value	  for	  the	  matches	  
yT	  	  <-‐	  match.data$re78[group1]	  
yC	  	  <-‐	  match.data$re78[group2]	  
#	  binding	  
matched.cases	  <-‐	  cbind(matches,	  yT,	  yC)	  
#Paired	  t-‐test	  
t.test(matched.cases$yT,	  matched.cases$yC,	  paired	  =	  TRUE)	  

##	  	  Paired	  t-‐test	  
##	  	  
##	  data:	  	  matched.cases$yT	  and	  matched.cases$yC	  
##	  t	  =	  0.4342,	  df	  =	  184,	  p-‐value	  =	  0.6647	  
##	  alternative	  hypothesis:	  true	  difference	  in	  means	  is	  not	  equal	  to	  0	  
##	  95	  percent	  confidence	  interval:	  
##	  	  -‐1156.468	  	  1809.111	  
##	  sample	  estimates:	  
##	  mean	  of	  the	  differences	  	  
##	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  326.3214	  

Figure16.	  Outcome	  analysis	  using	  a	  paired	  t-‐test	  	  
 
The simplicity of these outcomes analysis make 
them easy to complete and their implications are 
usually easy to understand. For optimal and full 
matching however, the outcome analyses are more 
complex. Under optimal and full matching, it is 
possible to have the same individual matched 
against more than one individual from the other 
group. And for full matching, this can be the case 
not only for individuals in the control group, but 
also for individuals in the treatment group. Given 
that individuals can be used more than once in 
both the treatment and control groups, 
multivariate techniques should not be used. 

For these two techniques, it is recommended 
to use the Hodges Lehman (Hodges & Lehmann, 
1962) and the difference in differences (Rubin, 
1979). To these authors’ knowledge, there are no 
packages within R that can be used to compute the 
outcomes analysis.  

An added complexity in the outcomes analysis 
is the possibility to compute different types of 
treatment effects such as the Average Treatment 
Effect (ATE), which is the type of treatment effect 
evaluators are more familiar with. Another 
treatment effect that can be estimated is the 
Average Treatment for the Treated (ATT) where 
the main focus is to identify individuals that can be 
matched to those in the treatment group. And 

finally the Average Treatment for the Control 
(ATC) where the main emphasis is to find matches 
for individuals in the control group. Readers are 
directed to Morgan and Winship (2012), for more 
information about the differences among the 
different types of treatment effects.  
 

5.	  Sensitivity	  Analysis	  
 
A question that any evaluator who uses propensity 
score matching should ask herself is: how sensitive 
are these results to hidden bias? Rosenbaum 
(2002, 2005) recommends that researchers try to 
answer this question by conducting a sensitivity 
analysis. The idea is to determine how susceptible 
the results presented might be to the presence of 
biases not identified by the researcher or removed 
by the matching. Rosenbaum (2002) developed 
methods to determine bias through several non-
parametric tests such as McNemar’s and 
Wilcoxon’s signed rank test. Keele (2015) 
developed the package rbounds which estimates 
the sensitivity of the results to hidden bias. 
rbounds can compute sensitivity analysis straight 
from the package matching (Sekhon, 2011). For 
other propensity scores packages, some file 
reformatting needs to be completed before it can 
be submitted to rbounds. Figure 17 shows the 
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sensitivity analysis using the Wilcoxon’s rank sign 
test. 

 

 

library("Matching")	  
attach(lalonde)	  
Y	  <-‐	  lalonde$re78	  
Tr	  <-‐lalonde$treat	  
ps	  <-‐	  glm(treat	  ~	  age	  +	  educ	  +	  nodegree	  +	  re74	  +	  re75	  +	  married	  +	  black	  +	  hispan,	  dat
a	  =lalonde,	  family	  =	  binomial())	  
	  
#-‐-‐-‐Match	  -‐	  without	  replacement	  
Match	  <-‐	  Match(Y=Y,	  Tr=Tr,	  X=ps$fitted,	  replace=FALSE)	  
	  
#-‐-‐-‐Runs	  the	  sensitivity	  test	  based	  on	  the	  matched	  sample	  using	  Wilcoxon's	  rank	  sign	  
test	  
	  
psens(Match,	  Gamma	  =	  2,	  GammaInc	  =	  0.1)	  

##	  	  
##	  	  Rosenbaum	  Sensitivity	  Test	  for	  Wilcoxon	  Signed	  Rank	  P-‐Value	  	  
##	  	  	  
##	  Unconfounded	  estimate	  ....	  	  0.2858	  	  
##	  	  
##	  	  Gamma	  Lower	  bound	  Upper	  bound	  
##	  	  	  	  1.0	  	  	  	  	  	  0.2858	  	  	  	  	  	  0.2858	  
##	  	  	  	  1.1	  	  	  	  	  	  0.1338	  	  	  	  	  	  0.4904	  
##	  	  	  	  1.2	  	  	  	  	  	  0.0541	  	  	  	  	  	  0.6809	  
##	  	  	  	  1.3	  	  	  	  	  	  0.0194	  	  	  	  	  	  0.8227	  
##	  	  	  	  1.4	  	  	  	  	  	  0.0063	  	  	  	  	  	  0.9113	  
##	  	  	  	  1.5	  	  	  	  	  	  0.0019	  	  	  	  	  	  0.9595	  
##	  	  	  	  1.6	  	  	  	  	  	  0.0005	  	  	  	  	  	  0.9828	  
##	  	  	  	  1.7	  	  	  	  	  	  0.0001	  	  	  	  	  	  0.9932	  
##	  	  	  	  1.8	  	  	  	  	  	  0.0000	  	  	  	  	  	  0.9975	  
##	  	  	  	  1.9	  	  	  	  	  	  0.0000	  	  	  	  	  	  0.9991	  
##	  	  	  	  2.0	  	  	  	  	  	  0.0000	  	  	  	  	  	  0.9997	  
##	  	  
##	  	  Note:	  Gamma	  is	  Odds	  of	  Differential	  Assignment	  To	  
##	  	  Treatment	  Due	  to	  Unobserved	  Factors	  	  
##	  	  

Figure	  17.	  Sensitivity	  analysis	  using	  Wilcoxon’s	  rank	  sign	  test
	  
In Figure 17, the value of Gamma is interpreted as 
the odds of treatment assignment hidden bias. A 
change in the odds lower/upper bounds from 
significant to non-significant (or vice-versa) 
indicates by how much the odds need to change 
before the statistical significance of the outcome 
shifts. For example, in Figure 17, the lower bound 
estimate changes from non-significant (0.0541) to 
significant (0.0194) when gamma is 1.3. That is, a 
change of 0.3 in the odds will produce a change in 
the significance value. Rosenbaum (2002) defines 
a study as sensitive if values of Gamma close to 1 
lead to changes in significance compared to those  

 
that could be obtained if the study is free of bias. 
Thus results will be more robust to hidden bias, if 
a very large change in the odds is needed before a 
change in statistical significance happens. 
 

Limitations	  
 
In spite of the benefits described above, propensity 
scores have important limitations. Endogeneity 
problems are not controlled. That is, researchers 
still need to be able to identify and measure many 
if not all the variables associated with treatment 
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assignment/selection. There is a possibility that 
one can use proxies to address some of these 
variables; for example, using age as a proxy for 
general state of health (Gagne, 2010). However, it 
is not clear to what extent proxies can alleviate this 
problem. Rosenbaum (2005) and Guo and Fraser 
(2015) suggest the use of sensitivity analyses to 
explore the extent to which the results can be 
trusted as identification of all associated variables 
is unlikely.  

Also important is the fact that there needs to 
be a strong overlap of the distributions of 
propensity scores between the two groups (the so-
called common support region). If the overlap is 
small, that there may not be enough participants 
in the control group to match all the participants 
in the treatment group, then propensity score 
matching will be no better than any standard form 
of matching. 

Given that lack of overlap can be most times 
be associated with a similar (or smaller) sample 
for the control group, it is recommended that the 
sample size for the control group be at least 3-4 
times larger than for the treatment group to assure 
matches in the common support region. A larger 
sample for the control group also increases the 
number of matches for every treatment 
participant.  
 

Randomized	  Control	  vs.	  Propensity	  
Scores	  
 
The question of whether propensity scores can 
remove selection bias, and thus represent a viable 
option for Randomized Control Trials is still 
unresolved. To date, there is no clear indication of 
whether propensity scores can remove the 
selection bias that jeopardizes quasi-experiments. 
Using a set of studies in the medical field intended 
to measure the effectiveness of on-pump versus 
off-pump coronary artery bypass grafting, Olmos 
& Govindasamy (2014) conducted a meta-analysis 
that showed no differences in the estimated 
treatment effect size between randomized control 
trials and studies using propensity score matching. 
This finding seems to support the claims that 
propensity score matching produces similar 
results to those from randomized control studies. 
This is an area where more research is clearly 
needed. 
 

Conclusion	  
 
Propensity scores can provide an alternative that 
can strengthen quasi-experiments and 
observational studies in their quest to demonstrate 
causality. In particular, they are intended to 
identify the probabilities associated with 
assignment to treatment conditions, and match 
participants based on those probabilities. This 
matching in particular helps directly with one of 
the four requirements associated with causal 
inference (the counterfactual), and indirectly with 
another (ruling out alternative explanations). 
However, the use of propensity scores requires a 
deep understanding and measurement of all the 
variables that can affect selection into groups.  
Furthermore, if any variable that can be critical for 
the selection into treatment is not included in the 
propensity scores, then the propensity scores will 
not be able to eliminate selection bias. Finally, a 
sensitivity analysis is always recommended as a 
way to determine how robust the results are.  
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