The YouTube-Born Terrorist

Lucas Regnér

Abstract


Personalization permeates the World Wide Web today and search engine-, social networking-, and social media websites—like Google, Facebook, and YouTube—use algorithms to tailor search results and content to web users’ interest and past behavior on the Web. Author and Internet activist Eli Pariser has raised concerns about this trend and coined the term “the filter bubble” to describe the information silos he argues web users may find themselves in when browsing the Web. If Pariser’s theory holds true—that personalization algorithms presents self-similar content to web users based on the users’ past web behavior—what type of online world will users that consume far-right or far-left radical content find themselves in?

In this research project, I develop a methodology that studies how personalization algorithms affect YouTube users’ experience of the website. I apply the methodology to the case of far-right and far-left radical web users, and I quantitatively study the videos they encounter when YouTube’s personalization algorithms govern their content discovery.

Borrowing theoretical and methodological frameworks from Internet studies, political socialization, social network analysis, and communications studies, I find that the users do experience significant personalization on YouTube, while it’s unclear to what extent personalization furthers radicalization processes.

Although the findings are somewhat inconclusive, the methodology provides an opportunity to systematically study a users web experience. A scaled-up version of the method could yield more decisive findings. However, considering the dynamic nature of the web, it is important that the results are considered in their temporal contexts.

 

To read and download the complete article you can sign up here for free:

http://journals.sfu.ca/jed/index.php/jex/user/register


Schlagworte


YouTube, Personalization

Volltext:

PDF

Literaturhinweise


Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., … Aly, M. (2008). Video suggestion and discovery for youtube: taking random walks through the view graph. In Proceedings of the 17th international conference on World Wide Web (pp. 95–904). Mountain View. Retrieved from http://dl.acm.org/citation.cfm?id=1367618

Berelson, B. (1952). Content analysis in communication research (Vol. 44, p. 220). New York, NY: Hafner Publishing Company. doi:10.1086/617924

Boyd, D. M., & Ellison, N. B. (2008). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13(1), 210–230. doi:10.1111/j.1083-6101.2007.00393.x

Bridges, A. J., Wosnitzer, R., Scharrer, E., Sun, C., & Liberman, R. (2010). Aggression and sexual behavior in best-selling pornography videos: a content analysis update. Violence against Women, 16(10), 1065–85. doi:10.1177/1077801210382866

Canetti-Nisim, D., Halperin, E., Sharvit, K., & Hobfoll, S. E. (2009). A New Stress-Based Model of Political Extremism: Personal Exposure to Terrorism, Psychological Distress, and Exclusionist Political Attitudes. The Journal of Conflict Resolution, 53(2), 363–389. doi:10.1177/0022002709333296

Cheng, X., Dale, C., & Liu, J. (2008). Statistics and Social Network of YouTube Videos. 2008 16th Interntional Workshop on Quality of Service, 229–238. doi:10.1109/IWQOS.2008.32

Davidson, J., Livingston, B., Sampath, D., Liebald, B., Liu, J., Nandy, P., Lambert, M. (2010). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems - RecSys ’10 (p. 293). New York, New York, USA: ACM Press. doi:10.1145/1864708.1864770

Greenberg, E. S. (1970). Political Socialization. Palo Alto: Atherton Press.

Hannak, A., Sapiezynski, P., Kakhki, A. M., Krishnamurthy, B., Lazer, D., & Mislove, A. (2013). Measuring personalization of web search. In 22nd international conference on World Wide Web (pp. 527–538). Retrieved from

http://dl.acm.org/citation.cfm?id=2488435

Kelly, J., Barash, V., Alexanyan, K., Etling, B., Faris, R., Gasser, U., & Palfrey, J. (2012). Mapping Russian Twitter. Berkman Center Research Publication (Vol. 7641). Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2028158

Knoke, D., & Yang, S. (2008). Social Network Analysis. Social Networks (2nd ed., Vol. 8, p. 133). Los Angeles, CA: Sage Publications. Retrieved from http://books.google.com/books?id=buiJi6HtGusC&pgis=1

Köhler, D. (2012). Internet and Radicalization: Connecting the Dots - the Role of the Internet in the Individual Radicalization Processes of Right-Wing Extremists (No. 01/12). ISRM - Institute for the Study of Radical Movements. Berlin.

Krippendorff, K. (1989). Content analysis: An introduction to its methodology (p. 7). Retrieved from http://repository.upenn.edu/asc papers/226

Kydd, A., & Walter, B. F. (2002). Sabotaging the Peace: The Politics of Extremist Violence. International Organization, 56(2), 263–296. doi:10.1162/002081802320005487

Majumder, A., & Shrivastava, N. (2013). Know your personalization: Learning topic level personalization in online services. In 22nd international conference on World Wide Web (pp. 873–884). Retrieved from http://dl.acm.org/citation.cfm?id=2488464

Messing, S., & Westwood, S. J. (2012). Selective Exposure in the Age of Social Media: Endorsements Trump Partisan Source Affiliation When Selecting News Online. Communication Research, 1–23. doi:10.1177/0093650212466406

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and Analysis of Online Social Networks. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 29–42). Retrieved from http://dl.acm.org/citation.cfm?id=1298311

Mobasher, B. (2007). Data mining for web personalization. In The Adaptive Web (pp. 90–135). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-72079-9_3

O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2012). An Analysis of Interactions Within and Between Extreme Right Communities in Social Media. arXiv:1206.7050v1, 1–15. Retrieved from http://arxiv.org/abs/1206.7050

O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2013a). The Extreme Right Filter Bubble. arXiv:1308.6149v1. Retrieved from http://arxiv.org/abs/1308.6149

O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2013b). Uncovering the Wider Structure of Extreme Right Communities Spanning Popular Online Networks. arXiv:1302.1726v2. Retrieved from http://arxiv.org/abs/1302.1726

Pariser, E. (2011). The Filter Bubble - What the Internet is hiding from you (1st ed.). New York: The Penguin Press.

Ravndal, J. A. (2013). Anders Behring Breivik’s use of the Internet and social media. JEX Journal for Deradicalization and Democratic Culture, 2, 172–185. Retrieved from http://www.doaj.org/doaj?func=fulltext&aId=1930764

Santos, R. L. T., Rocha, B. P. S., Rezende, C. G., & Loureiro, A. A. F. (2007). Characterizing the YouTube video-sharing community. Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil, Tech. Rep. Retrieved from http://security1.win.tue.nl/~bpontes/pdf/yt.pdf

Seierstad, Å. (2013). En Av Oss (p. 541). Stockholm: Albert Bonniers Förlag.

Smith, B. L. (1994). Terrorism in America: Pipe bombs and pipe dreams. SUNY Press.

Zhou, R., Khemmarat, S., & Gao, L. (2010). The impact of YouTube recommendation system on video views. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 404–410). New York, New York, USA: ACM Press. doi:10.1145/1879141.1879193




edition widerschein