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Process planning and scheduling are two crucial components in flexible manufacturing systems. To address the challenge of 

information interaction and sharing during the process planning and scheduling stage of parts, a digital twin-oriented approach 

is proposed. The objective is to optimize the maximum makespan while accommodating fluctuations in the job shop site. 

Firstly, in the process planning stage, an enhanced genetic algorithm is employed to generate multiple near-optimal process 

routes. These routes are coded using a four-level coding system, enhancing the efficiency of the planning process. Then, in 

the production scheduling stage, a hybrid particle swarm optimization algorithm is constructed, considering the characteristics 

of multi-process routes and the status of shop production resources and production systems. To improve local search ability, 

various neighborhood structures are utilized. Finally, the proposed method is evaluated through production example 

simulations and compared with genetic algorithm and particle swarm optimization. The results demonstrate that this method 

has a quicker convergence rate, shorter execution time, and higher computation precision, which is not only remarkable but 

also practical for addressing the collaborative optimization of process planning and scheduling in discrete manufacturing 

systems. 
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1. INTRODUCTION 
 

In the modern era of digital and intelligent manufacturing, manufacturing enterprises are confronted with increasingly fierce 

global competition and the challenge of catering to diversified and personalized customer demands, requiring customized 

services. The traditional mass manufacturing model falls short of meeting the current requirements for highly efficient and 

highly flexible production (Ocampo et al., 2020). To enhance their competitiveness, enterprises must optimize the 

manufacturing process, ensuring not only product quality but also high efficiency, low cost, and the ability to swiftly respond 

to market changes and consumer demand. Within the manufacturing process, two crucial tasks exist in the production 

workshop: process planning and production scheduling (Rossit et al., 2019), which have a profound impact on the overall 

manufacturing system. Therefore, it becomes imperative to focus on streamlining and improving these essential aspects.  

Process planning is a critical stage in manufacturing where the optimal product processing method, machining sequence, 

and process parameters etc., are determined. Its primary purpose is to generate a process route for each workpiece while 
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ensuring compliance with design requirements. It’s important to note that multiple process routes may exist for a single 

workpiece, with close consideration given to the availability of manufacturing resources such as machine tools and cutting 

tools. By providing detailed operational guidance, process planning facilitates the seamless transformation of product design 

into final parts, serving as the vital link between product design and manufacturing (Steimer and Aurich, 2016; Yunitarini et 

al., 2018).  

On the other hand, production scheduling involves the efficient allocation of limited manufacturing resources to different 

production tasks based on the process planning stage and reasonably schedules processing times for each process, aligning 

with preset optimization goals (Moreno et al., 2017). Therefore, process planning and production scheduling serve distinct 

functions but are interdependent, with each task impacting and being constrained by the other. Both process planning and 

production scheduling present formidable challenges as they fall under the category of complex NP-hard problems, becoming 

increasingly difficult to solve as the problem scale expands (Rad and Behnamian, 2022; Tamssaouet et al., 2022). The current 

research primarily focuses on optimizing process planning and scheduling separately, but there is a relative lack of 

collaborative optimization between the two. Additionally, there is a need to address how information exchange and sharing 

can be achieved between process planning and scheduling. This challenge is crucial to promote the digital transformation of 

the manufacturing industry and enhance the level of intelligent and networked manufacturing processes. 

To tackle these challenges and opportunities, this paper introduces digital twin technology into the process of planning 

and scheduling of job shop. It proposes a collaborative optimization strategy and solution method specifically designed for a 

digital twin (DT)-oriented framework of process planning and scheduling. The main highlights of the current research can be 

mentioned as follows: 

• Integrating DT technology: To address the problem of information exchange and sharing between process planning 

and scheduling in flexible manufacturing systems, a collaborative optimization framework for digital twin is 

proposed to timely respond to manufacturing resource fluctuations in the workshop, to minimize makespan. 

• Collaborative optimization strategy: an improved genetic algorithm is utilized to generate multiple near-optimal 

process routes for the four-layer encoding of the process. Additionally, a hybrid particle swarm optimization 

algorithm, integrating variable neighborhood search strategy, is designed to enhance the algorithm's local search 

capability and effectively solve the optimization problem. 

• Case simulation verification: case simulation tests are conducted within a virtual scheduling workshop using 

production cases. The optimization results obtained from the collaborative optimization method are compared with 

those obtained by traditional algorithms to validate the feasibility and advantages of the proposed method. 

The rest of this paper is organized as follows. Related literature is reviewed in Section 2. The collaborative optimization 

framework based on digital twin is described in Section 3. The hybrid optimization algorithm and its solution process are 

developed in Section 4. The case study is introduced in Section 5, while the analysis and discussion of this actual case are 

described in Section 6. Finally, Section 7 presents the main contributions of this research and suggests potential areas for 

future investigation. 

 

2. LITERATURE REVIEW 
 

According to literature research, remarkable attention to flexible manufacturing processes in both academia and industry has 

confirmed the importance of collaborative optimization in process planning and scheduling. In the following, we briefly 

review some recent papers and elaborate on the specific production problems they address. 

The solution to scheduling problems was initially proposed in the mid-1950s and has since become a crucial issue due 

to the widespread implementation of production scheduling in manufacturing environments (Tugba et al., 2023). Scheduling 

is usually based on the results of process planning as a prerequisite and input, closely related to process planning in practical 

production scenarios (Wen X et al., 2020). In traditional manufacturing systems, process planning and production scheduling 

are often treated as separate entities, managed by different departments, and optimized individually. Typically, the output of 

process optimization becomes the input for production scheduling. However, this approach considers process planning as a 

static plan, assuming the constant availability of workshop manufacturing resources. As a result, process planners tend to rely 

on their experience and opt for familiar equipment, often overlooking the real-time dynamics of workshop equipment during 

production (Lamini et al., 2022). Therefore, the optimal process planning in the initial stage of process design is often 

compromised by various production constraints during actual implementation. These constraints include order changes, 

machine failures, raw material shortages, process delays, etc., causing the manufacturing system to be inflexible and seriously 

affecting the feasibility of the scheduling plan. Relevant investigation shows that approximately 30% of process planning 

needs to be revised before product manufacturing to adapt to the dynamic manufacturing environment. 

Furthermore, the optimization objectives of process planning and production scheduling often differ. Process planning 
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typically focuses on factors such as processing time, production cost, and resource utilization, while the scheduling process 

must consider product delivery time, customer satisfaction, and the appropriate start time for each process to achieve smooth 

scheduling and scheduling efficiency. This disparity between objectives further adds complexity to dynamic process planning 

and production scheduling (Liu et al., 2022; Nejad et al., 2011). Consequently, it becomes crucial to attain collaborative 

optimization of process planning and production scheduling. This approach involves simultaneous consideration of the 

interaction and influence between these two stages, along with effective communication and coordination of information. 

The benefits of such collaboration are substantial and include improving product quality, reducing production costs, 

shortening manufacturing cycles, eliminating resource conflicts on the shop floor, and enhancing equipment utilization. 

Extensive research has been conducted on the joint optimization of process planning and production scheduling, 

addressing the complexities inherent in this endeavor. Scholars have highlighted the significance of considering three key 

sub-problems simultaneously: process flexibility, operational flexibility, and sequence flexibility. This joint optimization 

problem is more challenging and falls under the category of NP-Hard problems, surpassing the complexity of individual 

process planning or production scheduling problems (Rossi and Lanzetta, 2020; Jin and Zhang, 2019). Process route 

flexibility means that some processes of a workpiece can be fulfilled by other alternative processes. Machine flexibility relates 

to having multiple options for machines that can perform a specific process. This flexibility enables better resource allocation 

and utilization. Process sequence flexibility refers to the fact that there may be multiple processing sequences for certain 

processes (Joseph and Sridharan, 2011). To tackle these complex optimization problems, researchers have employed two 

main approaches: agent-based methods and algorithm-based methods. 

Agent-based methods have been extensively employed to tackle the integration of process planning and scheduling 

problems. Zhang et al. (2012) proposed a multi-agent system architecture that combines multiple heuristics to achieve this 

integration. Fujii et al. (2008) presented an integration method based on multi-agent learning, where each machine makes 

simultaneous decisions on process planning and scheduling. They model these decisions as learning agents using an 

evolutionary artificial neural network (EANN) to realize accurate outcomes through interaction with other machines. Leung 

et al. (2010) introduced an agent-based ant colony optimization algorithm for integrated process planning and scheduling 

systems, offering flexible system architecture and responsive fault tolerance. Wong et al. (2006) developed an agent-based 

dynamic integration method for process planning and scheduling, incorporating supervisory control in a hybrid multi-agent 

system (MAS) to provide superior global performance solutions. Maoudj et al. (2019) proposed a distributed multi-agent 

system (DMAS) for scheduling and control in a robot flexible assembly cell (RFAC). They employed a collaborative method 

supported by three autonomous control agents (monitoring agent, local agent, and remote agent) to assign and sort the robot 

tasks, minimizing the maximum completion time. Petronijevi et al. (2016) suggested a decentralized decision-making 

approach based on a multi-agent system under two disturbances: part arrival and machine failure. Their model consisted of 

part agents, job agents, machine agents, and optimization agents and was validated using AnyLogic software. 

Algorithm-based approaches play a crucial role in solving the problem at hand. Yu et al. (2015) categorized process 

planning and scheduling into static and dynamic stages. They combined these stages with the optimization criteria of process 

planning and scheduling, resulting in a hybrid algorithm that utilized genetic algorithm (GA) and particle swarm optimization 

(PSO). This approach proved effective in addressing the problem. In a similar vein, Wen et al. (2020) designed an improved 

bee mating optimization algorithm to address the multi-objective integrated process planning and scheduling problem, 

considering uncertain processing time and delivery time. They conducted various experiments to evaluate the performance 

of their method. Liu et al. (2020) proposed a modified genetic algorithm (MGA) to solve the integrated process planning and 

scheduling problem by considering the process “OR” network diagram and testing it in an actual case of a non-standard 

equipment shop. To tackle the distributed process planning and scheduling integration (DIPPS) problem, Zhang et al. (2016) 

introduced an extended genetic algorithm (EGA). They also incorporated a local enhancement strategy involving machine 

replacement and order exchange to enhance the algorithm’s local search ability. In another study, Liu et al. (2016) proposed 

an ant colony optimization (ACO)-based algorithm for integrated process planning and scheduling optimization, which 

contains not only a scheduling scheme optimization algorithm but also a dynamic emergency handling mechanism and can 

effectively handle dynamic emergencies. Petrovi et al. (2016) proposed a novel algorithm, the natural heuristic ant lion 

optimization (ALO) algorithm, to address the combined optimization of process planning and scheduling. Their approach 

was implemented and tested in the MATLAB environment. Overall, these studies contribute to the advancement of algorithm-

based methods for solving process planning and scheduling problems. 

The existing studies mentioned above primarily focus on optimizing individual process routes, lacking comprehensive 

integration strategies for process planning and scheduling. Furthermore, most of these solution methods employ a single 

algorithm, which requires designing different encoding/decoding and updating strategies for specific problems, etc., and 

easily falls into local optimum. Moreover, with the increase of solutions and search space, the computation time increases 

sharply, thus making it difficult to find high-quality feasible solutions (Li et al. 2020). With the increasing scale of production 
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data and the requirements of dynamic production scheduling, the demand for information exchange and sharing between 

process planning and scheduling in the production process is becoming increasingly urgent. The emergence and advancement 

of digital twin technology provide an effective solution for information interaction and fusion between physical entity 

workshops and virtual scheduling models, which makes it easy to interconnect data between process planning and scheduling. 

Digital twin technology realizes high-fidelity mapping and synchronous evolution of physical entities through multi-domain, 

multi-scale, and multi-probability modeling. It adds or extends new capabilities to physical entities through virtual-real 

interaction feedback, data fusion analysis, and decision iterative optimization between physical entities and virtual models 

(Ante 2021). The application domains of digital twin technology have been gradually expanded from the initial aerospace 

field to intelligent manufacturing, smart city, smart building, and other fields, covering all stages of the product life cycle (Lu 

et al., 2019). The development of digital twin technology will drive the future direction of innovations and advancements of 

the manufacturing model. Liu et al. (2021) integrated the advantages of DT and supernetworks to construct a model of feature-

process-machine tool supernetwork in the digital twin workshop and simulated and optimized the initial scheduling plan to 

realize intelligent workshop scheduling. 

Fang et al. (2019) proposed a new architecture and working principle of the DT-based job shop scheduling model and 

given a dynamic interactive scheduling strategy. Chen et al. (2023) proposed a DT-oriented multi-objective scheduling 

framework and strategy to solve fuzzy flexible scheduling problems under multiple uncertainties. Zhang et al. (2021) 

proposed a DT-enhanced dynamic scheduling methodology and verified its effectiveness and advantages through a case study 

of hydraulic valves in a machining job-shop. Mueller et al. (2021) proposed a digital twin-based self-learning process 

planning method using Deep Q Network for small lot-sizes customized production. Sun et al. (2023) designed an energy-

efficient scheduling strategy based on digital twin. Wang et al. (2020) constructed a digital twin-based process planning and 

scheduling system model, which can accurately guide the actual production process. 

In addition, digital twin is combined with advanced production models such as cloud manufacturing continuously 

improving the level of green and intelligent manufacturing processes. For example, Hung et al. (2022) utilized existing cloud 

manufacturing services to realize digital twin intelligence. Qi et al. (2018) analyzed the role of digital twin and big data in 

smart manufacturing. Park et al. (2020) proposed a cloud-based digital twin intelligent manufacturing system. Nguyen et al. 

(2022) constructed a cyber-physical cloud manufacturing system based on digital twin; Coronado et al. (2018) used digital 

twin and cloud computing to develop a manufacturing execution system that can be used for production control and 

optimization. 

In general, digital twin technology can deeply integrate the physical world and informational world within actual 

production workshops. While several studies have recognized the significance of DT in achieving workshop production 

scheduling, most of them have primarily focused on frameworks. Further research is needed, particularly in areas such as 

dynamic scheduling and real-time response. Currently, there is limited literature available that combines DT with process 

planning and scheduling in job shop. Consequently, there remains a gap between the optimization plans for scheduling and 

the actual operation of the workshop. 

In summary, we have summarized and compared the main methodologies and problem-solving approaches employed 

in existing literature in Table 1 to visually display the differences among these studies. 

 

Table 1. Summary of the related reviewed studies 

 

References Problem statement Optimization objectives Solution method Case study 

Nejad et al. (2011) Multi-jobs in FMS Job agent's flow time Multi-agent architecture 
7× 10 scheduling scheme 

problem 

Joseph et al. (2011) 
Multi-flexibility 

interaction in FMS 

Flow time and tardiness 

of parts 
Simulation method Simulation-based experiment 

Zhang et al. (2012) 
MAS-based dynamic 

IPPS 
Makespan ACO algorithm 

18 parts 24 test bed problems 

case 

Leung et al. (2010) 
Graph-based IPPS 

problem 
Makespan ACO algorithm Simulation studies 

Jin et al. (2019) 
Multi-objective process 

planning optimization 

Total production time 

and energy consumption 

Dynamic programming-

like heuristic algorithm 

A group of experiments contains 

3 cases. 

Wen et al. (2020) FMOIPPS 

Fuzzy makespan, 

average customer 

satisfaction. 

MLCO 
10 × 5 scheduling scheme 

problem 
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References Problem statement Optimization objectives Solution method Case study 

Wong et al. (2006) 
Agent-based dynamic 

IPPS 

Schedule and allocation 

selection of 

manufacturing resources 

MAS-based IPPS 

approaches and 

evolutionary algorithm 

Simulation studies 

Maoudj et al. (2019) 
DMAS for scheduling 

and controlling 
Makespan 

Autonomous control 

agents based cooperative 

approach 

Simulation Computation 

Petronijevi et al. (2016) 
Multi-agent systems-

based decision-making 
Processing time Multi-agent methodology Simulation in Anylogic software 

Yu et al. (2015) IPPS with two phases 
The flexibility of 

rescheduling 

GA and PSO-based 

hybrid algorithm 
A set of experiments 

Zhang et al. (2016) DIPPS 
Machine processing and 

transportation time 
EGA Experimental verification 

Fang et al. (2019) 
Digital twin-based 

scheduling 
Scheduling deviation 

Dynamic interactive 

scheduling strategies 
Prototype system verification 

Chen et al. (2023) 
Fuzzy flexible 

scheduling 

Fuzzy makespan, carbon 

emission 
Hybrid PSO with VNS Enterprise production example 

Zhang et al. (2021) 
DT-based dynamic 

scheduling 

Makespan and total 

tardiness 

DT-enhanced dynamic 

scheduling methodology 

A scheduling process for making 

hydraulic valves 

Liu et al. (2022) MODIPPS 
Makespan, machine 

load, total machine load 
MOMA Experiments contain 11 cases 

Rossi et al. (2020) Hybrid AM-IPS problem Makespan 
ACO-based 

metaheuristics 
Hybrid additive/subtractive parts 

FMS=flexible manufacturing system, MAS=Multi-Agent Systems, IPPS=integrated process planning and scheduling, FMOIPPS=fuzzy multi-objective 

IPPS, MLCO=a multi-layer collaborative optimization method, DMAS=distributed multi-agent system, DIPPS=distributed integration of process planning 

and scheduling, EGA=extended genetic algorithm, VNS=variable neighborhood search strategy, MODIPPS=multi-objective distributed integrated process 

planning and scheduling, MOMA=multi objective memetic algorithm, AM-IPS=additive manufacturing integration between planning and scheduling, 

ACO=Ant Colony Optimization 

 

3. DIGITAL TWIN ORIENTED COLLABORATIVE OPTIMIZATION FRAMEWORK 
 

3.1. Problem Formulations and Hypothesis 

 

The collaborative optimization problem of process planning and production scheduling can be described as follows: A set 

of𝑛 different workpieces{𝐽𝑖|𝑖 = 1,2, ⋯ , 𝑛} needs to be processed on a set of 𝑚 different processing machines {𝑀𝑘|𝑘 =
1,2, ⋯ , 𝑚} , each of which contains several optional process routes and processing machines. Each workpiece requires 

multiple machining processes 𝑂𝑖𝑗𝑝 , 𝑗 ∈ {1,2, ⋯ , 𝑟𝑖}, 𝑝 ∈ {1,2, ⋯ , 𝑝𝑖𝑗}, where 𝑟𝑖 represents the total process routes number of 

workpieces 𝐽𝑖, and 𝑝𝑖𝑗 represent the total process number of the𝑗thprocess route for workpiece𝐽𝑖. The processes have priority 

constraints, and the processing time of each process varies depending on the machine used. The ultimate objective is to 

determine the most suitable processing machines according to the available manufacturing resources and machining 

information. Additionally, the optimal processing sequences for each workpiece on the machine and the start processing time 

of each process need to be determined. This ensures the optimization of certain performance indicators for the whole system, 

such as the maximum makespan, production cost, total machine load, etc. 

To clearly illustrate the process flexibility, operation flexibility, and sequence flexibility of this optimization problem, 

Zhang et al. (2019) utilized a diagram with an “AND-OR” network node, as shown in Figure 1. This diagram shows the 

processing information for machining two workpieces on four machines. The diagram mainly contains operation nodes and 

two virtual nodes, “S” and “E” (representing the starting and completion of the operation, respectively). Each operation node 

provides details such as process ID, available machines, and corresponding processing time. In this diagram, The AND node 

indicates that the processes connected via the AND link path can be operated while allowing for the exchange of operation 

orders. On the other hand, the OR node indicates that only one of the OR link paths needs to be traversed. The operation path 

originating from the AND node (or the OR node) and merging with other paths is called the AND link path (or OR link path). 

The arrows between nodes indicate the priority of different nodes. A path starting from node S and ending at node E represents 

an alternative process scheme. For instance, in this figure, process 4 of workpiece 2 must be processed after process 1. 
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Additionally, process 6 can be processed by either machine 2 or machine 4, with a corresponding processing time is 9 or 12, 

respectively. While adhering to the priority constraints, various process schemes can be generated by combining different sets 

of processes, such as: (1 → 3 → 4 → 5 → 6 → 7),(5 → 1 → 2 → 4 → 6 → 7),(1 → 2 → 4 → 5 → 6 → 7).  
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To combine the solution of the problem with actual production, certain constraints and assumptions should be followed 

in the machining process (Wang et al. 2021): 

(1) At the initial moment, all equipment is idle, and all workpieces are available for processing. 

(2) Only one process can be processed on a particular equipment at any given time. The next process begins immediately 

after the completion of the previous process, without any preparation or transfer time. 

(3) A workpiece cannot be interrupted during the machining process to process other workpieces. 

(4) There is no switching time between two adjacent workpieces on each piece of equipment. 

(5) Different workpieces are independent of each other and are of equal priority. 

(6) The processing time of each process includes the time required for workpiece movement and loading/unloading 

adjustment. 

(7) The equipment can operate continuously, with an infinite buffer zone between equipment. 

Based on the above assumptions, this paper adopts the maximum makespan as the optimization objective. Generally, a 

shorter maximum makespan implies higher production efficiency and lower manufacturing costs, thus receiving widespread 

attention in production practice. It can be expressed as: 

 

𝑥𝑖𝑗 = {
1,   choose the 𝑗th process route of workpiece 𝐽𝑖

0,                                                          otherwise
 (1) 

 

Decision variables are: 

 

𝑚𝑖𝑛 𝐹 (𝑥) = 𝑚𝑖𝑛{ 𝑚𝑎𝑥( 𝐶𝑖𝑘)}, 𝑖 = 1,2, ⋯ , 𝑛;  𝑘 = 1,2, ⋯ , 𝑚 (2) 

 

𝑦𝑖𝑗𝑝
𝑘 = {

1,  choose the 𝑘th machine for process 𝑂𝑖𝑗𝑝

0,                                                 otherwise
 

(3) 

 

The product constraints in the machining process are as follows: 

(1) Process constraint: the process(𝑝 + 1)  of𝑗th process route in workpiece𝐽𝑖 should start only after the process𝑝 is 

completed. It represents the precedence relationship among various processes of a job, i.e., 

 

𝑥𝑖𝑗𝑦𝑖𝑗(𝑝+1)
𝑘1 𝐶𝑖𝑗(𝑝+1)

𝑘1 − 𝑥𝑖𝑗𝑦𝑖𝑗(𝑝+1)
𝑘1 𝑇𝑖𝑗(𝑝+1)

𝑘1 ≥ 𝑥𝑖𝑗𝑦𝑖𝑗𝑝
𝑘2 𝐶𝑖𝑗𝑝

𝑘2 ,   𝑘1, 𝑘2 ∈ [1, 𝑚] (4) 

 

(2) Task constraint: the same machine𝑀𝑘can only start another machining task after completing one machining task, i.e., 

 

𝑥𝑖𝑗𝑦𝑖𝑗𝑝1

𝑘 𝐶𝑖𝑗𝑝1

𝑘 − 𝑥𝑖𝑗𝑦𝑖𝑗𝑝1

𝑘 𝑇𝑖𝑗𝑝1

𝑘 ≥ 𝑥𝑎𝑏𝑦𝑎𝑏𝑝2

𝑘 𝐶𝑎𝑏𝑝2

𝑘 , 𝑎, 𝑖 ∈ [1, 𝑛], 𝑏, 𝑗 ∈ [1, 𝑟𝑖], 𝑝1, 𝑝2 ∈ [1, 𝑛𝑖𝑗] (5) 

 

(3) Process route constraint: each workpiece can only choose one process route, namely: 

 

∑ 𝑥𝑖𝑗 = 1

𝑟𝑖

𝑗=1

 (6) 

 

(4) Machine constraint: a process can only be processed by only one machine from an optional set of machines at a 

given time, i.e., 

 

𝑀𝑘 ⊆ 𝑀𝑖𝑗𝑝 , ∑ 𝑦𝑖𝑗𝑝
𝑘 + (1 − 𝑥𝑖𝑗) = 1

𝑚𝑖𝑗𝑝

𝑘=1

 (7) 

 

(5) Completion time constraint: the completion time for each job should be no less than the earliest completion time of 
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the final processing operation in the𝑗thprocess route, i.e., 

 

𝐶𝑖𝑘 − 𝑥𝑖𝑗𝑦𝑖𝑗𝑛𝑖𝑗

𝑘 𝑇𝑖𝑗𝑛𝑖𝑗

𝑘 ≥ 𝑥𝑖𝑗𝑦𝑖𝑗(𝑛𝑖𝑗−1)
𝑘 𝐶𝑖𝑗(𝑛𝑖𝑗−1)

𝑘  (8) 

 

The relevant symbols involved in the modeling process and their meanings are shown in Table 2. 

 

Table 2. Meaning of variables and symbols 

 

Symbol Description Symbol Description 

𝑖 Index of jobs, 1 ≤ 𝑖 ≤ 𝑛 𝑚 The total number of machines 

𝑛 The total number of jobs 𝑀 The set of machines, {𝑀1, 𝑀2, ⋯ , 𝑀𝑚} 

𝐽𝑖 The 𝑖th job 𝑘 Index of machines, 1 ≤ 𝑘 ≤ 𝑚 

𝐽 The set of jobs, {𝐽1, 𝐽2, ⋯ , 𝐽𝑛} 𝑀𝑘 The 𝑘th machine 

𝑟𝑖 The number of alternative processes of 𝐽𝑖 𝑚𝑖𝑗𝑝 
The total number of optional machines for 

operation 𝑂𝑖𝑗𝑝 

𝑅𝑖 
The set of optional process plans in job 𝐽𝑖 , 

{1,2, ⋯ , 𝑟𝑖} 
𝑀𝑖𝑗𝑝 

The set of optional machines for operation𝑂𝑖𝑗𝑝 , 
{𝑀1, 𝑀2, ⋯ , 𝑀𝑚𝑖𝑗𝑝

} 

𝑅𝑖𝑗 The𝑗thprocess plan of job 𝐽𝑖 𝑇𝑖𝑗𝑝
𝑘  

The processing time of operation 𝑂𝑖𝑗𝑝  on 

machine 𝑘 

𝑗 Index of process plan，1 ≤ 𝑗 ≤ 𝑟𝑖 𝐶𝑖𝑗𝑝
𝑘  

The earliest completion time of operation 𝑂𝑖𝑗𝑝 on 

machine 𝑘 

𝑛𝑖𝑗 The total number of 𝑗th process plan in job 𝐽𝑖 𝐶𝑖𝑘   The completion time of the 𝑖th job on machine 𝑘 

𝑂𝑖𝑗𝑝 
the𝑝th operation in  𝑗th  process plan of job  𝐽𝑖 , 

1 ≤ 𝑝 ≤ 𝑛𝑖𝑗 

  

 

3.2. Collaborative Optimization Framework 

 

With the increasing integration of new-generation information technology and advanced manufacturing technology, the 

interaction between information systems and physical systems has become more frequent. Digital twin technology, with its 

virtual-reality mapping and interactive fusion capabilities, has emerged as an effective tool for enhancing the digitalization 

and intelligence of the manufacturing industry. By leveraging digital twin technology, various aspects such as product design, 

process flow, and production control can be simulated, optimized, and managed within a virtual environment, catering to the 

development needs of personalized, service-oriented, and intelligent manufacturing. In the context of the collaborative 

optimization problem of process planning and production scheduling in a flexible job shop, a collaborative optimization 

framework is established based on the concept of modular hierarchy. This framework consists of four layers: the physical 

entity layer, the process planning layer, the digital twin layer, and the scheduling optimization layer. The physical entity layer 

is the foundation, while the process planning and scheduling optimization layers are controlled by the digital twin layer. This 

enables data fusion analysis and bidirectional iterative optimization, facilitating on-demand allocation and dynamic 

adjustment of manufacturing resources. The overall framework is presented in Figure 2. 

In the physical entity layer, various physical objects relevant to the flexible job shop are present, including workpieces, 

raw materials, machine tools, cutting tools, operators, and the workshop environment. It is the carrier for process planning 

and production scheduling and forms the basis for constructing of the digital twin model. 

In the process planning layer, first, comprehensive analysis is conducted on the structural design information, processing 

technology information, and required manufacturing resource information of the parts. Multiple possible process solutions 

that meet the technical requirements for each part are formulated. Real-time feedback on manufacturing resource information 

from the scheduling optimization layer is considered to evaluate and rank these proposed process solutions. The objective is 

to select several near-optimal process routes that satisfy the current production conditions, considering constraints such as 

resource load, process flexibility, and manufacturing cost.  

Detailed design of the selected process routes is then carried out to specify dimensions, tolerances, machining 

parameters, etc., for each process. This information is subsequently sent to the scheduling optimization layer, facilitating 

information interaction and sharing between process planning and scheduling. 

In the digital twin layer, a digital twin model of the workshop is created by collecting relevant data from information 

perception equipment, encompassing part design, processing processes, and manufacturing resources. It mainly includes 
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geometric model, physical model, behavior model, and rule model of the parts. Intelligent optimization algorithms are applied 

to conduct parallel simulation analysis of process planning data and scheduling data, enabling the simulation of the entire 

part machining process. Feasibility of the production plan is verified, possible problems in the manufacturing process are 

predicted, and corresponding improvement measures are suggested, all contributing to collaborative optimization of process 

planning and production scheduling. The optimized scheduling plan will be fed back to the physical workshop to guide the 

actual production, ensuring better adaptability and dynamic response. 

In the scheduling optimization layer, appropriate machines are assigned to the selected process route, and the optimal 

start time for each process is determined based on factors such as the work-in-progress quantity and workload of each machine. 

This layer aims to maximize machine utilization and minimize job completion time. In case of disruptive factors such as 

machine failures or order changes, the scheduling process promptly assesses and responds to ensure smooth production. 
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Figure 2. The digital twin-oriented general framework of collaborative optimization 

 

4. GA HYBRID IMPROVED PSO WITH VARIABLE NEIGHBORHOOD (GAHPSOVN) FOR 
COLLABORATIVE OPTIMIZATION PROBLEM 

 

4.1. Generation of Near-optimal Process Routes 

 

The genetic algorithm (GA) is based on the biological evolution mechanism, using natural rules such as adapt-or-die 

and survival of the fittest to solve problems through searching and computation. It exhibits features such as global 
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optimization, implicit parallelism, and scalability. However, it suffers from low efficiency and is prone to premature 

convergence. To address these limitations, an improved crossover strategy is combined with GA to enhance its local 

search capabilities. The diversity and uniformity of the population in GA are maintained through a random initialization 

method. The crossover operator is employed to alter the machining sequence of parts, while the mutation operator 

adjusts the process route of parts. This enables the search for multiple near-optimal process routes of each workpiece, 

considering the existing constraints imposed by the current manufacturing resources. 

 

4.1.1. Population Initialization 

 

To maintain population diversity in the collaborative optimization problem, a random initialization method is employed. 

Firstly, the maximum value of the random allocation integer is determined based on the number of workpieces and the 

total number of machining features of each workpiece. Workpieces are then randomly arranged, with the repetition of 

a workpiece being equal to the total number of its machining features. Considering the possible priority constraints 

between different machining features of a workpiece, the constraint adjustment method (Zhang et al. 2019) is utilized 

to assign a random integer to the machining features. The maximum value of these integers corresponds to the total 

number of machining features. Subsequently, each machining feature is assigned a random number indicating an 

alternative processing route. Finally, the number of optional machines in each process is taken as the maximum value 

of the random integer, and the machine number is randomly allocated to each process. 

 

4.1.2. Encoding and Decoding 

 

The process planning stage employs a four-layer encoding method, including job information sting, processing feature 

information sting, alternative route information sting, and alternative machine information sting. These four layers of 

information are independent of each other but collectively determine the processing route for a workpiece. Figure 3 

illustrates the encoding diagram for the processing information of two workpieces, as depicted in Figure 1. This 

encoding method effectively captures the operational flexibility, process route flexibility, and machine flexibility in the 

collaborative optimization process. Moreover, it facilitates the implementation of crossover and mutation operation of 

GA, enabling dynamic adjustment to the process plan. 
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Figure 3. Encoding schematic in the process planning stage 

 

In Figure 3, the first line reflects the workpiece information, where different number represents distinct workpiece, 

and different positions of the same number indicate different machining features. For instance, this line represents 2 

workpieces with 6 machining features respectively. The second line reflects the machining feature information, with 

each number representing the corresponding machining feature number of each workpiece indicated in the previous 

line. Each feature satisfies the priority constraints. For instance, moving from left to right in this row, the number 1 in 

position 1 represents the machining feature 1 of workpiece 2, the number 1 in position 2 represents the machining 

feature 1 of workpiece 1, the number 3 in position 3 represents the machining feature 3 of workpiece 1, and so on. The 

third line portrays the optional processing route information corresponding to each feature. For example, machining 

feature 3 of workpiece 1 selects processing route 2, machining feature 3 of workpiece 2 also selects processing route 2, 

while other machining features choose processing route 1. The fourth line indicates the machine number corresponding 
to each machining feature of the selected processing route. For instance, moving from left to right, the number 2 in 

position 1 represents machine number 2 (M2) for the machining feature 1 of workpiece 2 within the processing route 

1. The number 1 in position 2 represents machine number 1 (M1) for the machining feature 1 of workpiece 1 within the 

processing route 1, and so on. When decoding, the processing features of all workpieces are sorted according to the 
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codes in the first and second lines. This yields the following sequence: F21—F11—F13—F23—F12—F24—F14—

F22—F15—F25—F16—F26. Subsequently, using the processing route determined in the third line and the machine 

number selected in the fourth line, the processing machine, processing procedure, and corresponding processing time 

for each process are finally obtained, as shown in Table 3. 

 

Table 3. Decoding results in the process planning stage 

 

Processing 

procedure 

O21 O11 O13 O23 O14 O24 O15 O25 O16 O26 O17 O27 

Selected machine M2 M1 M2 M3 M4 M2 M4 M1 M1 M4 M4 M3 

Processing time 9 10 9 7 11 5 17 7 10 12 5 6 

 

4.1.3. Crossover and Mutation Operations 

 

To adjust and optimize the processing features, alternative routes, and alternative machines of workpieces 

simultaneously and to obtain multiple near-optimal process routes that adhere to workshop production conditions, the 

proposed four-layer coding approach requires crossover and mutation operations. Referring to the method of Alzahrani 

(2019), an improved two-point crossover strategy is adopted to realize the crossover operation. In this strategy, two 

encoding information are randomly selected from the population. Then, two intersections within the encoding sequence 

are randomly selected, and the encoding information outside the intersection is copied to the corresponding position in 

the new coding sequence. This ensures that the newly generated sequence meets the process constraints among features 

while enabling the parent’s desirable genes can be transferred to the offspring as much as possible. The specific process 

is shown in Figure 4. 
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Figure 4. An example of the crossover operation 

 

In this figure, two pieces of coded information (coded information 1 and coded information 2) are randomly 

selected from the population. The processing feature sequences are extracted from this coded information. Next, 2 

intersection points are randomly chosen in the feature sequence, indicated by the red dotted line in the figure. Then, the 

number sequence from the processing feature information sequence 1 that lies outside the two intersection points is 
copied into the corresponding position of the offspring feature sequence. Simultaneously, the numbers that match the 

offspring feature sequence in the processing feature information sequence 2 are sequentially deleted. The remaining 

numbers in the processing feature information sequence 2 are then inserted into the empty positions of the offspring 

feature sequence from left to right, resulting in a complete offspring feature information sequence. Similarly, the 
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offspring route sequence and offspring machine sequence are obtained. Finally, this offspring information is combined 

to create a complete offspring encoded information. 

Like the crossover operation, the mutation operation involves adjusting the processing features, alternative route, 

and the alternative machine of workpieces simultaneously. It can serve to help the algorithm avoid premature 

convergence and escape local optima, and the detail is as follows. Firstly, two positions are randomly selected within 

the offspring’s coded information, which is generated from the crossover operation. The information at these positions 

is then exchanged. During this process, it is necessary to check the priority constraints to ensure the validity of the 

mutation. Then, the mutation is applied to the alternative route information. It means that a position is randomly chosen 

from the set of positions that contain multiple processing routes. This selected position is then replaced with other routes 

in the route set. 

Finally, the mutation operation is performed on the alternative machines. A position that contains multiple 

alternative machines is randomly selected, and it is replaced by other machines in the machine set. This process is 

depicted in Figure 5. 
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Figure 5. An example of the mutation operation 

 

In this figure, firstly, the machining feature 4 of workpiece 1 is swapped with the machining feature 5 of workpiece 

2. The corresponding alternative routes and alternative machines are also exchanged simultaneously, thus enabling the 

mutation operation of machining features. Then, the alternative route corresponding to the machining feature 4 of 

workpiece 1 is randomly selected and replaced. Additionally, the alternative machine linked to the machining feature 3 

of workpiece 1 is randomly selected to be replaced. It should be noted that no substitutions are made for machining 

features that have only one process route or a single optional machine. 

In the genetic algorithm, multiple process routes are generated and evaluated based on the minimum completion 

time as the optimization objective. The fitness value of each individual is calculated using equation (9), where𝐹(𝑥) is 

the objective function. The individuals are then sorted based on their fitness values. Then, three process routes with 

larger fitness values are preliminarily selected as near-optimal process routes, which are severed as the input conditions 

for scheduling optimization. Subsequent optimization and adjustments of scheduling are performed using these near-

optimal routes. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐹(𝑥)
 (9) 

 

4.2. Solving the Production Scheduling Scheme 

 
The fitness value of individuals is calculated according to the multiple near-optimal process routes generated during 

the process planning stage. This calculation leads to a comprehensive sorting of process schemes. Then, from this sorted 

list, the top-ranked r individuals are selected to form the initial scheduling population. The selection probabilities for 

these individuals are based on a predefined set. After that, the hybrid variable neighborhood search method of improved 

PSO is utilized to enhance the local optimization capability. This approach combines the greedy rule and left-shift 
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strategy (Joo et al. 2015) to quickly obtain the optimal target value. As process flexibility is considered in the scheduling 

optimization process, the operational efficiency and flexibility of the overall system can be improved. 

4.2.1. Improved PSO 

 

Particle swarm optimization (PSO) is an intelligent search method that emulates the behavior of a biological colony. It 

utilizes particles in the search space to represent the solution of the optimization problem. Each particle flies at a certain 

speed within the search space. Consider a D-dimensional search space with a population of N particles. Each particle 

has a position and a speed. The position of ith particle is denoted as 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷), and its speed is denoted as 

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝐷). Additionally, the best point of the individual is denoted as 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝐷), and the best 

point of the global is denoted as 𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝐷). During the flight, particles dynamically adjust their positions 

and speeds according to the following formula (Manasrah and Ba 2018): 

 

𝑣𝑖𝑗
(𝑡+1)

= 𝜔𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1(𝑝𝑖𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2(𝑝𝑔𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) (10) 

𝑥𝑖𝑗
(𝑡+1)

= 𝑥𝑖𝑗
(𝑡)

+ 𝑣𝑖𝑗
(𝑡+1)

         𝑗 = 1,2, . . . , 𝐷 (11) 

 

where,𝑐1 ,𝑐2 represents the learning factor, 𝑡  represents the iteration times, 𝑟1 ,𝑟2 represents the independent random 

number in the interval [0,1]; 𝜔  represents inertia weight. Additionally, to confine the particle motion within a 

reasonable search space, the following measures are employed: 

 

𝑣𝑖𝑗
(𝑡+1)

= {
𝑣𝑚𝑎𝑥 ,   𝑣𝑖𝑗

(𝑡+1)
> 𝑣𝑚𝑎𝑥

−𝑣𝑚𝑎𝑥 ,   𝑣𝑖𝑗
(𝑡+1)

< −𝑣𝑚𝑎𝑥

  (12) 

𝑥𝑖𝑗
(𝑡+1)

= {
𝑥𝑚𝑎𝑥 ,   𝑥𝑖𝑗

(𝑡+1)
> 𝑥𝑚𝑎𝑥

−𝑥𝑚𝑎𝑥 ,   𝑥𝑖𝑗
(𝑡+1)

< −𝑥𝑚𝑎𝑥

  (13) 

 

Inertia weight𝜔 plays a crucial role in algorithm convergence. Larger values of 𝜔 enhance the global search 

ability, while smaller ones are beneficial for improving the local search ability (Tang et al. 2019). Therefore, to achieve 

a balance between global search and local search, a nonlinear decreasing adjustment is implemented. This adjustment 

enables the algorithm to realize wide-scale global search in the initial stage and fine-tuned local search in the later stage. 

The specific adaptive adjustment formula is as follows: 

 

𝜔(𝑡) = 0.4 + 0.58 𝑐𝑜𝑠(
𝜋

2
×

𝑡

𝑡𝑚𝑎𝑥
) (14) 

 

From formula (10), it is evident that when𝑐1 < 𝑐2, particles tend to move toward the global optimal direction. 

Otherwise, they tend to move towards the individual optimal direction. Therefore, 𝑐1is set to decrease linearly and 

𝑐2increases linearly so that the algorithm focuses on global search in the initial stage and transitions to local optimal 

search as it progresses. The specific adjustments are as follows: 

 

{
𝑐1 = 𝑐1𝑚𝑎𝑥 − (𝑐1𝑚𝑎𝑥 − 𝑐1𝑚𝑖𝑛) ∙ 𝑡 𝑡𝑚𝑎𝑥                                                                                                             ⁄

𝑐2 = 𝑐2𝑚𝑖𝑛 + (𝑐2𝑚𝑎𝑥 − 𝑐2𝑚𝑖𝑛) ∙ 𝑡 𝑡𝑚𝑎𝑥⁄                                                                                                              
 

(15) 

(16) 

 

4.2.2. Variable Neighborhood Search Processing Machine 

 

To enhance the local search ability of this algorithm, the variable neighborhood search method is usually employed. 

This method involves replacing each initial solution with the optimal solution within its neighborhood, thereby 
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achieving local optimization. Referring to Nowicki E's method (Nowicki and Smutnicki 2005), two types of 

neighborhood structures for local search are constructed as follows: (1) In the alternative machine sequence, randomly 

select𝐽different processing procedures (to reduce the neighborhood scale, usually𝐽 ≤ 5) for full permutation to change 

the machining sequence of the workpiece on a particular machine, while the machining sequences of the remaining 

workpieces remain unchanged. (2) In the alternative machine sequence, two procedures are randomly selected, and 

their machining sequences on the machine are exchanged while keeping the machining sequences of the rest workpiece 

intact. In this way, the advantages of different neighborhood structures can be considered, and the problem’s solution 

space can be fully searched. Subsequently, the optimal solution is chosen from the neighborhood range based on the 

optimization objective. To illustrate this process, consider the machines for two workpieces as depicted in Figure 1. 

The explicit process is shown in Figure 6. In Figure 6 (a), four different processes are randomly selected for full 

permutation to obtain multiple possible solutions, and one example solution is provided in this figure. In Figure 6 (b), 

two processes on machine M2 are selected randomly for exchange, leading to a feasible solution. 
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Figure 6. An example of local search processing machine 

 

4.3. Hybrid Optimization Algorithm Flow 

 

The optimization of process planning and scheduling is conducted in a distributed parallel manner, with a focus on 

collaborative optimization based on DT information sharing. This approach aims to enhance the efficiency and 

intelligence of production scheduling by driving the scheduling process through optimized process plans. The 

collaborative optimization process, as presented in Figure 7, consists of three parts: process route optimization, DT 

information sharing, and scheduling optimization. The main steps of the proposed algorithm are as follows. 

Step 1: Initialization. Firstly, initialize the algorithm parameters, such as population size  𝑃𝑠 , maximum 

iterations 𝐼𝑚𝑎𝑥, crossover probability 𝑃𝑐, and mutation probability 𝑃𝑚. And then randomly initialize the process route 

population.  

Step 2: Generation of multiple process routes. The improved genetic algorithm is applied to reproduce, crossover, 

and mutate individuals in the population to generate multiple possible technological routes.  

Step 3: Selection of near-optimal process routes. Based on feedback from the digital twin layer regarding 
workshop manufacturing resource information, the individual fitness is calculated and sorted. A set of r individuals 

meeting the current production conditions are selected as near-optimal process routes.  

Step 4: Scheduling optimization. Depending on the selected r near-optimal process routes, the scheduling 

population is initialized. The hybrid particle swarm algorithm is employed to search for the individual optimal value 
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and the global optimal value of the population, with the maximum makespan as the objective.  

Step 5: Termination condition discrimination. If the scheduling process meets the termination conditions, the 

current optimal scheduling plan and corresponding process route of each workpiece are outputted. If not, the individual 

position and speed are updated using the iterative formula of the hybrid particle swarm algorithm, and the optimization 

process returns to Step 4.  

Step 6: Production condition evaluation. The scheduling optimization scheme is evaluated to determine whether 

it meets the on-site production conditions. If so, the optimal scheduling plan is outputted. If not, the scheduling 

optimization process continues.  

Step 7: Virtual verification and analysis. In the virtual space, the optimal scheduling plan and process route of 

workpieces are simulated and verified to ensure they meet the product requirements. If so, the relevant parameters are 

fed back to the physical workshop to guide the actual production process. If not, the process planning stage is revisited 

to re-optimize the process plan.  

Step 8: Information storage. The optimal scheduling plan and process route information of each workpiece are 

updated in the database to give a reference for subsequent product design updates and optimization. 
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Figure 7. Workflow of collaborative optimization for digital twin 
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5. CASE STUDY 
 

To demonstrate the feasibility of the proposed method, a production example from a manufacturing enterprise is 

presented. The production task involves the use of seven sets of equipment to process five different workpieces. The 

equipment includes one ordinary lathe (M1), two CNC lathes (M2, M3), two CNC milling machines (M4, M5), one 

drilling machine (M6), and one grinding machine (M7). The material of each workpiece is QT400-15. For each 

workpiece, there are multiple alternative processes available. Relevant process information is provided in Table 4. The 

data presented in this table are obtained from the actual data, with rounding operations applied to ensure accuracy.  

 

Table 4. Machining information of workpieces 

 

 

According to the above scheduling task information and the workshop manufacturing resource data, a virtual verification 

model is constructed using Plant Simulation software, as depicted in Figure 8. The optimized process route and production 

scheduling information from the proposed method are transferred to this virtual verification model. The model allows for the 

simulation and analysis of the manufacturing process for the workpiece, enabling the evaluation of whether the product design 
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requirements are met. If so, the verified production scheme can then be fed back to the physical entity layer to guide the 

actual processing of the workpiece. 

 

 

 

Figure 8. Verification model in virtual space 

 

The proposed optimization method is implemented using MATLAB R2016b on a computer with the following 

configuration: Windows 7 system, Intel(R)Xeon(R) CPU@3.07GHz, 8GB RAM. Referring to related research results, the 

parameters are set as follows: the population size N is set to 50, and the crossover probability and mutation probability are 

set to 0.8 and 0.05, respectively. Additionally, the learning factor 𝑐1 = 𝑐2 = 2, and 𝑐2𝑚𝑖𝑛1𝑚𝑖𝑛, 𝑐2𝑚𝑎𝑥1𝑚𝑎𝑥, in the improved 

PSO. The maximum number of iterations is set to 300. Meanwhile, the results of this method are compared to those of the 

conventional PSO and GA algorithms to verify the effectiveness of this method. 

 

6. RESULTS ANALYSIS AND DISCUSSION 
 

The convergence curves of the proposed method, as well as conventional GA and PSO, after running independently 20 times, 

are shown in Figure 9. It can be observed from the convergence curves that as the number of iterations increases, the 

completion time calculated by all three methods gradually decreases and eventually stabilizes. This indicates that the 

algorithms are converging towards optimal or near-optimal solutions. 

Since the proposed method improves the crossover strategy of GA and the local search strategy of PSO, the solution 

space distribution is wide, and the particles can quickly explore better regions through global search at the initial search stage. 

Moreover, the improved learning factor, adaptive weight adjustment strategy, and neighborhood search method contribute to 

the quick identification of the optimal solution. As a result, the proposed method demonstrates improved convergence 

compared to the conventional GA and PSO algorithms. It can find the optimal or near-optimal solution in a shorter time, 

enhancing the efficiency of the optimization process. 

 

 
 

Figure 9. Convergence curves of different algorithm 
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The comparison of results obtained from the three methods is presented in Table 5. It is evident from the table that all 

three methods eventually converge to the optimal value of makespan. However, the proposed method in this paper is superior 

to the other two methods in terms of the average generation, average optimal value, and average operation time. These results 

indicate the feasibility and superiority of the proposed method. By achieving a lower average generation, the proposed method 

demonstrates faster convergence to the optimal solution. This efficiency is further reflected in the average operation time, 

where the proposed method requires less computational time to reach the optimal solution. Moreover, the average optimal 

value obtained from the proposed method indicates that it consistently yields better solutions compared to the conventional 

GA and PSO algorithms. Overall, the results comparison demonstrates that the proposed method is not only capable of finding 

the optimal value of makespan but also offers improved performance in terms of convergence speed and solution quality.  

 

Table 5. Results comparison of three methods 

 

Algorithm Optimal value Average generation Average optimum Average CPU operation time 

GA 22 120.86 22.45 164.13 

PSO 22 113.57 22.20 151.72 

GAHPSOVN 22 96.32 22.05 130.03 

 

According to the optimization results of the proposed method, the optimal process route is shown in Table 6, and the 

corresponding scheduling Gantt chart for this process route is depicted in Figure 10. As can be seen from the figure, the 

scheduling plan depicted in the Gantt chart effectively adheres to the machining feature constraints of workpieces, resulting 

in a makespan of 22 min. It is 38.89% shorter than the initial data provided by the factory before optimization. The makespan 

comparison of each workpiece before and after optimization is shown in Figure 11. It clearly illustrates the effectiveness of 

the optimization process, as the completion time of each workpiece has been significantly shortened. This improvement is 

conducive to fully utilizing manufacturing resources and reducing production costs. Additionally, it can respond more quickly 

to changes in orders or urgent order demands, to arrange production plans and scheduling services more flexibly, ultimately 

leading to improved market competitiveness of enterprises. 

According to the analysis of Figure 10 and Figure 11, it can be observed that before optimization, the initial scheduling 

plan had relatively scattered the process allocation for each workpiece, leading to an imbalanced machine load. Some 

processes are centrally concentrated on bottleneck machines, resulting in low overall equipment utilization and increased risk 

of machine failure. This arrangement also caused delays in completing overall production tasks. After optimization, the 

proposed method utilizes CNC machining equipment as much as possible to enhance production efficiency. Moreover, the 

alternative process routes and alternative machines for each workpiece are employed to adjust the starting time and machine 

allocation for each process. This reduces equipment loss caused by frequent startup and shutdown while improving machine 

load balancing. The processing time distribution of each process becomes more compact and reasonable, effectively saving 

processing time and enhancing the flexibility of the machining process. The parameters obtained from this optimization result 

are applied to a virtual simulation model for machining process simulation. This simulation model provides real-time visibility 

into the detailed status of the machining process, along with insights into the configuration of workshop manufacturing 

resources and equipment utilization. This facilitates the reasonable arrangement of different production tasks. The simulation 

results validate the optimization results, as the makespan obtained from virtual operation also amounts to 22 min. This 

consistency confirms the stability and reliability of the optimized operation process, offering valuable assistance to the actual 

processing of the workpiece. 

 

Table 6. Optimal process routes of each workpiece 

 

Jobs 
Process 

numbers 
Optimal process route 

Processing 

time 

J1 6 𝑂11(𝑀2) → 𝑂13(𝑀3) → 𝑂14(𝑀4) → 𝑂15(𝑀5) → 𝑂17(𝑀6) → 𝑂18(𝑀7) 15 

J2 5 𝑂21(𝑀6) → 𝑂23(𝑀5) → 𝑂25(𝑀5) → 𝑂24(𝑀4) → 𝑂26(𝑀2) 11 

J3 5 𝑂32(𝑀3) → 𝑂31(𝑀2) → 𝑂33(𝑀2) → 𝑂35(𝑀6) → 𝑂36(𝑀7) 11 

J4 4 𝑂41(𝑀3) → 𝑂43(𝑀3) → 𝑂44(𝑀4) → 𝑂45(𝑀7) 21 

J5 6 𝑂51(𝑀1) → 𝑂52(𝑀1) → 𝑂54(𝑀4) → 𝑂55(𝑀4) → 𝑂56(𝑀5) → 𝑂57(𝑀5) 22 

 



Chen et al. Collaborative Optimization of Process Planning and Scheduling in a Flexible Job Shop 
 

501 

M1

M2

M3

M4

Machine

Time
2 4 6 8 10 12 140

M5

M6

M7

16 18 20 22 24 26 28 30 32 3634

52O41O

26O43O

57O56O44O

55O

45O36O18O

35O17O21O

24O

25O

51O
13O

12O 31O 22O

32O

14O 16O 34O

53O

 

(a) Scheduling plan before optimization 

M1

M2

M3

M4

2 4 6 8 10 12 140

M5

M6

M7

16 18 20

11O 31O 33O

51O 52O

32O 13O 41O 26O 43O

14O 24O 54O 55O 44O

56O 57O

21O 35O 17O

36O 18O 45O

23O 25O 15O

Machine

Time

 

(b) Scheduling plan after optimization 

 

Figure 10. Gantt chart of the scheduling plan 

 

 

 

Figure 11. Makespan comparison of workpieces before and after optimization 
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7. CONCLUSION AND FUTURE RESEARCH 
 

Process planning and scheduling are crucial components of a flexible manufacturing system, and the information interaction 

between them directly affects the smooth operation of production activities. The collaborative optimization of these two 

components, combined with digital twin technology, plays a significant role in reducing manufacturing resource conflicts and 

improving production efficiency, etc. The main work and contributions of this paper are as follows. 

Firstly, considering the triple flexibility encountered in the collaborative optimization process, a comprehensive 

framework of digital twin-oriented collaborative optimization is constructed using a phased multi-level parallel optimization 

approach. This framework enables efficient and effective optimization of process planning and production scheduling. To 

address this optimization problem, an innovative GAHPSOVN algorithm is proposed. The algorithm incorporates a multi-

dimensional encoding approach and introduces two feasible neighborhood structures. In the process planning stage, an 

improved genetic algorithm is utilized to enhance searchability and generate a wide range of near-optimal solutions for the 

process route. These solutions serve as the search space for the scheduling link. Subsequently, a particle swarm algorithm 

with a variable neighborhood structure is utilized to solve the scheduling plan. This strategy effectively avoids the algorithm 

falling into local optimal solutions and improves convergence speed. The collaborative operation of process planning and 

production scheduling effectively enhances the flexibility of the system. Finally, the generated optimal scheduling plan and 

process route are analyzed and tested in Plant simulation software. The results are compared with those of conventional PSO 

and GA algorithms to verify the effectiveness of the proposed method. 

Since the actual manufacturing system could be affected by various uncertain factors, and optimization objectives can 

be diverse, the following directions can be tried in future research. 

• Consider more complex manufacturing conditions and simulate various interference factors, such as emergency 

orders, delayed arrival of parts, changes in delivery date, uncertain processing time, equipment failure, and more. 

This will ensure that the problem solution aligns more closely with the actual production environment.  

• Expand the optimization objectives of this problem from single-objective to multi-objective optimization. 

Additionally, consider environmental and ecological benefits such as energy and resource consumption, 

environmental impact, as well as carbon emissions, in the manufacturing process. This will lead to more 

comprehensive and sustainable optimization results. 

• Explore more efficient and rapid intelligent algorithms to solve the collaborative optimization problem of process 

planning and production scheduling. This will promote the digital and intelligent upgrading of the discrete 

manufacturing industry and facilitate the adoption of advanced technologies. 

By pursuing these research directions, the applicability and effectiveness of collaborative optimization in flexible 

manufacturing systems can be further enhanced, enabling the manufacturing industry to address increasingly complex 

challenges and achieve higher levels of efficiency and sustainability. 
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