Arabic text summarization approaches: A comparison study
Abstract
Full Text:
PDFReferences
Abu Nada, A. M., Alajrami, E., Al-Saqqa, A. A., & Abu-Naser, S. S. (2020). Arabic Text Summarization Using AraBERT Model Using Extractive Text Summarization Approach.
Al-Abdallah, R. Z., & Al-Taani, A. T. (2017). Arabic single-document text summarization using particle swarm optimization algorithm. Procedia Computer Science, 117, 30-37.
Al-Abdallah, R. Z., & Al-Taani, A. T. (2019, February). Arabic text summarization using firefly algorithm. In 2019 Amity International Conference on Artificial Intelligence (AICAI) (pp. 61-65). IEEE.
Alami, N., Meknassi, M., & Rais, N. (2015). Automatic texts summarization: Current state of the art. Journal of Asian Scientific Research, 5(1), 1-15.
Algaphari, G., Ba-Alwi, F. M., & Moharram, A. (2013). Text summarization using centrality concept. International Journal of Computer Applications, 79(1).
AlGhanem, H., Shanaa, M., Salloum, S., & Shaalan, K. (2020). The Role of KM in Enhancing AI Algorithms and Systems. Advances in Science, Technology and Engineering Systems Journal, 5(4), 388-396.
Alguliev, R., & Aliguliyev, R. (2009). Evolutionary algorithm for extractive text summarization. Intelligent Information Management, 1(02), 128.
AL-Khawaldeh, F. T. (2019). A study of the effect of resolving negation and sentiment analysis in recognizing text entailment for Arabic. arXiv preprint arXiv:1907.03871.
AL-Khawaldeh, F. T. (2019). Answer extraction for why Arabic questions answering systems: EWAQ. arXiv preprint arXiv:1907.04149.
AL-Khawaldeh, F. T., & Samawi, V. W. (2015). Lexical cohesion and entailment based segmentation for arabic text summarization (lceas). World of Computer Science & Information Technology Journal, 5(3).
Al-Radaideh, Q., & Afif, M. (2009). Arabic text summarization using aggregate similarity. In International Arab conference on information technology (ACIT2009), Yemen.
Al-Taani, A. T., & Al-Omour, M. M. (2014). An extractive graph-based Arabic text summarization approach. In The International Arab Conference on Information Technology.
Al-Zahrani, A. M., Mathkour, H., & Abdalla, H. I. (2015). PSO-Based Feature Selection for Arabic Text Summarization. J. UCS, 21(11), 1454-1469.
Ashworth, W. (1973). Abstracting as a fine art.
Awajan, A. (2007). Arabic text preprocessing for the natural language processing applications. Arab Gulf Journal of Scientific Research, 25(4), 179-189.
Azmi, A., & AlShenaifi, N. (2014). Handling “why” questions in Arabic. In The 5th International Conference on Arabic Language Processing (CITALA’14).
Bataineh, B. M., & Bataineh, E. A. (2009, July). An efficient recursive transition network parser for Arabic language. In Proceedings of the World Congress on Engineering (Vol. 2, pp. 1-3).
Baxendale, P. B. (1958). Machine-made index for technical literature—an experiment. IBM Journal of research and development, 2(4), 354-361.
Berger, A., & Mittal, V. O. (2000, October). Query-relevant summarization using FAQs. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (pp. 294-301).
Brandow, R., Mitze, K., & Rau, L. F. (1995). Automatic condensation of electronic publications by sentence selection. Information Processing & Management, 31(5), 675-685.
Chang, C. H., Kayed, M., Girgis, M. R., & Shaalan, K. F. (2006). A survey of web information extraction systems. IEEE transactions on knowledge and data engineering, 18(10), 1411-1428.
DeJong, G. (1979). Prediction and substantiation: A new approach to natural language processing. Cognitive Science, 3(3), 251-273.
DeJong, G. (1982, August). Automatic Schema Acquisition in a Natural Language Environment. In AAAI (pp. 410-413).
Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM (JACM), 16(2), 264-285.
Elbarougy, R., Behery, G., & El Khatib, A. (2020). Extractive Arabic Text Summarization Using Modified PageRank Algorithm. Egyptian Informatics Journal, 21(2), 73-81.
Elbarougy, R., Behery, G., & KHATIB, A. E. (2020). Graph-Based Extractive Arabic Text Summarization Using Multiple Morphological Analyzers. Journal of Information Science & Engineering, 36(2).
Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of artificial intelligence research, 22, 457-479.
Fejer, H. N., & Omar, N. (2015). Automatic multi-document Arabic text summarization using clustering and keyphrase extraction. Journal of Artificial Intelligence, 8(1), 1.
Gholamrezazadeh, S., Salehi, M. A., & Gholamzadeh, B. (2009, December). A comprehensive survey on text summarization systems. In 2009 2nd International Conference on Computer Science and its Applications (pp. 1-6). IEEE.
Haboush, A., Al-Zoubi, M., Momani, A., & Tarazi, M. (2012). Arabic text summarization model using clustering techniques. World of Computer Science and Information Technology Journal (WCSIT) ISSN, 2221-0741.
Imam, I., Nounou, N., Hamouda, A., & Khalek, H. A. A. (2013). An ontology-based summarization system for arabic documents (ossad). International Journal of Computer Applications, 74(17), 38-43.
Jaradat, Y. A., & Al-Taani, A. T. (2016, April). Hybrid-based Arabic single-document text summarization approach using genatic algorithm. In 2016 7th International Conference on Information and Communication Systems (ICICS) (pp. 85-91). IEEE.
Jing, H., Barzilay, R., McKeown, K., & Elhadad, M. (1998, March). Summarization evaluation methods: Experiments and analysis. In AAAI symposium on intelligent summarization (pp. 51-59).
Jusoh, S. (2018). A STUDY ON NLP APPLICATIONS AND AMBIGUITY PROBLEMS. Journal of Theoretical & Applied Information Technology, 96(6).
Kanaan, G., Al-shalabi, R., & Sawalha, M. (2003). Full automatic Arabic text tagging system. In proceedings of the International Conference on Information Technology and Natural Sciences (pp. 258-267).
Kupiec, J., Pedersen, J., & Chen, F. (1995, July). A trainable document summarizer. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 68-73).
Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74-81).
Lloret, E. (2008). Text summarization: an overview. Paper supported by the Spanish Government under the project TEXT-MESS (TIN2006-15265-C06-01).
Lokhande, M. M. P., Gawande, M. N., Koprade, M. S., & Bewoor, M. M. TEXT SUMMARIZATION USING HIERARCHICAL CLUSTERING ALGORITHM AND EXPECTATION MAXIMIZATION CLUSTERING ALGORITHM.
Luhn, H. P. (1958). A business intelligence system. IBM Journal of research and development, 2(4), 314-319.
McKeown, K., & Radev, D. R. (1995, July). Generating summaries of multiple news articles. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 74-82).
Meselhi, M. A., Bakr, H. M. A., Ziedan, I., & Shaalan, K. (2014, December). Hybrid named entity recognition-application to Arabic language. In 2014 9th International Conference on Computer Engineering & Systems (ICCES) (pp. 80-85). IEEE.
Mhamdi, C., Al-Emran, M., & Salloum, S. A. (2018). Text mining and analytics: A case study from news channels posts on Facebook. In Intelligent Natural Language Processing: Trends and Applications (pp. 399-415). Springer, Cham.
Mohamed, S. S., & Hariharan, S. (2018). A performance study of text summarization model using heterogeneous data sources. International Journal of Pure and Applied Mathematics, 119(16), 2001-2007.
Nenkova, A. (2005). Automatic text summarization of newswire: Lessons learned from the document understanding conference.
Nenkova, A., & Passonneau, R. J. (2004). Evaluating content selection in summarization: The pyramid method. In Proceedings of the human language technology conference of the north american chapter of the association for computational linguistics: Hlt-naacl 2004 (pp. 145-152).
PadmaPriya, G., & Duraiswamy, K. (2012). An approach for concept-based automatic multi-document summarization using machine learning. Int. J. Appl. Inf. Syst, 3, 49-55.
Paice, A. D. B., & Moore, J. B. (1990). On the Youla-Kucera parametrization for nonlinear systems. Systems & Control Letters, 14(2), 121-129.
Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
Radev, D. R., Hovy, E., & McKeown, K. (2002). Introduction to the special issue on summarization. Computational linguistics, 28(4), 399-408.
Radev, D. R., Jing, H., Styś, M., & Tam, D. (2004). Centroid-based summarization of multiple documents. Information Processing & Management, 40(6), 919-938.
Saleh, D. I. (2017). feature-based opinion summarization for arabic reviews. feature-based opinion summarization for arabic reviews.
Salton, G., Singhal, A., Mitra, M., & Buckley, C. (1997). Automatic text structuring and summarization. Information processing & management, 33(2), 193-207.
Waheeb, S. A., & Husni, H. (2014). Multi-Document Arabic Summarization Using Text Clustering to Reduce Redundancy. International Journal of Advances in Science and Technology (IJAST), 2(1), 194-199.
Waheeb, S. A., Khan, N. A., Chen, B., & Shang, X. (2020). Multidocument Arabic Text Summarization Based on Clustering and Word2Vec to Reduce Redundancy. Information, 11(2), 59.