Word Embeddings Based on Spectral Analysis: A Novel Approach
Abstract
Full Text:
PDFReferences
Aljaloud, H., & Dahab, & M. Kamal, M. (2016). Stemmer impact on Quranic mobile information retrieval performance Stemmer impact on quranic mobile information retrieval performance. Int. J. Adv. Comput. Sci. Appl.(IJACSA), 7(12), 135-139.
Al-Mofareji, H., & Kamel, M. ,& Dahab, MY. (2017). WeDoCWT: A new method for web document clustering using discrete wavelet transforms Wedocwt: A new method for web document clustering using discrete wavelet transforms. Journal of Information & Knowledge Management, 16(1), 1-19.
Alnofaie, S., & Dahab, M., & Kamal, M. (2016). A novel information retrieval approach using query expansion and spectral-based A novel information retrieval approach using query expansion and spectral-based. information retrieval,7(9),364-373.
Chen, C., & Gao, S., & Xing, Z. (2016). Mining analogical libraries in q&a discussions-incorporating relational and categorical knowledge into word embedding. 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), (1), 338-348.
Costa, A., & Melucci, M. (2010). An information retrieval model based on discrete fourier transform. Information Retrieval Facility Conference Information retrieval facility conference, 84-99.
Cummins, R., & O'Riordan, C. (2009). Learning in a pairwise term-term proximity framework for information retrieval. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, 251-258.
Dahab, MY., & Alnofaie, S., & Kamel, M. (2018a). A tutorial on information retrieval using query expansion A tutorial on information retrieval using query expansion. Intelligent Natural Language Processing: Trends and Applications,740, 761-776. Springer.
Dahab, MY., & Kamel, M., & Alnofaie, S. (2016). Further investigations for documents information retrieval based on DWT. International Conference on Advanced Intelligent Systems and Informatics,533, 3-11. Springer.
Dahab, MY., & Kamel, M., & Alnofaie, S. (2018b). An Empirical Study of Documents Information Retrieval Using DWT. Intelligent Natural Language Processing: Trends and Applications Intelligent natural language processing: Trends and applications, 740, 251-264. Springer.
Dalcin, LD., & Paz, RR., & Kler, PA., & Cosimo, A. (2011). Parallel distributed computing using Python Parallel distributed computing using python. Advances in Water Resources, 349,1124-1139.
Daubechies, I. (1996). Where do wavelets come from? A personal point of view. Proceedings of the IEEE, 844, 510-513.
Diwali, A., & Kamel, M., & Dahab, M. (2015). Arabic text-based chat topic classification using discrete wavelet transform. International Journal of Computer Science Issues (IJCSI),12(2), 86-94.
Drozd, A., & Gladkova, A., & Matsuoka, S. (2016). Word Embeddings, Analogies, and Machine Learning: Beyond king – man + woman = queen. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical, 3519-3530. Osaka, JapanThe COLING 2016 Organizing Committee.
Lee, G., & Wasilewski, F., & Gommers, R., & Wohlfahrt, K., & O'Leary, A., & Nahrstaedt, H. (2006). PyWavelets: Wavelet Transforms in Python. Pywavelets: Wavelet transforms in python.
Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings Dependency-based word embeddings. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (volume 2: Short papers) , 302-308.
Mikolov, T., & Chen, K., & Corrado, & G. Dean, J. (2013a). Efficient estimation of word representations in vector space Ecient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov, T., & Le, QV., & Sutskever, I. (2013b). Exploiting similarities among languages for machine translation Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.
Niles, I., & Pease, A. (2001). Towards a standard upper ontology Towards a standard upper ontology. Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001, (2-9).
Park, LA., & Palaniswami, M. & Ramamohanarao, K. (2005a). A novel document ranking method using the discrete cosine transform A novel document ranking method using the discrete cosine transform. IEEE transactions on pattern analysis and machine intelligence, 27(1), 130-135.
Park, LA., & Ramamohanarao, K., & Palaniswami, M. (2005b). A novel document retrieval method using the discrete wavelet transform A novel document retrieval method using the discrete wavelet transform. ACM Transactions on Information Systems (TOIS), 23(3), 267-298.
Porter, M. (2008). The Porter stemming algorithm, (2005). Retrieved 12 October 2020 from URL http://www.tartarus.org/martin/PorterStemmer/index. html.
Reiter, N. (2007). Towards a Linking of FrameNet and SUMO. Doctoral dissertation, Master’s thesis, Saarland University.
Rong, X. (2014). word2vec parameter learning explained word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
Senel, LK., & Utlu, I., & Yucesoy, V., & Koc, A. & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(10), 1769-1779.
Yao, Y., Li, X., Liu, X., Liu, P., Liang, Z., Zhang, J. Mai, K. 2017. Sensing spatial distribution of urban land use by integrating points-of-interest and GoogleWord2Vec model. International Journal of Geographical Information Science, 31(4), 825-848.