A Hybrid Framework for Applying Semantic Integration Technologies to Improve Data Quality

Mahmoud Esmat Hamdy, Khaled Shaalan

Abstract


This study aims to develop a new hybrid framework of semantic integration for enterprise information system in order to improve data quality to resolve the problem from scattered data sources and rapid expansions of data. The proposed framework is based on a solid background that is inspired by previous studies. Significant and seminal research articles are reviewed based on selection criteria. A critical review is conducted in order to determine a set of qualified semantic technologies that can be used to construct a hybrid semantic integration framework. The proposed framework consists of six layers and one component as follows: source layer, translation layer, XML layer, RDF layer, inference layer, application layer, and ontology component. The proposed framework faces two challenges and one conflict; these were fixed while composing the framework. The proposed framework was examined to improve data quality for four dimensions of data quality dimensions.

Full Text:

PDF