An Improvement in Branch and Bound Algorithm for Feature Selection
Abstract
Full Text:
PDFReferences
Adeli, H. (1999). Machine Learning‐Neural Networks, Genetic Algorithms, and Fuzzy Systems. Kybernetes.
Alharbi, A. N., & Dahab, M. (2018). Comparative Study on Fast Feature Selection. International Journal of Information Technology and Language Studies, 2(2).
Alwadei, M. D. S., Dahab, M., & Kamel, M. (2017). A Feature Selection Model based on High-Performance Computing (HPC) Techniques. International Journal of Computer Applications, 180(7), 11-16.
Alwadei, S., Dahab, M., & Kamel, M. (2019). High performance GA-LDA feature selection model for Brain-Computer Interface data. International Journal of Information Technology, 3(1), 1-12.
Chen, X. W. (2003). An improved branch and bound algorithm for feature selection. Pattern Recognition Letters, 24(12), 1925-1933.
Cunningham, P. (2008). Dimension reduction Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval.
Derksen, S., & Keselman, H. J. (1992). Backward, forward, and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265-282.
Erich Strohmaier. Erich Strohmaier, Jack Dongarra, H. S. M. M. top 500. https://www.top500.org/site/50585. Accessed: 2019-11-4.
Friedman, N. (1997, July). Learning belief networks in the presence of missing values and hidden variables. In ICML (Vol. 97, No. July, pp. 125-133).
Fuj. (2015). Fujitsu Supports King Abdul-Aziz University Research Capabilities with New Supercomputing System. King Abdul-Aziz University. Fujitsu Limited.
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.). (2008). Feature extraction: foundations and applications (Vol. 207). Springer.
Hubby, J. L., & Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 54(2), 577.
Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. IEEE transactions on pattern analysis and machine intelligence, 19(2), 153-158.
Kamel, M. I., & Hadi, A. A. (2014). Improving P300 based speller by feature selection. Journal of Medical Imaging and Health Informatics, 4(4), 469-487.
Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest neighbor classifier for intrusion detection. Computers & Security, 21(5), 439-448.
Liu, H., & Motoda, H. (Eds.). (2007). Computational methods of feature selection. CRC Press.
Malhi, A., & Gao, R. X. (2004). PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6), 1517-1525.
Marill, T., & Green, D. (1963). On the effectiveness of receptors in recognition systems. IEEE transactions on Information Theory, 9(1), 11-17.
McKinney, W. (2008). python data analysis library. http://pandas.sourceforge.net. Accessed: 2019-10-4.
Nakariyakul, S., & Casasent, D. P. (2007). Adaptive branch and bound algorithm for selecting optimal features. Pattern Recognition Letters, 28(12), 1415-1427.
Narendra, P. M., & Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, (9), 917-922.
Nilsson, R. (2007). Statistical feature selection: with applications in life science (Doctoral dissertation, Institutionen för fysik, Kemi och biologi).
Pudil, P., Ferri, F. J., Novovicova, J., & Kittler, J. (1994, October). Floating search methods for feature selection with nonmonotonic criterion functions. In Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5) (Vol. 2, pp. 279-283). IEEE.
Schneidman, E., Berry II, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007.
Sejnowski, T. Sonar dataset from UCI. https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks). Accessed: 2019-11-4.
Sigillito, V. (1989). Ionosphere dataset from UCI. https://archive.ics.uci.edu/ml/datasets/Ionosphere. Accessed: 2019-10-15.
Somol, P., Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature selection. IEEE Transactions on pattern analysis and machine intelligence, 26(7), 900-912.
Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877.
Stein, J. J., & Blackman, S. S. (1975). Generalized correlation of multi-target track data. IEEE Transactions on Aerospace and Electronic Systems, (6), 1207-1217.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Transactions on Computers, 100(9), 1100-1103.
William Wolberg. (1995). William Wolberg, Nick Street, O. M. (1995). Wisconsin diagnostic breast cancer (wdbc) dataset from UCI. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). Accessed: 2019-10-4.
Yu, B., & Yuan, B. (1993). A more efficient branch and bound algorithm for feature selection. Pattern Recognition, 26(6), 883-889.