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This paper presents a multi-agent optimal path planning and obstacle avoidance using a water strider algorithm (WSA) based 

on Sequential Convex Programming (SCP). The outcome is to find optimal collision-free trajectories. The best collision-free 

trajectories with minimum control effect is needed in the multi-agent route planning technique, which makes use of a 

centralized WSA algorithm that can guide drones over congested environments while avoiding both static and moving 

objects. By applying convex constraints on the drones' such as acceleration, velocity input and jerk, the feasibility of the 

trajectory is ensured. The optimal trajectory path is iteratively created using SCP and followed by WSA. The outcome 

guarantees the correctness of the linearization. Since the optimization is centralized, it is possible to find a feasible collision-

free path, and the results are validated pre-determined formation. It is shown that the WSA algorithm scales with O3(n), where 

n is the number of drones. 
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1. INTRODUCTION 
 

A drone is common in industries like planting agriculture, moving materials, military reconnaissance and surveillance (Yahia 

et al., 2022; Fan et al., 2021; Tang et al., 2021). To prevent confrontations with manned aircraft, a lot of nations have imposed 

altitude restrictions on drone operations. These restrictions may change, but normally, drones are only allowed to fly up to a 

certain height, such as 120 meters (400 feet) above the earth. The main challenge in Path planning, however, is a significant 

static and dynamic obstacle for drone technology (Tan et al., 2023). It should be done to make sure the lowest energy or time 

limitations are met, locate the best flight path to the board, and avoid obstacles in challenging conditions (Tan et al., 2022; 

Jin et al., 2022; Manh Duong et al., 2021) The vehicle is able to make the decision on path coverage without the involvement 

of a remote operator; the level of autonomy might vary with onboard sensors. (Li et al., 2016), Even though there are several 

ways to sense the surroundings, major sensing and positioning technologies like GPS and radar cannot be used to precisely 

position or sense Unmanned Aerial Vehicles (UAVs) in confined places like caverns or interiors. Because there are strong 

real-time requirements for the target recognition task in UAV environment sensing. A variety of onboard sensors are featured 

in drones for the purpose of making autonomous decision-making in situational awareness during operation. (Tang et al., 

2020).  
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1.1. Literature Review 

 

Intelligent autonomous collision avoidance techniques can dramatically increase the safety of flights and prevent fatalities. 

The computational complexity and sparsity is quite less in handling traffic. (Poudel et al., 2021, Wei Wang et al., 2021). To 

give a quicker and smoother path, this method has been enhanced with an extra control force (Guo et al., 2021; Meng, et al., 

2023). It is also used with the Hamiltonian function (Bai X et al., 2021) or the ebbing horizon optimization (Chen et al., 

2015) to generate paths without going against the dynamic collision in connectivity requirements. The potential field method 

does not become an effective solution. When dealing with in-field local minima, its limits are also acknowledged (Kim et al., 

2013) 

To create a solid and economical computational issue that could be observed using in-built computer, the optimal control 

problem was directly approached. A version of the Lagrange multiplier method that allows the incorporation of inequality 

constraints based on Karush-Kuhn-Tucker (KKT) conditions Mixed integer quadratic programming, RRT and A* algorithms. 

(Yang et al., 2020). A simple non-linear programming problem (NLP) allows us to accelerate computation and implement it 

in an onboard computer. It is assumed that the drones are able to track the trajectory by setting feasibility constraints on the 

abilities of the drones. (Zhou et al., 2021; Luo et al., 2019; Wei et al., 2021; Ajeil et al., 2021) Using these collision-free 

optimal trajectories, groups of drones can move together in formation to a predetermined final location, avoiding both other 

drones and any obstacle encountered. (Rajee et al., 2023) It must be noted that if there is no perfect a priori knowledge of the 

environment, this SCP algorithm can be easily formulated as a Model Predictive Controller (MPC) program, solving for n-

steps while updating the knowledge of the world. It works well when it is combined with the water strider algorithm to handle 

the non-convex constraints. A route planning method based on the dual decomposition communication chain is proposed in 

(Shiri.et al., 2020; Meng et al., 2022) to improve the path selection, pheromone updating, and rollback approach of the basic 

WSA algorithm. The following are the major contributions. 

(1) Representing the navigation of single-agent around static obstacles in non-convex domains 

(2) Demonstrating the optimal path planning constraints with SCP for sequential path planning for multi-agent drone 

systems 

(3) Demonstrating WSA optimization for a final time scaling method that avoids having multiple times with different 

discretization parameter settings and  

(4) Validating WSA amended with SCP is done with a real-time implementable environment with a MATLAB 

simulation demonstration on a multi-agent drones. 

A brand-new technique for optimizing drone operation in outdoor building environment is proposed. 

 

2. PROBLEM FORMULATION 
 

2.1. Dynamics of Trajectory 

 

A liberalized dynamics model et al., 2022 is used to simulate the drone's trajectory dynamics with 𝑃𝑖[𝑘] ∈ ℝ3 representing 

the drone's position at time k and h the discretization time step. The drone's velocity and acceleration are 𝑉𝑖[𝑘] and 𝑎𝑖[𝑘], 
respectively. 

 

𝑉𝑖[𝑘 + 1] =  𝑉𝑖[𝑘] +  ℎ𝑎𝑖[𝑘] (1) 

 

𝑃𝑖[𝑘 + 1] = 𝑃𝑖[𝑘] + ℎ𝑉𝑖[𝑘] +
ℎ2

2
𝑎𝑖[𝑘] (2) 

 

The definition of jerk is the pace at which acceleration changes. One can guarantee consistency in the drone's attitude 

by using a bounding jerk. 

 

2.2. Objective Function 

 

The main objective is to find the minimized path of a system consisting of N number of drones in different dimensions and 

coordinates (x,y,z)  

 

𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑤𝑖𝑗𝑎𝑖
𝑇

𝐾

𝑘=1

[𝑘]𝑎𝑗
𝑇[𝑘]𝑎𝑖[𝑘]

𝑁

𝑗=1

𝑁

𝑖=1

 (3) 
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𝑓𝑜 = ∑ ∑‖𝑎𝑖[𝑘]‖2
2

𝐾

𝑘=1

𝑁

𝑖=1

 (4) 

 

The objective function f0 is improved to comprise gravitational effects, which involves the thrust vector of the drone to 

account for gravitational effects. The weights wij are modified with the water strider algorithm, and it is possible to achieve 

minimization over any combination of linear functions for acceleration. Goals for minimization could be control effort or 

path length. In this study, the control effort is kept to a minimum, which is the same as reducing thrust over the trajectory. 

we fix 𝑤𝑖𝑗 = 1 when i = j and 𝑤𝑖𝑗 = 0 else, which have a tendency to persuade flat trajectories with low curves. 

It is obtained by first computing the 2D trajectory in steps and then adding the third dimension that is needed, as was 

previously explained. After obtaining the 3D trajectory, we assess it using each objective criterion independently. It provides 

us with a point in an 3D objective space with ℝ3. 

 

2.3. Path Planning Constraints 

 

In order to confine the drones during simulation and prevent them from getting stuck in a corner, corner, wall, and floor 

constraints are used. The collision avoidance requirement is analogous to the corner avoidance restrictions, which are 

enforced using an exponential loss function (Equation 5) linearized around the preceding WSA solution.  

 

𝑒(𝐶(𝑃𝑖
𝑥[𝑘]− 𝑥𝑐𝑜𝑟)) + 𝑒(𝐶(𝑃𝑖

𝑦
[𝑘]− 𝑦𝑐𝑜𝑟)) ≥ 2 ∀𝑖, 𝑘 (5) 

 

The position of the drone is 

 

𝑃𝑚𝑖𝑛,𝑙 ≤ 𝑃𝑖,𝑙[𝑘]  ≤ 𝑃𝑚𝑎𝑥,𝑙   𝑙 ∈ {𝑥, 𝑦, 𝑧} ∀𝑖, 𝑘 (6) 

 

The Maximum acceleration constraints are  

 

𝑎𝑚𝑖𝑛,𝑙 ≤ 𝑎𝑖,𝑙[𝑘]  ≤ 𝑎𝑚𝑎𝑥,𝑙   𝑙 ∈ {𝑥, 𝑦, 𝑧} ∀𝑖, 𝑘 (7) 

 

The actuator saturation limits are enforced to ensure continuous drone trajectories using equation (7). 

A maximum jerk magnitude,  

 

𝑗𝑚𝑖𝑛,𝑙 ≤ 𝑗𝑖,𝑙[𝑘]  ≤ 𝑗𝑚𝑎𝑥,𝑙   𝑙 ∈ {𝑥, 𝑦, 𝑧} ∀𝑖, 𝑘 (8) 

 

The jerk magnitude is enforced to ensure continuous drone trajectories.  

 

2.4. Collision Avoidance 

 

Dynamic and static obstacle avoidance constraints are applied to guarantee that the trajectory is not impeded at any point 

during the simulation, both the drone must always maintain an offset distance between them and the static obstacles. Equation 

9's non-convex constraint describes this condition. 

 

‖𝑃𝑖[𝑘] − 𝑃𝑗[𝑘]‖
2

 ≥ 𝑑𝑖𝑗  ∀𝑖,𝑗  i ≠ j ∀𝑖, 𝑗   (9) 

 

‖𝑃𝑖
𝑞[𝑘] − 𝑃𝑗

𝑞[𝑘]‖
2

+  𝜂𝑇[(𝑃𝑖[𝑘] − 𝑃𝑗[𝑘]) −  𝑃𝑖
𝑞[𝑘] − 𝑃𝑗

𝑞[𝑘]]  ≥ 𝑑𝑖𝑗  ∀𝑖,𝑗  i ≠ j ∀𝑖, 𝑗   (10) 

 

where 

 

𝜂 =
𝑃𝑖

𝑞[𝑘] − 𝑃𝑗
𝑞[𝑘]

‖𝑃𝑖
𝑞[𝑘] − 𝑃𝑗

𝑞[𝑘]‖
2

 (11) 

 

The WSA algorithm finds an initial solution without the constraint in order to linearize it and then enforces the linearized 

constraint for all subsequent iterations. Given a small time increment and a small trust region, this linear approximation of 

the non-convex constraint is a reliable approximation. 



Madhusudhanan et al. Unmanned Aerial Vehicles Path Planning Using Water Strider Algorithm 

 

432 

2.5. Energy consumption  

 

The energy consumption is important in ensuring with minimal energy. The main factors contributing this consumption are 

path length and turning angle. The energy consumption is represented as 

 

𝐸(𝑥) =
∑ ∑ ∑ 𝑥𝑖𝑗𝑑𝑖𝑜𝜃𝑖𝑗

𝑂
𝑜=1

𝐽
𝑗=1

𝐼
𝑖=1

∑ ∑ 𝑑𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1

 (12) 

 

I and J are path points, whereas 𝑥𝑖𝑗  is the drone variable from points i and j. The distance from xi to obstacle xo is 

denoted as dio. The angle variable notation is θij from points i and j. 

 

3. WSA OPTIMIZATION METHODOLOGY 
 

Water strider optimization is adapted to minimize the environmental impact of UAV systems. The optimization strategy is 

based upon the behavior of the water strider and its fitness function to reduce the cost of the system. The WSA algorithm 

draws its inspiration from how a water strider walks on the surface of water (Rajee et al., 2023; Shiri et al., 2022). In the 

Initialization, water striders generate population when looking for food, mating and establishing their territory. The fitness 

function is evaluated, and it is based on the drone’s obstacle avoidance and other objective parameters. A given solution's 

ability to satisfy non-convex requirements, such as minimizing the distance to obstacles or maximizing clearance margins, 

should be measured by the objective function. Update the locations of the potential solutions in the search space to mimic the 

actions of water striders. Usually, this stage consists of two parts: 

Exploitation: Based on the fitness values of the solutions, move them to promising areas of the search space. As we 

move closer to ideal solutions, this step promotes investigation of the problem space. 

Exploration: To discover new regions of the search space, apply random perturbations to the drone's optimal solutions. 

This action promotes global exploration and prevents becoming locked in local optima. The optimization process should be 

directed towards workable solutions that satisfy the non-convex constraints using the constraint management method. Repeat 

steps 2-4 repeatedly until a termination requirement is satisfied. The Water Strider approach can successfully explore the 

search space to identify solutions that optimize the non-convex constraints in drone obstacle avoidance by iteratively updating 

the candidate solutions based on their fitness and utilizing constraint handling mechanisms. As a result, the WSA displays 

good positive feedback and strong robustness when planning a path. 

 

 
 

Figure 1. Flow chart of proposed WSA optimization 
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The following are the stages the WSA algorithm takes to design the drone's path: A decision tree-based implementation 

flow chart is shown in Figure 1 as the scheme.  

 

Table 1. Stages in the WSA Algorithm 

 

Water Strider Algorithm 

Initialize : Set of drones 𝑖 = {1,2,3 … . 𝑁} 

Set of obstacles 𝑆 = {1,2,3 … … . 𝑂} 

Set the weight coefficient 𝑤𝑖𝑗
𝑁  

Set the power values 

Ensure : The initial position k, maximum velocity, maximum jerk magnitude 

Compute : 

 

Maintain Near-Far drone distance 

Sort transmission powers in ascending order. 

Check if : Collision free trajectory path 

‖𝑃𝑖[𝑘] − 𝑃𝑗[𝑘]‖
2

 ≥ 𝑑𝑖𝑗  

Choose : weight coefficient 𝑤𝑖𝑗
𝑁 ∀𝑈𝑖 

Set  Minimum thrust 

  End if 

 

Step 1: Set the settings, build the environment model, and then decide where to start and where to target. 

Step 2 Assign fitness values to each trajectory based on an objective function that captures the optimization goals, 

such as minimizing distance, maximizing safety, and minimizing energy consumption. 

Step 3: Determine the separation between drones in the matrix of path nodes. 

Step 4: Determine the promising regions based on the fitness values and repeated iterations. The best water strider 

should be chosen as the next set of solutions after calculating the fitness values of all the striders in step 4. 

Step 5: Track and store the best trajectory path so far as the optimal solution in accordance with Equations (13) and 

(14) 

Step 6: Check to see if the termination condition has been met. Output the results if satisfied or move on to step 2 

instead. 

 

First, the box's side length (b), building pillar count (npillars), and building pillar radius (rpillar) must be determined. 

The user also specifies the simulation time (T), the avoidance radius for static and dynamic obstacles, and the number of 

obstacle sites (O). T and O establish the simulation's time step. While large T results in a highly high-dimensional optimization 

issue that causes lengthy calculations, small values of T are likely to result in a breach of the physical restrictions. The building 

pillar locations within the box can be produced randomly or using a deterministic grid. The initial and end states of the drones 

are selected randomly when the environment is generated. However, the user can predefine them to allow drones to fly in 

formation. Before the simulation begins, the initial conditions are checked to see if they satisfy all restrictions. All of the 

drones' initial trajectories are straight lines between the drone's start and finish points, with the thrust set to half the maximum 

input value. The main advantage of WSA is that it is relatively easy to implement and does not require complex mathematical 

formulations or extensive parameter tuning. This simplicity makes it accessible to users with varying levels of expertise in 

optimization and computational techniques. 

Before following the intended trajectory, the drone first gathers samples from the area to check for obstructions. If any 

are found, it makes a note of its actual position for a predetermined period of time. If any obstacle is discovered, a polynomial 

regression is performed to fit the sensor readings to predict the upcoming position. In addition, a security distance is 

established based on the object size. The optimization algorithm is given the location of this new obstacle, which causes it to 

recalculate the new trajectory profile taking into account its location and utilizing the scheduled trajectory as a starting point 

for the iterative process. The operation is continued until the drone reaches the last waypoint on the trajectory. The initial 

conditions are verified to satisfy all constraints before the simulation is started. All initial paths of the drone are straight lines 

between the starting and end points of the drone, with the thrust set to half the maximum input value. 

In the case study, the drone follows a path that is indicated by waypoints. The drone is equipped with sensors that enable 

the detection of things that were not included in the initial 3D representation of the space and illustration of an Optimal Route.  
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4. RESULTS AND DISCUSSION 
 

In 14 various scenarios, the WSA algorithm's viability is examined, and the simulation results of the suggested model are 

presented and contrasted with those from earlier research.  

 

  
 

Figure 2. Urban Topography in 3D with optimal path and 

coverage plan 

Figure 3. 3D urban topographical environment 

 

The topographic map of an urban area is simulated, and it is shown in Figures 2 and 3. 

The top of the buildings is represented by the orange shade portion, while the basins are represented by the blue 

depression portion. Starting and ending coordinates can range from 1 kilometer to 22 km. 

1) Computational Effort: In Figure 8, the average run time of the WSA (averaged over 10 runs) is displayed against 

the number of drones. The WSA algorithms scale with n the number of drones in O(n3) units. 

2) Random Cluttered Environment: The algorithm can choose the best paths for several drones in a crowded, random 

environment that is confined to a single room, avoiding obstacles like corners and other drones. In an isometric 

view, Figures 2 and 3 depict five drones dodging 24 pillars. The reduced control effort, equal to 46.988 m/s2, is 

significantly less than the control effort required to maneuver 15 drones without pillars. 

3) Deterministic Environment: In addition to a chaotic environment that is congested, the algorithm is also capable 

of locating the best paths in deterministic environments, such as grids of pillars. The optimal path was planned 

using the different known algorithm methods using parameter optimization. The response variable results of mean 

fitness, CPU time and best solution are shown in Table 2.  

 

Table 2. Comparative result Analysis 

 

Algorithm Mean Fitness Mean CPU Time Best Solution 

A-Star 1.702 838 ms 1/14 

GA 0.9611 35634 ms 13/14 

ACO 1.72 1400 ms 13/14 

Proposed WSA 1.6 580 ms 14/14 

 

The path length of the on-board flying in the urban environment was set to 100 km after optimizing the essential 

parameters of the enhanced WSA. Running time was 3.56 s, whereas others running time varied from 5.54 s to 7 s. 

The minimum distance between the lined path and obstacle (d) is set as 0.2 meters and is being used by the drones to 

avoid one another. Any environment in real life may be discretized into a collection of pillars, and WSA can typically identify 

practicable, ideal collision-free trajectories. 

It should be noted that the WSA algorithm found it difficult to discover a workable solution as the forms got more 

complicated. When the starting locations were set up in a half circle, and the drones had to discover a route out of the circle, 

it was unable to come up with any workable solutions. It is trivial to extend the method to include the formation flight of 

drones. With formation flight is meant since the drones are aware of each other locations, they can collision-free transition to 

any desirable shape. 
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The likelihood of choosing a task assignment is updated in the current WSA-based algorithms following the construction 

of each water strider assignment. Then, using the feedback, each task's pheromone value is updated. It is shown in Figure 4 

 

 
 

Figure 4. Drone Trajectory path over different domain 

 

  
(a) (b) 

 

Figure 5. Drone Trajectory path over obstacles 

 

 
 

Figure 6. Drone Trajectory path over circular space 

 

In Figures 5 and 6, a 3D urban topographical environment is created with 24 building pillars where drones must move 

between randomly generated initial and final conditions while keeping a minimum distance of 0.5 meters between each drone. 
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It is shown in Figure 5. Each and every drone must begin and terminate with a zero initial velocity. The trajectory reduces 

the energy consumption by reducing the acceleration and velocity whenever the obstacles are about to be identified. 

In Figure 7, eight drones navigate a grid of 25 pillars without colliding, using a total control effort of 66.7 m/s2. 

The convergence of the WSA algorithm is shown in Figure 8 and it plots the average WSA run time vs. the quantity of 

static barriers (averaged over 10 runs). It is obvious that there are a lot less static barriers. It is evident that static obstacles 

require significantly less computation than moving drone obstacles. 

Computational Work: The computational analysis report is given in Figures 9 and 10, where the WSA with SCP 

algorithm outperforms better than the previous algorithm. The number of static obstacles is plotted on the x-axis, and the 

algorithm scales with O3(n). WSA exhibits slower convergence rates compared to some traditional optimization algorithms. 

This can be problematic when dealing with large-scale optimization tasks where efficiency is critical. 

 

 

 

Figure 7. Optimal Trajectory path over pillar space Figure 8. Convergence after optimization 

 

 

  

Figure 9. Computation Run time of drone’s velocity 

 

Figure 10. Computation Run time of drone’s acceleration 

signals 

 

This work can be expanded to increase the resilience, efficiency, and convergence rate of the method. For the 

exploitation and exploration phases, this can entail creating novel strategies, improving the mechanisms for addressing 

constraints, and introducing adaptive to dynamically modified algorithm parameters. Overall, the Water Strider algorithm's 

future potential resides in developing its theoretical underpinnings, enhancing its algorithmic elements, and investigating its 

applicability to numerous optimization issues across many fields. We have tested the system in various simulation 

environments and scenarios to ensure its reliability and effectiveness. This could involve the integration of both planning and 

avoidance and simulation-based testing with specific applications or platforms where it can have practical significance. For 

example, in autonomous vehicles, warehouse robots, or search and rescue drones. 
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5. CONCLUSION 
 

The WSA with Sequential convex programming is designed and tested through a vigorous simulation environment in this 

paper to address the drawbacks of traditional SCP. The energy consumption was included in the pheromone update technique, 

such as autonomous multi-vehicle navigation through congested urban areas without colliding with other vehicles. The 

method presented in this paper generates collision-free trajectories for multiple agents and multiple obstacles, which was 

achieved by linearizing the non-convex constraints. By linearizing the non-convex requirements, the method creates collision-

free trajectories for numerous agents and multiple barriers. By adding bounding restrictions to the vehicle, the linear 

approximation of the drone trajectory dynamics was guaranteed to be accurate. As demonstrated by the trajectory re-planning 

challenge. Although the overall command and control infrastructure still needs refinement, the same capability appears doable 

for many flights, adding still another level of mission flexibility. Continued research and development efforts can help unlock 

its potential and contribute to its wider adoption in practical applications. 
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