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In recent years, there has been a growing significance of research on humanitarian logistics for both researchers and 

practitioners. This research is crucial for aiding relief operations. While there has been extensive study of mathematical 

models for disaster operations management in the preparedness and response phases, the recovery phase models still need 

more attention. One of the significant challenges during the recovery phase is the spread of contagious diseases in the affected 

area, which necessitates the timely and cost-effective transportation of both contagious and non-contagious populations while 

preventing further casualties and disease spread. The paper proposes a multi-objective solid transportation model with 

different conveyance types for the relocation process to address these challenges. The proposed multi-objective model seeks 

to minimize two essential objectives: the cost and time required for relocation, and includes factors such as transportation, 

penalties, accommodations, medical expenses, halts, refueling, and maintenance. To account for the unpredictability and 

vagueness of input data in post-disaster scenarios, the proposed model incorporates fuzzy inputs and introduces a novel 

defuzzification technique that is validated by comparing it with an existing methodology. The research employs optimization 

techniques using the LINGO optimizing solver and presents a case study and particular cases that provide valuable 

management insights for improving decision support systems. Among the optimization techniques, namely the Neutrosophic 

compromise approach, Goal programming, Fuzzy goal programming, and Global criterion method, the optimal solution is 

obtained using the Neutrosophic compromise approach. The cost and time objective values obtained using the Neutrosophic 

compromise approach are 2034725 and 3923, respectively. 
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1. INTRODUCTION 
 

Catastrophic events like natural disasters or those caused by human activities can strike any region, often without warning. 

A wide range of disasters such as earthquakes, floods, storms, droughts, landslides, volcanic activities, fires, floods, 

avalanches, extreme cold and heat waves, and cyclones have caused extensive damage, loss of life, devastating living 

conditions and caused loss of millions of dollars in property. In 2017, Hurricane Maria struck Puerto Rico and resulted in the 

deaths of over 3000 people and the displacement of over 130000 people (British broadcasting corporation, 2018). A seismic 

event and subsequent tsunami struck Indonesia's Sulawesi region in 2018, causing more than 4300 fatalities and displacing 

more than 170000 individuals (Australian government, 2018). Another natural disaster in the form of severe flooding due to 

monsoon rains impacted Kerala state in southern India during the same year, leading to the displacement of over 1.4 million 

individuals and the loss of more than 400 lives (Business standard, 2018). In 2019, Cyclone Idai hit Mozambique, Zimbabwe, 

and Malawi, resulting in over 1000 deaths and the displacement of over 146000 people (United nations children’s fund, 

2020). The year 2020 witnessed a devastating flood in Assam, resulting in the loss of 123 lives and 26 additional fatalities 

due to landslides (Assam government report 1, 2020). The impact of the flood was widespread, with 5474 villages affected 

by the disaster. Compounding the problem was the presence of over 24000 active cases of COVID-19 in the state at the time 

of the flood, making it even more challenging to relocate both contagious and non-contagious populations to RCs (Indian 

express, 2020). These factors created a complex logistical challenge that required a well-coordinated and efficient approach 

to post-disaster relief operations. 
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Disaster management (DM) has emerged as an essential research area, focusing on mitigating the impact of disasters on 

vulnerable communities. DM entails a four-pronged approach consisting of mitigation, preparation, response, and recovery, 

necessitating a multifaceted and multidimensional strategy to reduce the likelihood and severity of disasters. The objective 

of mitigation is to reduce the frequency and severity of disasters, whereas the objective of preparation is to plan activities that 

improve survival prospects and mitigate losses. Efforts are made to mitigate the effects of disasters during and after their 

occurrence during the response phase. Finally, recovery efforts aim to reestablish the afflicted area to its pre-disaster 

condition. In the context of DM, humanitarian logistics is pivotal in alleviating the distress of susceptible communities. It 

entails effectively evacuating people from disaster-affected areas and efficiently managing and disseminating crucial 

commodities and resources at a reduced cost. This can include emergency medical and sanitary supplies, food, water, personal 

protective, and temporary shelter equipment. The practical implementation of humanitarian logistics can significantly impact 

the success of DM efforts by ensuring that relief reaches those who need it most quickly and effectively. 

Following a disaster, the priority is addressing the immediate fatalities and relieving the surviving victims. This 

necessitates a robust humanitarian logistics response, which has garnered increasing attention in recent years. The physical 

and psychological toll on survivors can be significant, and it is essential to alleviate their suffering by providing necessary 

relief. However, staying near the disaster-affected area can result in significant economic and social losses, as well as lead to 

various psychological afflictions such as emotional volatility, disrupted sleep, apprehension, post-traumatic stress disorder, 

and despondency. As Tatham and Kovacs (Klumpp et al., 2015) pointed out, disaster relief logistics should address survivors' 

needs and support their emotional well-being by providing access to health services, counseling, and other psychological 

support mechanisms through the relocation process. The significance of efficient relocation approaches in controlling the 

transmission of contagious diseases is emphasized in a study conducted by (Arima et al., 2011) (Majumder and Saha, 2019). 

The research emphasizes that disaster-stricken regions with inadequate access to fundamental necessities, including safe 

drinking water, healthcare, and sanitation, are especially prone to disease outbreaks. It further argues that implementing 

effective relocation models can significantly reduce the risk of disease outbreaks (cholera, typhoid fever, malaria, dengue 

fever, tetanus, measles) and improve the overall health outcomes of affected populations. While there are a limited number 

of humanitarian relocation models that consider both contagious and non-contagious populations simultaneously (Bhakuni et 

al., 2023), past relocation models, have not placed sufficient emphasis on the type of conveyance used during the relocation 

process and the total time required to relocate affected populations. This research addresses these limitations by proposing a 

new model considering these critical factors. 

This research paper aims to present a mathematical model for addressing the solid transportation problem (STP) in the 

context of disaster relief efforts. While the transportation problem (TP) was initially conceptualized by F. L. Hitchcock in 

1941, Haley introduced the STP as an extension of the TP in 1962, considering additional conveyance constraints. In instances 

where STP involves multiple objectives, it is known as the multi-objective solid transportation problem (MOSTP). STP and 

MOSTP have garnered increasing attention over the years, particularly in emergency scenarios that demand a swift response 

and an effective management system. The research paper also examines various obstacles in humanitarian logistics that may 

impede disaster operations and explores the implementation of several compromise optimization techniques. The decision-

maker must make optimal decisions while considering the total infrastructure damage and casualties during the relocation 

process. A transportation model is essential to ensure the timely allocation of disaster-affected populations to the resettlement 

area. The proposed model for multi-objective TPs considers two conflicting objectives. It is worth noting that the scholarly 

work on mathematical modeling for MOSTP in DM has seen a surge in attention over the years, and this research paper adds 

to the growing reservoir of expertise in this field. 

The multi-objective solid transportation model (MOSTM) is commonly employed to optimize objective functions and 

constraints in crisp environments. However, applying MOSTM to real-world TP's can lead to inaccuracies in problem 

parameter representation, mainly due to the uncertainty and conflicts inherent in the system (Chakraborty et al., 2019). To 

address these issues, researchers introduced the fuzzy set theory to account for imprecise problem parameters. L.A. Zadeh 

introduced the fuzzy concept in 1965 (Zadeh, 1965), while intuitionistic fuzzy (Atanassov, 1986) was developed in 1986 by 

K.T. Atanassov to address the degree of non-membership function. However, intuitionistic fuzzy has limitations in handling 

indeterminacy. On the other hand, F. Smarandache neutrosophic fuzzy, introduced in 1999, offered a more robust approach 

by utilizing three membership functions - truth membership function (TMF), indeterminacy membership function (IMF), and 

falsity membership function (FMF) - to represent objective functions and constraints. Abdel-Basset expounded on using 

neutrosophic fuzzy sets for approaching TP with improved accuracy and reliability, as discussed in (Abdel-Basset et al., 

2018) (Majumder et al., 2023). In 2010, Wang et al. proposed the concept of a single-valued neutrosophic number (SVNN), 

which consists of a single component with three membership values. In 2014, Deli and Subas expanded on the concept of 

SVNN by introducing the single-value triangular neutrosophic number (SVTNN) and single-value trapezoidal neutrosophic 

number (SVTPNN). SVTNN comprises nine components with three membership values, whereas SVTPNN consists of 

twelve components with three membership functions. In 2019, Chakraborty et al. expanded the notion of SVTPNN to include 

a single-valued pentagonal neutrosophic number (SVPNN) comprising fifteen components and three corresponding 
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membership values. More recently, in 2022, Framila and Sandhiya introduced the idea of single-valued hexagonal 

neutrosophic numbers (SVHNN), extending the SVPNN concept. The SVHNN includes eighteen components and three 

corresponding membership values. 

In the present work, the inputs of the proposed model have been represented as SVHNN. Contrasting hexagonal fuzzy 

numbers with traditional triangular or trapezoidal fuzzy numbers makes it apparent how the former poses specific obstacles 

in its formulation and definition (Chakraborty et al., 2021). Nonetheless, it provides an extra means of articulating 

indeterminate information, which helps apply novel strategies to various practical challenges. The hexagonal methodology 

conveys general information exhaustively while allowing for the practical depiction of ambiguity. It offers decision-makers 

a more realistic means of computation and manipulation than previous fuzzy representation methods. Using triangular or 

trapezoidal fuzzy numbers may be challenging in particular circumstances, such as assignment issues with six variables. To 

resolve these problems, it is essential to use hexagonal fuzzy numbers.  

The existing MOSTM in the literature has been executed on a case study that examines the 2020 Assam flood. The case 

study employs SVHNN as its input format. Our rationale for incorporating SVHNN into the model is based on several factors. 

During the post-disaster phase, the number of casualties and affected populations vary as time progresses; hence, we have 

considered the number of people to be relocated as SVHNN for a more realistic approach. The disaster-affected areas are 

more vulnerable to contagious diseases, which makes it challenging for transport agencies to reach the relocation centers. 

The alteration of travel distance, traffic congestion, and various routes impassable caused by the damage to roads, highways, 

tunnels, and bridges results in a change in the cost and time of transportation along with the expected arrival time at each 

relief center, therefore, are considered as SVHNN. With the expected transportation time alteration, the penalty cost is also 

considered SVHNN. The number of available rooms at the relief centers during the relocation process alters depending upon 

their cleaning and maintenance; the number of working staff available for laundry, meals, and healthcare services can vary 

based on the availability, which results in a change in their working wages, the availability of fresh food and medical 

equipment’s, prescribed medicines, medical consultants can alter based on the transportation accessibility of the relief center. 

Thus, the accommodation cost, time, the capacity of relief centers, and medical costs are considered SVHNN. The queue at 

gas stations because of panic buying and the changes in the number of working gas stations results in an alteration of refueling 

time; the age group of the population sitting at each type of conveyance has a particular requirement to halt the conveyance 

in the mid of the relocation process—further, the lifespan and durability of each type of conveyance result in an alteration in 

maintenance time. Thus, the halt, refueling, maintenance, and working time of conveyance is taken as SVHNN. The proposed 

revised removal area method (RRAM) converts the inputs represented as SVHNN into a crisp number. A compromise 

solution is obtained using goal programming (GP), fuzzy goal programming (FGP), global criterion method (GCM), and 

neutrosophic compromise approach (NCA). 

This study aims to reduce delays in the relocation process, offering a relocation model applicable to contagious and non-

contagious situations. It prioritizes safety by providing separate conveyance for both populations. To address data uncertainty 

following disasters, the study employs the SVHNN methodology. Additionally, it introduces a novel defuzzification 

technique, outlining its advantages over existing methods in detail. The model is tested in a real-life case study of the 2020 

Assam flood, utilizing various compromise techniques to achieve optimal results. 

Furthermore, a thorough sensitivity analysis is conducted for the cost-objective components of MOSTM. These analyses 

provide numerous key managerial insights that are very beneficial considering the cost-efficient relocation of the affected 

population. The particular cases associated with the MOSTM provide valuable insights to the decision-maker in addressing 

the multi-objective relocation problems.  

The current study delves into the following pivotal research queries concerning disaster relief operations: 

1. In the context of post-disaster relocation, how can the organization and management of transportation be optimized 

to efficiently facilitate the simultaneous movement of contagious and non-contagious populations? 

2. One of the main challenges encountered during the post-disaster phase is the alteration of input data. How is this 

uncertainty managed and addressed within the relocation model? 

3. How does conveyance play a crucial role in the relocation process, and what happens when we limit each 

conveyance's working time? 

4. In what ways does the existing literature need to be revised to provide adequate relocation models for both 

contagious and non-contagious populations? What is the pressing need to address the requirements of these specific 

population groups in the post-disaster relocation process? 

The queries mentioned above are thoroughly discussed within the existing literature. Queries 1 and 3 are addressed 

using the MOSTM in section 5.2 Modelling. In contrast, query 2 is addressed by incorporating SVHNN as the data input. A 

detailed explanation is presented in section 3, Mathematical preliminaries, section 4, Proposed revised removal area method 

for converting SVHNN to crisp number, and section 7.1, Input data for the real-life model. Finally, query 4 is addressed 

through sections 2.2: Impact of contagious diseases on affected population in post-disaster phase, 2.3 Causes of Assam 
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disaster and relocation models, and 2.4 Multi-objective solid transportation models for post-disaster phase operating under 

fuzzy environment. The current manuscript is structured subsequently. 

Section 2 presents an extensive and meticulous analysis of pertinent literature to scrutinize the previous studies in the 

corresponding field. Section 3 provides the fundamental mathematical principles associated with the proposed method. 

Section 4 proposes a defuzzification method designed to transform SVHNN to crisp numbers, and the method's efficacy is 

established through a comparative analysis with existing approaches. Section 5 presents a case study centered on the Assam 

flood involving the development of MOSTM for the affected population of Assam. Section 6 elucidates the various 

compromise methods employed to obtain the solution of the proposed MOSTM. Section 7 comprises an in-depth examination 

of the numerical experiments and results obtained, incorporating a sensitivity analysis and a study of some particular cases. 

This analysis aims to comprehensively understand the optimal solution obtained using numerous compromise techniques. 

The sensitivity analysis investigates how varying input parameters affect the solution obtained while examining specific 

cases, providing an opportunity to evaluate the method's effectiveness in practical scenarios. Section 8 provides managerial 

insights derived from the solution of MOSTM, sensitivity analysis, and particular cases. Finally, Section 9 concludes the 

paper, summarizing the proposed approach and outlining future research directions. 

 

2. LITERATURE REVIEW 
 

This section presents a detailed survey of existing literature, specifically highlighting different aspects of the post-disaster 

relocation process for affected populations. Specifically, the study covers the significance of RC during the relocation process, 

the impact of contagious diseases on affected populations after a disaster, the underlying reasons for the Assam catastrophe, 

relocation strategies, and MOSTM's for the post-disaster phase that operates under a fuzzy environment. This literature review 

aims to identify the research gaps and highlight new findings that could contribute to developing the proposed model. To 

facilitate a thorough examination of the literature, this section is subdivided into five subsections, each providing insights 

into a different aspect of the subject matter. A literature review table 1 portrays a detailed review of the literature associated 

with humanitarian logistics. Overall, this literature review provides a comprehensive understanding of the existing research 

in this field, informing the proposed model's development and outlining potential avenues for future research. 

 

 
 

Figure 1. The Figure presents the proposed framework for post-disaster relocation, which includes analyzing consequences, 

implementing modeling under fuzzy inputs, and obtaining compromise solutions through a case study 
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Figure 1 provides a concise summary of the research conducted in the literature. Analyzing the Figure in a clockwise 

direction reveals a thorough examination of the consequences of disasters, encompassing the damage to bridges, 

infrastructure, and roads and the potential spread of contagious diseases. In light of these challenges, post-disaster relocation 

is modeled to minimize cost and time. The cost objective components include transportation, penalties, accommodation, and 

medical expenses, while the time objective components encompass transportation, accommodation, maintenance, halts, and 

refueling. The fuzzy set theory addresses uncertainties in the data associated with cost and time objectives and the constraints 

within the MOSTM. The solution methodology involves the defuzzification of MOSTM from fuzzy to equivalent crisp 

models and implementing a compromise approach to attain the optimal result. 

 

2.1 Relocation Center Significance During The Post-Disaster Relocation Process for The Affected Population 

 

After a calamity, the affected population frequently experiences a state of shock, trauma, and apprehension concerning their 

future as they have lost their loved ones and belongings. Losing one's abode is a significant cause of tension (Macit et al., 

2022), as the rebuilding process may be prolonged. To aid these individuals during this transition phase, RC is made available 

to fulfill their essential requirements, such as safety, seclusion, and minimal comfort conditions (Gao et al., 2017). This center 

serves to avert subsequent disasters and assists in re-establishing a sense of normality. In addition, it is vital to the success of 

the relocation effort as it provides a safe place for people to recover and enables proper planning and execution of relocation 

activities. The specifications and objectives of provisional centers vary depending on the process phase, with the temporary 

stage typically offering more intricate and proficient solutions. Félix et al. (2015) demonstrate the crucial role of RC in 

providing the population with proper basic amenities so that they can stay with dignity, privacy, and protection. Recent studies 

have focused on the advantages of developing temporary RC based on the generative design method (Afonso et al., 2021). 

At the same time, Chen et al. (2021) discussed building Lego architecture for RC for the post-disaster emergency. Abe et al. 

(2018) further discuss the participatory method for post-disaster construction of RC. 

Numerous kinds of literature are considering the identification and establishment of RCs. They primarily focus on 

finding the best-suited location based on social, ecological, and economic factors (Nappi et al., 2015), (Nappi et al., 2019). 

While other developed models to transport the surplus resources within RCs, (Haq Amir et al., 2019) and (Zhou et al., 2020) 

discuss the selection of transportation network for route identification, traveling time, and the number of paths between source 

and RCs. However, there needs to be more research on the transportation of displaced populations to RC, considering the 

cost and time of transportation. 

 

2.2 Impact of Contagious Diseases on Affected Population in The Post-Disaster Phase 

 

Numerous natural calamities, such as tsunamis, landslides, earthquakes, cyclones, and tornadoes, have been linked to the 

proliferation of contagious diseases. These ailments comprise a diverse array of illnesses, including but not limited to diarrhea, 

Japanese encephalitis, measles, influenza, tuberculosis, malaria, chickenpox, dengue, and typhoid fever. These outbreaks can 

cause significant morbidity and mortality among affected populations and pose a major public health challenge. 

 By the definition given by the World Health Organization, an outbreak of a contagious disease is characterized by its 

occurrence in a population at a higher rate than what is usually anticipated. The number of casualties may significantly 

increase without proper precautionary measures. This highlights the critical need for timely and effective responses to prevent 

the spread of contagious diseases and mitigate their impact on affected communities. The frequency and severity of natural 

disasters have intensified in the past few years, leading to massive financial losses and causing the demise of millions of 

individuals. Cyclone Ldai in Zimbabwe (2019) led to a cholera outbreak resulting in 54 deaths and 6000 cases; a flood in 

Bangladesh (2020) resulted in the outbreak of waterborne disease impacting 16000 cases; and in Nigeria (2022), a flood 

resulted in an outbreak of cholera causing 40 deaths and 3000 cases (Greenpeace, 2022). 

Following floods, the potential for infection transmission is notably higher and is a significant concern. The risk of 

infection is predominantly posed by the survivors rather than the deceased (Wilson et al., 2000). Sewage overflow resulting 

from flooding can contaminate freshwater sources often used for drinking and personal hygiene, posing a significant risk of 

infection (Mengel et al., 2014). Pit toilets can further contribute to the pollution of freshwater sources with fecal matter. The 

floodwaters are loaded with pathogens, which can lead to a sharp rise in the number of infections in the affected area, making 

it difficult to carry out the relocation process effectively (Tutu et al., 2019). The situation is exacerbated when contagious 

individuals are relocated alongside non-contagious individuals without adequate attention to appropriate measures and 

prompt relocation. To address these challenges, there is a need for a mathematical model that considers the simultaneous 

relocation of both contagious and non-contagious populations. This model will help optimize these populations' transportation 

to RCs, reducing the risk of further casualties and ensuring everyone is relocated efficiently and safely. 
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2.3 Causes Of Assam Disaster And Relocation Models 

 

The Assam floods of 2020 resulted from a confluence of factors, including heavy rainfall, the release of water from upstream 

dams, and human-induced changes to the river system. The state received 30% more rainfall than usual during the monsoon 

season in 2020, which led to an unexpected surge in the water level of the Brahmaputra and its associated tributaries, causing 

flooding in major state districts. The situation was exacerbated due to a surge in COVID-19 cases and waterborne diseases 

in the impacted regions. During the post-disaster phase, government and private agencies faced challenges in relocating 

affected populations and the risk of disease transmission to unaffected populations (Simonovic et al., 2021). 

 

Table 1. Literature review  

 

 Objectives 

References TP STP UNC Population SLT CS 

 

Cost Time 

    NCT CT TC PC AMC TT HRMT AT 

Xie et al. (2015) ∗ − PR ∗ − LR ∗ ∗ ∗ − − − − 

Jin et al. (2015) ∗ − PR ∗ ∗ SSA ∗ − − − ∗ − − 

Ahmadi et al. (2015) ∗ − ST ∗ − NSA ∗ − ∗ − ∗ − − 

Mohamadi et al. (2016) ∗ − FZ ∗ − HA ∗ ∗ − − ∗ − − 

Xu et al. (2016) ∗ − FZ ∗ − GA ∗ ∗ − − ∗ − − 

Galarce et al. (2017) ∗ − − ∗ − MILP ∗ ∗ − − − − − 

Trivedi et al. (2017) ∗ − FZ ∗ − GP ∗ ∗ − − − − − 

Mohamadi et al. (2017) ∗ − PR ∗ − ECM ∗ ∗ ∗ − ∗ − − 

Liu et al. (2018) − ∗ ST ∗ − RO ∗ ∗ − ∗ ∗ − − 

Tlili et al. (2018) ∗ − − − ∗ GA ∗ − − ∗ − − − 

Nikoo et al. (2018) ∗ − − ∗ − BBA ∗ ∗ − − ∗ − − 

Sarma et al. (2018) ∗ − − ∗ − LO ∗ ∗ ∗ − − − − 

Noham et al. (2018) ∗ − PR ∗ − TSA ∗ ∗ − − ∗ − − 

Yahyaei et al. (2019) ∗ − ST ∗ − MILP ∗ ∗ ∗ ∗ − − − 

Ghasemi et al. (2020) − ∗ ST ∗ − ECM ∗ ∗ ∗ ∗ − − − 

Mansoori et al. (2020) − ∗ PR ∗ − LWT ∗ ∗ − ∗ ∗ − − 

Mohammadi et al. (2021) − ∗ FZ − ∗ THM − ∗ − − − − − 

Jamali et al. (2021) − ∗ FZ − ∗ GP ∗ ∗ − ∗ − − − 

Ghasemi et al. (2022) ∗ − ST ∗ − ECM ∗ ∗ ∗ − ∗ − − 

Eshghi et al. (2022) − ∗ ST − ∗ ECM ∗ ∗ − ∗ − − − 

Sun et al. (2022) ∗ − ST ∗ − ECM ∗ ∗ − ∗ − − − 

Bhakuni et al. (2023) − ∗ FZ − ∗ GCM, FGP ∗ ∗ − ∗ ∗ − − 

This paper − ∗ FZ ∗ ∗ GP, FGP, 

GCM, NCA 

∗ ∗ ∗ ∗ ∗ ∗ ∗ 

Note: UNC=Uncertainty, PR=Probability, ST=Stochastic, FZ=Fuzzy, NCT=Non-contagious, SLT=Solution technique, CT=Contagious, CS=Case study, 
TC=Transportation Cost, PC=Penalty Cost, AMC=Accommodation and medical cost, TT=Transportation time, HRMT= Halt, refueling, and maintenance 

time, AT=Accommodation time, LR=Lagrange relaxation, SSA=Solution search algorithm, NSA=Neighborhood search algorithm, HA=Heuristic algorithm, 

GA=Genetic algorithm, RO=Robust optimization, MILP=Mixed-integer linear programming, GP=Goal programming, BBA=branch and bound algorithm, 
LO=Lingo optimization, TSM=Tabu-search method, ECM=Epsilon-constraint method, FGP=Fuzzy goal programming, GCM=Global criterion method, 

NCA=Neutrosophic compromise approach, THM= Torabi and Hassini method, LWT=Lexicographic Weighted Tchebycheff. The star “∗” symbol indicates 

the presence of the corresponding element in the author's work, while the “−” signifies the absence of the specified element in the respective paper. 

 

Most of the regions of Assam are wracked by at least one to two waves of flooding almost every year. The primary 

cause is climate change, heavy rainfall, deforestation, and the construction of dams and embankments in the Brahmaputra 

basins. The current studies on Assam focus on mitigating waterlog in urban areas, prediction of a flood using hybrid machine 

learning (Sahoo et al., 2021), assessment of riverbank erosion, and factors influencing crop productivity in flood susceptible 

regions (Das et al., 2020), satellite-based monitoring of recent heavy flooding (Mishra et al., 2019) and many more. However, 

as per our current research and literature surveys, we found that there needs to be more research on the humanitarian relocation 

model. The recent relocation literature on Assam focuses on theoretical aspects of women's resilience and adaptability in 

times of migration and the effect of climate-related disasters on human mobilities (Krishnan et al., 2022) (Majumder and 

Saha, 2019); this research broadly focuses on theoretical view on the relocation process but lack mathematical modeling. As 

per our current literature survey, a single mathematical model with a case study based on the Assam flood exists to consider 
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the distribution of emergency supplies in the disaster-impacted region (Sarma et al., 2023). Given the severity and recurrence 

of floods in Assam and the need to decrease the number of human casualties, it is imperative to address the research gap by 

formulating relocation models that account for the relocation of the affected populations. 

 

2.4 Multi-Objective Solid Transportation Models for Post-Disaster Phase Operating Under Fuzzy Environment 

 

In 1941, Hitchcock (Hitchcock, 1941) posited that the Transportation Problem (TP) can be categorized as a specific type of 

Linear Programming Problem (LPP) that is governed by a particular set of constraints and objectives. The primary goal of 

the problem is to identify the optimal transportation policy that minimizes overall transportation expenses. The conventional 

models of TP typically involve multiple input parameters, including unit transportation cost, accessibility of commodities at 

the source, and demand for goods at the destination. Additionally, the concept of TP is extended to a more comprehensive 

framework known as STP (Haley, 1962), incorporating the conveyance capacities as an additional constraint. 

In contemporary times, there has been a discernible surge in researchers' focus on leveraging STP models for both h 

crisp and uncertain environments. Although the data linked with an STP (Majumder et al., 2023) can be crisp on occasion, it 

cannot always be considered as such due to factors like data aggregation from various sources, incomplete information, 

instability in financial markets, and imperfect statistical analysis (Majumder et al., 2023). When dealing with uncertain 

situations, fuzzy set theory is deemed suitable for managing the vagueness, leading to a fuzzy solid transportation problem. 

Several studies, such as Kundu et al. (2013), Bit et al. (1993), and Das et al. (2016), have provided various mathematical 

models of solid transportation problems under a fuzzy environment. Rabiei et al. (2023) introduced a novel multi-objective 

model for volunteer assignment in the post-disaster phase based on the fuzzy inference system. Gharib et al. (2022), using 

the neuro-fuzzy inference system, developed a model for the distribution of shelters in the post-disaster. Almais et al. (2019) 

fuzzy concept for the reconstruction and rehabilitation in the post-disaster phase. 

The humanitarian relocation model is an emerging approach that uses fuzzy logic to support post-disaster relocation 

planning for vulnerable populations. Studies have proposed fuzzy-based models to consider multiple factors, such as 

demographic characteristics, the number of affected people, infrastructure, and environmental factors, in post-disaster 

relocation of vulnerable populations (Najafi et al., 2013). The outcomes of these studies suggest that fuzzy-based models can 

provide more accurate and reliable results than traditional models that do not consider the complex and dynamic nature of 

the relocation process (Trivedi et al., 2017). Using fuzzy-based models can facilitate stakeholder engagement and 

collaboration in decision-making and ensure that the relocation process is equitable, sustainable, and culturally appropriate. 

Moreover, fuzzy-based models can incorporate multiple criteria and scenarios to support uncertainty-free decision-making 

and enable policymakers to identify optimal relocation plans that minimize the negative impacts on vulnerable populations. 

Overall, the humanitarian relocation model can contribute to building more resilient communities and reducing the adverse 

effects of disasters on vulnerable populations. 

 

2.5 Research Gaps, Motivation, and Contributions 

 

The study's key aspects encompass identified gaps in current literature, the driving force behind the research, and the unique 

contributions it seeks to make in post-disaster humanitarian relocation. These points illuminate the study's direction and 

emphasize its objectives in advancing comprehensive and efficient relocation models. 

 

1. The existing post-disaster relocation literature emphasizes non-contagious populations, leaving a gap in 

concurrently addressing both contagious and non-contagious groups. This omission is critical, given the 

specialized care required for contagious individuals and the potential for disease transmission, leading to increased 

mortality rates.  

2. Our study aims to bridge this gap by developing a relocation model that effectively accommodates contagious and 

non-contagious populations, prioritizing safety during relocation. 

3. Previous humanitarian relocation research emphasizes timely movement but overlooks conveyance types, 

especially for contagious and non-contagious populations. Our research addresses this by aiming to create a 

comprehensive humanitarian relocation model that accounts for distinct conveyance types for each population 

group. 

4. New constraints are introduced to make the model more practical, reflecting real-life scenarios, such as restrictions 

on conveyance working types and different time aspects of the conveyance, such as halt, refueling, and 

maintenance. This ensures the model is theoretical and applicable in practical, dynamic post-disaster. 

5. By incorporating fuzzy concepts, such as uncertainty and imprecision, into the model, decision-makers can account 

for the complexity and unpredictability of post-disaster situations. This approach leads to a more flexible and 

adaptable model applicable in various disaster scenarios, including those involving contagious populations. 
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3. MATHEMATICAL PRELIMINARIES 
 

In this section, SVHNN is presented along with initial definitions. The benefits of employing SVHNN over a traditional fuzzy 

set are emphasized, particularly in handling uncertainties and vagueness in practical situations. Fuzzy set theory, introduced 

in 1965, has opened avenues for applying it to various optimization problems faced in real-world scenarios. This theory has 

demonstrated remarkable efficacy in resolving intricate optimization problems with indefinite and uncertain information. It 

has provided a means of representing the data's ambiguity and making well-informed decisions. The proposed defuzzification 

approach for SVHNN builds on this concept and offers further enhancements in addressing these challenges. 

 

 
 

Figure 2. The Membership functions of the hexagonal neutrosophic number 

 

3.1 Fuzzy Set 

 

Let X be a crisp set and let φS̃ be a membership function that takes values in the interval [0,1]. The fuzzy set S̃ in X is defined 

as a collection of ordered pairs S̃ (Zadeh, 1985) in X is a set of ordered pair s̃ = {(x, φS̃): x ∈ X, φS̃ ∈ [0,1]}, where x 

represents an element of X, and φS̃ denotes the degree of membership of x in the fuzzy set S̃. Usually, this set is represented 

by the pair (x, φS̃). 
 

3.2 Single-Valued Neutrosophic Set 

 

A single-valued neutrosophic set: As defined (Wang et al., 2010), is denoted by T̃ and is represented by the ordered triple 

⟨x; [αT̃, βT̃, γT̃]⟩, where x ∈ X is a single-valued independent variable, and αT̃, βT̃, and γT̃ refer to the TMF, IMF, and FMF, 

respectively. 

 

3.3 Single-Valued Hexagonal Neutrosophic Set 

 

A Single-valued hexagonal neutrosophic number (SVHNN) is characterized as Θ̃ = (η1, η2, η3, η4, η5, η6)(ξ1, ξ2, ξ3, ξ4, ξ5, 
ξ6)(γ1, γ2, γ3, γ4, γ5, γ6); ΛΘ̃, ΨΘ̃, ΔΘ̃}  where η1, η2, η3, η4, η5, η6, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, γ1,  γ2, γ3, γ4, γ5, γ6,  ∈  R  and are 

components of SVHNN Θ̃. ΛΘ̃ is the degree of TMF, ΨΘ̃ is the degree of IMF, ΔΘ̃ is the degree of FMF. The TΘ̃ is TMF, IΘ̃ 

is IMF, FΘ̃ is FMF (Framila et al., 2022). The graphical representation of Θ̃ is shown in Figure 2. The membership functions 

are described as follows: 
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TΘ̃ =

{
 
 
 
 
 

 
 
 
 
 ΛΘ̃ (

𝑥 − η1
η2 − η1

)  𝑖𝑓 η1 ≤ 𝑥 ≤ η2

ΛΘ̃ +
(1 − ΛΘ̃)(𝑥 − η2)

η3 − η2
 𝑖𝑓 η2 ≤ 𝑥 ≤ η3

1 𝑖𝑓 η3 ≤ 𝑥 ≤ η4

ΛΘ̃ +
(1 − ΛΘ̃)(η5 − 𝑥)

η5 − η4
 𝑖𝑓 η4 ≤ 𝑥 ≤ η5

ΛΘ̃ (
η6 − 𝑥

η6 − η5
)  𝑖𝑓 η5 ≤ 𝑥 ≤ η6

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 
IΘ̃ 

(𝑥) =

{
 
 
 
 

 
 
 
 ΨΘ̃ +

(ΨΘ̃−1)(𝑥−ξ1)

ξ2−ξ1
 𝑖𝑓 ξ1 ≤ 𝑥 ≤ ξ2

ΨΘ̃ (
ξ3−x

ξ3−ξ2
)  𝑖𝑓 ξ2 ≤ 𝑥 ≤ ξ3

0 𝑖𝑓 ξ3 ≤ 𝑥 ≤ ξ4

ΨΘ̃ (
x−ξ4

ξ5−ξ4
)  𝑖𝑓 ξ4 ≤ 𝑥 ≤ ξ5

ΨΘ̃ +
(1−ΨΘ̃)(𝑥−ξ5)

ξ6−ξ5
 𝑖𝑓 ξ5 ≤ 𝑥 ≤ ξ6

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

FΘ̃ =

{
 
 
 
 
 

 
 
 
 
 ΔΘ̃ +

(ΔΘ̃ − 1)(𝑥 − γ1)

γ2 − γ1
 𝑖𝑓 γ1 ≤ 𝑥 ≤ γ2

ΔΘ̃ (
γ3 − x

γ3 − γ2
)  𝑖𝑓 γ2 ≤ 𝑥 ≤ γ3

0 𝑖𝑓 γ3 ≤ 𝑥 ≤ γ4

ΔΘ̃ (
x − γ4
γ5 − γ4

)  𝑖𝑓 γ4 ≤ 𝑥 ≤ γ5

ΔΘ̃ +
(1 − ΔΘ̃)(𝑥 − γ5)

γ6 − γ5
 𝑖𝑓 γ5 ≤ 𝑥 ≤ γ6

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

4. PROPOSED REVISED REMOVAL AREA METHOD FOR CONVERTING SINGLE-

VALUED HEXAGONAL NEUTROSOPHIC NUMBER TO CRISP NUMBER 
 

In this section, we have introduced the RRAM and the methodology to derive the defuzzification function for SVHNN. The 

effectiveness of this proposed method has been demonstrated through a comparative analysis with existing literature. 

In 2018, Chakraborty et al. proposed the removal area method (RAM), which introduced a defuzzification function to 

transform triangular neutrosophic numbers into equivalent crisp numbers. Subsequently, in 2019, Chakraborty (Chakraborty 

et al., 2019) applied the same approach to convert linear pentagonal fuzzy numbers to equivalent crisp numbers. RAM's 

fundamental principle is to remove different regions of the fuzzy number and calculate the area of each removed region. The 

average of these areas is then computed, and the resulting function is designated as the defuzzification function for the 

corresponding fuzzy number. Our proposed RRAM is also based on the partial removal of different regions of a fuzzy number. 

However, we additionally consider that the chosen area in each step of RRAM should encompass the previously selected 

region. We have provided a detailed step-by-step procedure for obtaining the defuzzification function. 

 

Step 1. The decision-maker input their SVHNN as follows: 

 

�̃� = {(𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5, 𝜂6)(𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6)(𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5, 𝛾6); 𝛬�̃� , 𝛹�̃� , 𝛥�̃�} 
 

Step 2. The SVHNN exhibits TMF, IMF, and FMF, and the defuzzification function for each membership function is 

computed individually. Subsequently, the average of all the memberships is determined to achieve the 

required defuzzification function for SVHNN. Figure 3 illustrates the various regions of TMF, and the area 

of each region is evaluated as follows: 

• AR(a) = area of an enclosed region from the first step in Figure 3 = 𝜂1𝛬�̃� 
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• AR(b) = area of an enclosed region from the second step in Figure 3 = 𝜂2𝛬�̃� 

• AR(c) = area of an enclosed region from the third step in Figure 3 = 𝜂3 

• AR(d) = area of an enclosed region from the fourth step in Figure 3 = 𝜂4 

• AR(e) = area of an enclosed region from the fifth step in Figure 3 = 𝜂5𝛬�̃� +
(𝜂4+𝜂5)(1−𝛬�̃�)

2
 

• AR(f) = area of an enclosed region from the sixth step in Figure 3 = 
(𝜂5+𝜂6)𝛬�̃�

2
+

(𝜂4+𝜂5)(1−𝛬�̃�)

2
 

• DT = defuzzification function of TMF =
𝐴𝑅(𝑎)+𝐴𝑅(𝑏)+𝐴𝑅(𝑐)+𝐴𝑅(𝑑)+𝐴𝑅(𝑒)+𝐴𝑅(𝑓)

6
 

• DT =
𝜂1𝛬�̃�+𝜂2𝛬�̃�+𝜂3+𝜂4+𝜂5𝛬�̃�+

(𝜂4+𝜂5)(1−𝛬�̃�)

2
+
(𝜂5+𝜂6)𝛬�̃�

2
+
(𝜂4+𝜂5)(1−𝛬�̃�)

2

6
 

= 
2𝜂3+4𝜂4+2𝜂5+2𝜂1𝛬�̃�+2𝜂2𝛬�̃�−2𝜂4𝛬�̃�+𝜂5𝛬�̃�+𝜂6𝛬�̃�

12
 

 

Step 3. The different region of IMF is delineated through Figure 4. The area of each region is calculated as follows: 

• AR(g) = area of an enclosed region from the first step in Figure 4 = 𝜉1(1 − 𝛹�̃�) 
• AR(h) = area of an enclosed region from the second step in Figure 4 = 𝜉2(1 − 𝛹�̃�) 
• AR(i) = area of an enclosed region from the third step in Figure 4 = 𝜉3 

• AR(j) = area of an enclosed region from the fourth step in Figure 4 = 𝜉4 

• AR(k) = area of an enclosed region from the fifth step in Figure 4 = 𝜉5(1 − 𝛹�̃�) +
(𝜉4+𝜉5)𝛹�̃�

2
 

• AR(l) = area of an enclosed region from the sixth step in Figure 4 = 
(𝜉5+𝜉6)(1−𝛹�̃�)

2
+

(𝜉4+𝜉5)𝛹�̃�

2
 

• DI = defuzzification function of IMF =
𝐴𝑅(𝑔)+𝐴𝑅(ℎ)+𝐴𝑅(𝑖)+𝐴𝑅(𝑗)+𝐴𝑅(𝑘)+𝐴𝑅(𝑙)

6
 

• DI =
𝜉1(1−𝛹�̃�)+𝜉2(1−𝛹�̃�)+𝜉3+𝜉4+𝜉5(1−𝛹�̃�)+

(𝜉4+𝜉5)𝛹�̃�
2

++
(𝜉5+𝜉6)(1−𝛹�̃�)

2
+
(𝜉4+𝜉5)𝛹�̃�

2

6
 

• DI =
2𝜉1+2𝜉2+2𝜉3+2𝜉4+3𝜉5+𝜉6−2𝜉1𝛹�̃�−2𝜉2𝛹�̃�+2𝜉4𝛹�̃�−𝜉5𝛹�̃�−𝜉6𝛹�̃�

12
 

 

Step 4. The different region of FMF is delineated through Figure 5. The area of each region is calculated as follows: 

• AR(g) = area of an enclosed region from the first step in Figure 5 = 𝛾1(1 − 𝛥�̃�) 
• AR(h) = area of an enclosed region from the second step in Figure 5 = 𝛾2(1 − 𝛥�̃�) 
• AR(i) = area of an enclosed region from the third step in Figure 5 = 𝛾3 

• AR(j) = area of an enclosed region from the fourth step in Figure 5 = 𝛾4 

• AR(k) = area of an enclosed region from the fifth step in Figure 5 = 𝛾5(1 − 𝛥�̃�) +
(𝛾4+𝛾5)𝛥�̃�

2
 

• AR(l) = area of an enclosed region from the sixth step in Figure 5 = 
(𝛾5+𝛾6)(1−𝛥�̃�)

2
+

(𝛾4+𝛾5)𝛥�̃�

2
 

• DF = defuzzification function of FMF =
𝐴𝑅(𝑔)+𝐴𝑅(ℎ)+𝐴𝑅(𝑖)+𝐴𝑅(𝑗)+𝐴𝑅(𝑘)+𝐴𝑅(𝑙)

6
 

• DF = 
𝛾1(1−𝛥�̃�)+𝛾2(1−𝛥�̃�)+𝛾3+𝛾4+𝛾5(1−𝛥�̃�)+

(𝛾4+𝛾5)𝛥�̃�
2

++
(𝛾5+𝛾6)(1−𝛥�̃�)

2
+
(𝛾4+𝛾5)𝛥�̃�

2

6
 

• DF = 
2𝛾1+2𝛾2+2𝛾3+2𝛾4+3𝛾5+𝛾6−2𝛾1𝛥�̃�−2𝛾2𝛥�̃�+2𝛾4𝛥�̃�−𝛾5𝛥�̃�−𝛾6𝛥�̃�

12
 

 

Step 5. The defuzzification function of SVHNN is acquired by taking the average of the values of DT, DI and DF. 

Therefore, the resultant function is: 

𝐷(𝑆𝑉𝐻𝑁𝑁) =
𝐷𝑇+𝐷𝐼+𝐷𝐹

3
  

=
 2𝜂3+4𝜂4+2𝜂5+2𝜂1𝛬�̃�+2𝜂2𝛬�̃�−2𝜂4𝛬�̃�+𝜂5𝛬�̃�+𝜂6𝛬�̃�

12
+

  
2𝜉1+2𝜉2+2𝜉3+2𝜉4+3𝜉5+𝜉6−2𝜉1𝛹�̃�−2𝜉2𝛹�̃�+2𝜉4𝛹�̃�−𝜉5𝛹�̃�−𝜉6𝛹�̃�

12
+

   
2𝛾1+2𝛾2+2𝛾3+2𝛾4+3𝛾5+𝛾6−2𝛾1𝛥�̃�−2𝛾2𝛥�̃�+2𝛾4𝛥�̃�−𝛾5𝛥�̃�−𝛾6𝛥�̃�

12
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Figure 3. Differently shaded regions of truth membership function 

 

 
 

Figure 4. Different shaded regions of indeterminacy membership function 

 

 
 

Figure 5. Different shaded regions of falsity membership function 

 

Following the defuzzification function D(SVHNN) obtained from Step 5, the MOSTM in section 5 is converted to an 

equivalent crisp number. The obtained model can be solved using standard methods. 
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4.1 Verification of The Proposed Defuzzification Method with Previously Published Research 

 

We investigated various methods from the existing literature to validate the performance of our proposed defuzzification 

method. The comprehensive examination is as follows: 

 

4.1.1 Comparison with The Assignment Problem from (Chakraborty et al., 2018) 

 

The work presented (Chakraborty et al., 2018) illustrates a problem on page 20 that deals with route selection, in which  

the RAM approach was employed to convert fuzzy parameters into equivalent crisp numbers. However, in our study, we have 

opted to employ the RRAM method for the same problem and achieved superior outcomes. Specifically, the problem involves 

three distinct types of trucks located at a terminal station that must transport goods to three factories while minimizing travel 

costs. To better convey the essence of the problem, a graphical depiction is presented in Figure 6. Using the defuzzification 

technique outlined in section 4, as proposed in this paper, we have transformed the transportation costs from Table 7 on page 

21 of (Chakraborty et al., 2018) into equivalent crisp numbers, as shown in Table 1. This approach has been pivotal in our 

research and yielded superior results in solving this problem. 

 We have employed the same approach described to ensure an impartial solution to the assignment problem 

(Chakraborty et al., 2018). The methodology involves two steps. First, we select the minimum value from each row in Table 

1 and then subtract that value from every element in the corresponding row. The resulting values are presented in Table 2. 

Second, we select the minimum value from each column in Table 2 and subtract that value from every element in the 

corresponding column. This process yields the results shown in Table 3.  

It can be observed that three minimum lines are necessary to cover all the zeroes in the matrix shown in Table 4. 

Consequently, truck-1 will go to factory-3, truck-2 will go to factory-2, and truck-3 will go to factory-1. The cost of 

transportation is minimized to 2.72+1.83+3.72=8.27. In contrast, the minimum transportation cost obtained by (Chakraborty 

et al., 2018) is 8.55, more significant than the proposed RRAM's result of 8.27. Table 5 compares the final optimal solutions 

obtained using our proposed RRAM and the existing method (Chakraborty et al., 2018). Since the problem aims to be 

minimized, we can conclude that the proposed RRAM provides better results than RAM. 

 

 
 

Figure 6. Diagrammatic representation of the assignment problem stated in (Chakraborty, 2018) 

 

Table 2. Transportation cost in equivalent crisp environment 

 

 Factory-1 Factory-2 Factory-3 

Truck-1 4.1 2.53 2.72 

Truck-2 1.92 1.83 2.29 

Truck-3 3.72 5.04 4.76 
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Table 3. Select the minimum from each row and subtract each row element from that minimum element 

 

 Factory-1 Factory-2 Factory-3 

Truck-1 1.57 0 0.19 

Truck-2 0.09 0 0.46 

Truck-3 0 1.32 1.04 

 

Table 4. Select the minimum from each column and subtract elements of the column from that minimum element 

 

 Factory-1 Factory-2 Factory-3 

Truck-1 1.57 0 0 

Truck-2 0.09 0 0.27 

Truck-3 0 1.32 0.85 

 

Table 5. The comparison of optimal solution (minimizing) of assignment problem obtained using proposed and existing 

method 

 

 Transportation cost 

Proposed method 8.27 

Existing method (Chakraborty et al., 2018) 8.55 

 

4.1.2 Comparison with The Assignment Problem from (Das et al., 2020) 

 

The TP stated in (Das et al., 2020) consists of the transportation of dress from three plants to three different warehouses in 

Odisha. The objective is to minimize the overall cost of transportation. The problem stated on page 9 of (Das et al., 2020) 

exists in a fuzzy environment. Using the proposed RRAM from section 4, the problem is defuzzified, converted to an 

equivalent crisp problem, and delineated using Table 6. 

 

Table 6. Unit transportation cost along with supply and demand 

 

 Warehouse-1 Warehouse-2 Warehouse-3 Supply 

Factory-1 12 3 8 22 

Factory-2 5 6 6 49 

Factory-3 9 6 1 48 

Demand 44 57 50  

 

Table 7. The allocation of supply and demand constraint 

 

 Warehouse-1 Warehouse-2 Warehouse-3 Supply 

Factory-1 12 3(22) 8 22 

Factory-2 5(12) 6(35) 6(2) 49 

Factory-3 9 6 1(48) 48 

Demand 44 57 50  

 

Table 8. The comparison of optimal solution (minimizing) obtained using the proposed and existing method 

 

 Transportation cost 

Proposed method 396 

Existing method (Das et al., 2020) 418 

 

The solution of Table 6 is obtained using the same technique adopted by the author (Das et al., 2020). The reason for 

considering the same technique is that other methods may provide superior or inferior results. Still, using the same techniques, 

we can compare the solutions based on the same ground and thus Figure out which defuzzification technique is better. The 

final solution obtained after solving Table 6 is represented in Table 7. The minimum cost of transportation 

=3×22+5×12+6×35+6×2+1×48=396. Table 8 compares the final optimal solution obtained using our proposed RRAM and 
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the existing method from (Das et al., 2020). Since the problem is minimized, the proposed method solution provides superior 

results. 

 

4.1.3 Comparison of Proposed Revised Removal Area Method with (Nafei et al., 2019) and (Das et al., 2020) 

 

In the preceding sections, 4.1.1 and 4.1.2, we compared different defuzzification methods based on a minimization problem. 

To broaden the scope of comparison and make it more comprehensive, we are now including a maximization problem in this 

section. Specifically, we will examine the problem described on pages 8 of (Nafei et al., 2019) and 89 of (Das et al., 2020). 

 

Maximize 𝑍 = 4̃𝑥1 + 3̃𝑥2 

subject to, 

4̃𝑥1 + 2̃𝑥2 ≤ 12̃  

3̃𝑥1 + 6̃𝑥2 ≤ 5̃  

𝑥1, 𝑥2 ≥ 0, 

 

The optimization mentioned above problem exists in the fuzzy environment, which is converted to equivalent crisp form 

using the proposed RRAM from section 4. After applying the defuzzification technique, the obtained crisp problem as: 

 

Maximize 𝑍 = 3.81𝑥1 + 3.01𝑥2 

subject to, 

4.44𝑥1 + 1.94𝑥2 ≤ 12.44  

3.16𝑥1 + 6.81𝑥2 ≤ 4.66  

𝑥1, 𝑥2 ≥ 0, 

 

Solving the above crisp optimization problem, we obtained the optimal value of the objective function as Z=5.6. Table 

9 compares the final optimal solution obtained using our proposed RRAM and the existing method from (Nafei et al., 2019) 

and (Das et al., 2020). Since the problem is maximizing, the solution obtained using the proposed method provides better 

results when compared with (Nafei et al., 2019) and (Das et al., 2020). 

 

Table 9. The comparison of optimal solution(maximizing) obtained using the proposed and existing method 

 

 Objective function value 

Proposed method 5.6 

Existing method (Nafei et al., 2019) 2.4 

Existing method (Das et al., 2020) 4.2 

 

5. PROBLEM STATEMENT AND MODEL FORMATION 
 

This section thoroughly examines the 2020 Assam flood, employing a case study approach that incorporates mathematical 

modeling to facilitate the relocation of both contagious and non-contagious populations affected by the disaster. The pictorial 

representation of damage caused by the disaster is illustrated in Figure 7. The discourse delves into the fundamental causes 

of the calamity, with particular emphasis on the impact of water-borne diseases, and provides an in-depth analysis of post-

disaster data. Furthermore, this study brings to the fore the scarcity of essential amenities in the afflicted area. By leveraging 

mathematical modeling, this study presents a novel strategy for DM, which enhances the systematic and efficient relocation 

of affected populations. This study contributes valuable insights into the field of DM and highlights the importance of 

mathematical modeling for an effective relocation process. 

 

5.1 Case Study 

 

The case study is conducted in Assam, a state in India. Assam accounts for about 9.40% of India's total flood-prone area and 

39.58% of its area. It signifies that the flood-prone area of Assam is four times the national mark of the flood-prone area of 

the country. Assam possesses a vast network of rivers, with Brahmaputra and Barak being its two major rivers. Due to climate 

change and the increase in global temperature, there has been a significant increase in the annual monsoon rainfall in different 

regions of Assam, further resulting in the rise in water levels of major rivers like Brahmaputra and Barak. With the increase 

in water level, most districts of Assam witness flooding and landslides every year. The significant floods that shocked Assam 
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were in 1954, 1962, 1972, 1977, 1984, 1988, 1998, 2002, 2004, 2012, 2019, and 2020. As per the government of Assam, 

floods account for an average yearly loss of approximately Rs. 200 crores (Assam government report 1, 2020). 

 

 
 

Figure 7. The news related to the spread of COVID-19 and vector-borne diseases during a flood in Assam, 2020. (Deccan 

herald, 2020), (Radio France international, 2020), (Economic times, 2020), and (Times of India, 2020) 

 

In 2020, during monsoon season, Assam received 1164 mm of rainfall, 30% more than usual. The nearby states, Sikkim 

and Arunachal Pradesh, also received excess rainfall of around 16% and 45%, respectively (India meteorological department, 

2020). This resulted in heavy floods across many districts of Assam. According to Assam's Revenue and Disaster 

Management, flood directly and indirectly affected over 7 million people and 5,474 villages, damaging 10,204 permanent 

and 47,847 temporary houses, 10,204 embankments, and 174 bridges. A total of 0,2 million hectares of crop area was 

destroyed. It is estimated that 123 people lost their lives, and thousands lost their homes (Assam government report 2, 2020). 

The families stuck in the flooded zone have to face numerous health challenges. 

There were reports of Dengue, Malaria, and Japanese Encephalitis caused by the stagnant water due to floods. The fear 

of COVID-19 stymied the diagnosis of the patients, and restrictions further impeded the attempts to eliminate mosquito 

breeding grounds and create awareness among all the populations at high risk of getting contagious. As a result of 

infrastructure failure, the supply of resources could have been better, making it difficult for healthcare personnel to reach the 

affected population. Numerous articles focused on the population’s hazardous conditions in the flood-affected areas and the 

difficulty in the relocation process due to the COVID-19 outbreak (Indian express, 2020). The news articles delineating the 

spread of COVID-19 and flooding in different regions of Assam and the hardships faced during relocation are represented in 

Figure 8. 

• Contemplating the availability of budget and the need for prompt population relocation, the model objectives are 

designed to minimize the relocation cost and time. The biggest challenges persisting in the flood-affected areas 

were the scarcity of food and fresh drinking water, unavailability of medical supplies, and damage to water, 

sanitation, and electricity facilities. Thus, to counter this dire need for relocation, we have introduced a penalty 

function in our proposed model.  

• A thorough study was conducted on the data available on the Assam DM authority website from 03.07.2020 to 

14.10.2020, and using that, five districts were selected as source points for relocation. These selections were based 

entirely on the intensity of damage and unavailability of essential amenities to the population staying in these 

districts. Based on the same data, we found that three districts were the least affected and were selected as RCs 

locations. The pictorial representation of source points and RCs is represented in Figure 9. 

• In the post-disaster phase, the data associated with the number of the affected population available for relocation 

fluctuated daily. The number of damaged roads and bridges increased, resulting in alteration of path, time, and 

cost of transportation between source and RCs. To counter this challenge, we have used fuzzy as the input data for 

the proposed model.  
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Figure 8. The submerged houses, damaged crops, roads, and NDRF rescue operation carried out during the Assam flood in 

2020 (clockwise). (Daily news and analysis, 2020), (Grain mart, 2020), and (Zee news, 2020) 

 

 
 

Figure 9. An illustrative visualization of the source and relocation centers established for the relocation of affected 

populations during the Assam flood of 2020 

 

5.2 Modelling 

 

In this section, we introduce the MOSTM for the relocation of the affected population of Assam, and a brief interpretation 

of the proposed model is highlighted. 

 

5.2.1 Indices 

 

• G Set of tentative sources, indexed by g 

• S Set of RCs, indexed by s 

• Q Set of conveyance for non-contagious population, indexed by q 

• M Set of conveyance for contagious population, indexed by m 
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5.2.2 Parameter 

 

• 𝐶�̃�𝑔𝑠𝑞 fuzzy cost of transportation of non-contagious individual from source 𝑔 to RC 𝑠 using qth type 

conveyance 

• 𝐶�̃�𝑔𝑠𝑚 fuzzy cost of transportation of contagious individual from source 𝑔 to RC 𝑠 using 𝑚𝑡ℎ type conveyance 

• 𝑃�̃�𝑔𝑠𝑞 fuzzy penalty cost, which is imposed if a non-contagious population traveling from source through qth 

type conveyance does not reach RC 𝑠 within the expected time 

• 𝑃�̃�𝑔𝑠𝑚 fuzzy penalty cost, which is imposed if contagious population traveling from source 𝑔 through mth type 

conveyance does not reach RC 𝑠 within the expected time 

• 𝐴𝑀�̃�𝑠 fuzzy accommodation and medical cost of the non-contagious individual staying at RC 𝑠  

• 𝐴𝑀�̃�𝑠 fuzzy accommodation and medical cost of the contagious individual staying at RC 𝑠 

• 𝑇�̃�𝑔𝑠𝑞 fuzzy time taken to transport non-contagious population from source 𝑔 to RC 𝑠 using qth type conveyance 

• 𝑇�̃�𝑔𝑠𝑚 fuzzy time taken to transport contagious population from source 𝑔 to RC 𝑠 using 𝑚𝑡ℎ type conveyance 

• 𝐸�̃�𝑔𝑠𝑞 fuzzy expected time within which non-contagious population traveling from source 𝑔 using 𝑞𝑡ℎ type 

Conveyance must reach RC 𝑠 

• 𝐸�̃�𝑔𝑠𝑚 fuzzy expected time within which contagious population traveling from source 𝑔 using 𝑚𝑡ℎ type the 

conveyance must reach RC 𝑠 

• 𝐻𝑅𝑀𝑇𝑁̃
𝑔𝑠𝑞 fuzzy halt, refueling, and maintenance time taken by 𝑞𝑡ℎ type conveyance transporting non-

contagious population traveling from source 𝑔 to RC 𝑠 

• 𝐻𝑅𝑀𝑇𝐼̃
𝑔𝑠𝑚 fuzzy halt, refueling, and maintenance time taken by 𝑚𝑡ℎ type conveyance transporting contagious 

population traveling from source 𝑔 to RC 𝑠 

• 𝐴𝐶�̃�𝑠 fuzzy time taken to accommodate non-contagious population at 𝑠𝑡ℎ RC 

• 𝐴𝐶𝐼̃ 𝑠 fuzzy time taken to accommodate contagious population at 𝑠𝑡ℎ RC  

• 𝑁�̃�𝑞 fuzzy number of the non-contagious population that qth type conveyance can carry 

• 𝑁�̃�𝑚 fuzzy number of the contagious populations mth type conveyance can carry 

• 𝐶𝑃�̃�𝑠 fuzzy capacity of 𝑠𝑡ℎ RC for non-contagious population 

• 𝐶𝑃𝐼̃ 𝑠 fuzzy capacity of 𝑠𝑡ℎ RC for contagious population 

• 𝑃𝑃�̃�𝑔 fuzzy number of the non-contagious population that must be transported from source 𝑔 to relocation 

centers. 

• 𝑃𝑃𝐼̃ 𝑔 fuzzy number of the contagious populations that must be transported from source 𝑔 to relocation centers. 

• 𝑇�̃� fuzzy total number of contagious and non-contagious population that needs to be transported to relocation 

centers 

• 𝐿𝑊�̃�𝑞 fuzzy limited working time of 𝑞𝑡ℎ type conveyance carrying non-contagious population 

• 𝐿𝑊�̃�𝑚 fuzzy limited working time of 𝑚𝑡ℎ type conveyance carrying contagious population 

• 𝑇�̃� fuzzy total time within which relocation of both contagious and non-contagious populations must be 

completed 

• 𝑇�̃� fuzzy total budget allocated for transportation of population 

 

5.2.3 Decision Variables 

 

• 𝑥𝑔𝑠𝑞  unknown number of non-contagious individuals transported from source 𝑔 to RC 𝑠  using 𝑞𝑡ℎ  type 

conveyance 

• 𝑦𝑔𝑠𝑚 unknown number of contagious individuals transported from source 𝑔 to RC 𝑠 using 𝑚𝑡ℎ type conveyance 

• 𝜌𝑔𝑠𝑞 = {
1 𝑖𝑓 𝑥𝑔𝑠𝑞 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• 𝛾𝑔𝑠𝑚 = {
1 𝑖𝑓 𝑦𝑔𝑠𝑚 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5.2.4 Mathematical Model 

 

𝑀𝑖𝑛𝑍1 = ∑∑∑𝐶�̃�𝑔𝑠𝑞

𝑄

𝑞=1

𝑥𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

+∑∑∑ 𝐶�̃�𝑔𝑠𝑚

𝑀

𝑚=1

𝑦𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

+∑∑∑𝑃�̃�𝑔𝑠𝑞

𝑄

𝑞=1

𝜌𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

 

+∑∑∑ 𝑃�̃�𝑔𝑠𝑚

𝑀

𝑚=1

𝛾𝑔𝑠𝑚

𝑆

𝑠=1

+∑∑∑𝐴𝑀�̃�𝑠

𝑄

𝑞=1

𝑥𝑔𝑠𝑞 +∑∑∑ 𝐴𝑀�̃�𝑠

𝑀

𝑚=1

𝑦𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

𝑆

𝑠=1

𝐺

𝑔=1

𝐺

𝑔=1

 

(1) 

𝑀𝑖𝑛𝑍2 = ∑∑∑(𝑇�̃�𝑔𝑠𝑞 + 𝐻𝑅𝑀𝑇𝑁̃
𝑔𝑠𝑞 + 𝐴𝐶�̃�𝑠)

𝑄

𝑞=1

𝜌𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

+∑∑∑(𝑇�̃�𝑔𝑠𝑚 + 𝐻𝑅𝑀𝑇𝐼̃
𝑔𝑠𝑚 + 𝐴𝐶𝐼̃ 𝑠)

𝑀

𝑚=1

𝛾𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

 (2) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑃�̃�𝑔𝑠𝑞 = {
𝑃�̃� 𝑖𝑓 𝑇�̃�𝑔𝑠𝑞 > 𝐸�̃�𝑔𝑠𝑞  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 𝑔 = 1, 2, . . . , 𝐺, 𝑠 = 1, 2, . . . , 𝑆, 𝑞 = 1, 2, . . . , 𝑄, (3) 

𝑃�̃�𝑔𝑠𝑚 = {
𝑃�̃� 𝑖𝑓 𝑇�̃�𝑔𝑠𝑚 > 𝐸�̃�𝑔𝑠𝑚  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 𝑔 = 1, 2, . . . , 𝐺, 𝑠 = 1, 2, . . . , 𝑆,𝑚 = 1, 2, . . . , 𝑀, (4) 

∑∑𝑥𝑔𝑠𝑞 ≤

𝑆

𝑠=1

𝐺

𝑔=1

𝑁�̃�𝑞 𝑞 = 1,2, … , 𝑄, (5) 

∑∑𝑦𝑔𝑠𝑚 ≤

𝑆

𝑠=1

𝐺

𝑔=1

𝑁�̃�𝑚 𝑚 = 1,2, … ,𝑀, (6) 

∑∑𝑥𝑔𝑠𝑞 ≤

𝑄

𝑞=1

𝐺

𝑔=1

𝐶𝑃�̃�𝑠 𝑠 = 1,2, … , 𝑆, (7) 

∑∑ 𝑦𝑔𝑠𝑚 ≤

𝑀

𝑚=1

𝐺

𝑔=1

𝐶𝑃𝐼̃ 𝑠  𝑠 = 1,2, … , 𝑆, (8) 

∑∑𝑥𝑔𝑠𝑞 ≤

𝑄

𝑞=1

𝑆

𝑠=1

𝑃𝑃�̃�𝑔 𝑔 = 1,2, … , 𝐺, (9) 

∑∑ 𝑦𝑔𝑠𝑚 ≤

𝑀

𝑚=1

𝑆

𝑠=1

𝑃𝑃𝐼̃ 𝑔 𝑔 = 1,2, … , 𝐺, (10) 

∑∑∑𝑥𝑔𝑠𝑞 +

𝑄

𝑞=1

∑∑∑ 𝑦𝑔𝑠𝑚

𝑀

𝑚=1

≤

𝑆

𝑠=1

𝐺

𝑔=1

𝑆

𝑠=1

𝐺

𝑔=1

𝑇�̃� (11) 

∑∑(𝑇�̃�𝑔𝑠𝑞+𝐻𝑅𝑀𝑇𝑁̃
𝑔𝑠𝑞)𝜌𝑔𝑠𝑞 ≤

𝑆

𝑠=1

𝐺

𝑔=1

𝐿𝑊�̃�𝑞 𝑞 = 1,2, … , 𝑄, (12) 

∑∑(𝑇�̃�𝑔𝑠𝑚+𝐻𝑅𝑀𝑇𝐼̃
𝑔𝑠𝑚)𝛾𝑔𝑠𝑚 ≤

𝑆

𝑠=1

𝐺

𝑔=1

𝐿𝑊�̃�𝑚 𝑚 = 1,2, … ,𝑀, (13) 

 ∑∑∑(𝑇�̃�𝑔𝑠𝑞 + 𝐻𝑅𝑀𝑇𝑁̃
𝑔𝑠𝑞 + 𝐴𝐶�̃�𝑠)

𝑄

𝑞=1

𝜌𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

+ ∑∑∑(𝑇�̃�𝑔𝑠𝑚 +𝐻𝑅𝑀𝑇𝐼̃
𝑔𝑠𝑚 + 𝐴𝐶𝐼̃ 𝑠)

𝑀

𝑚=1

𝛾𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

≤ 𝑇�̃� (14) 

 ∑∑∑𝐶�̃�𝑔𝑠𝑞

𝑄

𝑞=1

𝑥𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

+∑∑∑ 𝐶�̃�𝑔𝑠𝑚

𝑀

𝑚=1

𝑦𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

+ ∑∑∑𝑃�̃�𝑔𝑠𝑞

𝑄

𝑞=1

𝜌𝑔𝑠𝑞

𝑆

𝑠=1

𝐺

𝑔=1

  

+∑∑∑ 𝑃�̃�𝑔𝑠𝑚

𝑀

𝑚=1

𝛾𝑔𝑠𝑚

𝑆

𝑠=1

+∑∑∑𝐴𝑀�̃�𝑠

𝑄

𝑞=1

𝑥𝑔𝑠𝑞 +∑∑∑ 𝐴𝑀�̃�𝑠

𝑀

𝑚=1

𝑦𝑔𝑠𝑚

𝑆

𝑠=1

𝐺

𝑔=1

𝑆

𝑠=1

𝐺

𝑔=1

𝐺

𝑔=1

≤ 𝑇�̃� 

(15) 

0 ≤ 𝑥𝑔𝑠𝑞 , 0 ≤ 𝑦𝑔𝑠𝑚  𝑔 = 1, 2, . . . , 𝐺, 𝑠 = 1, 2, . . . , 𝑆, 𝑞 = 1, 2, . . . , 𝑄,𝑚 = 1, 2, . . . , 𝑀, (16) 
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5.2.5 Model Interpretation 

 

The objective function (1) is the cost minimization function, comprising six costs. The first two costs are the total cost of 

transportation of non-contagious (𝐶�̃�𝑔𝑠𝑞 ) and contagious population (𝐶�̃�𝑔𝑠𝑚 ). Since the transportation of a contagious 

population, as compared with a non-contagious population, requires more safety and precautions, the cost associated with the 

transportation is kept different. Moreover, the conveyance choice for the population is also different, which results in different 

costs. The subsequent two costs are penalty costs, which are levied when non-contagious (𝑃�̃�𝑔𝑠𝑞) and contagious population 

(𝑃�̃�𝑔𝑠𝑚) do not reach RCs within the expected time. These penalties are imposed in cases where disruptions in the transport 

process, whether from logistical snags or unforeseen issues, impede the rapid and efficient transfer of individuals to their 

designated RCs. In such situations, these penalties incentivize and ensure the smooth execution of the transportation process, 

fostering a greater sense of urgency and accountability in mitigating delays in the relocation process. The final two cost 

elements encompass accommodation and medical expenses (𝐴𝑀�̃�𝑠 and 𝐴𝑀�̃�𝑠). The former pertains to providing shelter, 

temporary housing, or other accommodations for the affected individuals, ensuring their safety and well-being during the 

crisis. The latter involves the healthcare and medical treatment required to address the needs of the non-contagious and 

contagious populations, including diagnosis, treatment, and any medical interventions necessitated by the situation.  

The objective function (2) is the time minimization function, comprising six crucial times. The transportation time, halt, 

refueling, maintenance time, and accommodation time for non-contagious (𝑇�̃�𝑔𝑠𝑞 , 𝐻𝑅𝑀𝑇𝑁̃
𝑔𝑠𝑞 , and 𝐴𝐶�̃�𝑠) and contagious 

population (𝑇�̃�𝑔𝑠𝑚 , 𝐻𝑅𝑀𝑇𝐼̃
𝑔𝑠𝑚 , and 𝐴𝐶𝐼̃ 𝑠). This function intricately manages time during operational processes, considering 

multiple time-related aspects. It includes transportation time, which focuses on the efficiency and punctuality of travel. Halt 

time denotes planned stops for activities like passenger or cargo handling. Refueling time is dedicated to necessary breaks 

for replenishing fuel or energy resources. Maintenance time addresses unforeseen operational disruptions that may necessitate 

repairs or upkeep.  

Furthermore, the function incorporates accommodation time for non-contagious and contagious populations, ensuring 

their well-being and comfort throughout the journey. Equations 3 and 4 describe the criteria for implementing penalty cost 

associated with the objective function (1). Restrictions 5 and 6 limit the number of non-contagious and contagious populations 

in qth and mth type conveyance, respectively. Constraints 7 and 8 ensure that the population allocation to each RC is less 

than its capacity, while constraints 9 and 10 state the number of populations that need to be relocated from different sources. 

The constraint ensures that every affected population is relocated to the relief center. They serve as a fundamental assurance 

that every impacted population, regardless of their source, is effectively and comprehensively transferred to the designated 

relief center, underscoring the commitment to safeguarding the well-being of all individuals during the relocation process, 

while constraints 11 state the total number of populations that need to be relocated. Constraints 12 and 13 restrict the working 

time for each type of conveyance. Constraints 14 and 15 set the time and budget limit for the relocation process. Constraint 

16 designates that decision variables are non-negative integers.  

 

6. METHODS FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 
 

The proposed MOSTM for relocating the non-contagious and contagious population in section 5.2 consists of two objective 

functions. Objective function 1 minimizes the overall cost of relocation, and objective function 2 minimizes the overall 

relocation time. Because of the conflicting nature of the objective functions, we have employed the compromise solution 

technique to obtain the optimal solution for the proposed MOSTM. The optimal solution is obtained using GP, FGP, NCA, 

and GCM. The detailed description of the compromise techniques is mentioned below: 

 

6.1 Goal Programming 

 

The GP was developed by Charnes and Cooper (Johnsen et al., 1961). The GP assigns goals 𝛬𝑞 to each objective function 

𝛬𝑞. These goals are obtained by solving each objective function independently. The objective is to minimize the overall 

deviation from these goals, acquired by defining positive (𝐷𝑞
+) and negative deviations (𝐷𝑞

+) for each objective function. The 

MOSTM is converted into a single objective function and is formulated below: 

 

𝑚𝑖𝑛∑(𝐷𝑞
+ + 𝐷𝑞

−)

𝑄

𝑞=1
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,  

𝛬𝑞 + 𝐷𝑞
+ + 𝐷𝑞

− = 𝛬𝑞 𝑞 = 1,2,⋯ , 𝑄, 

𝐷𝑞
+𝐷𝑞

− = 0 𝑞 = 1, 2, . . . , 𝑄, 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3) − (16) 
0 ≤ 𝐷𝑞

+𝐷𝑞
− 𝑞 = 1, 2, . . . , 𝑄,  

 

6.2 Fuzzy Goal Programming 

 

In 1972, Zimmermann (Zimmermann, 1972) introduced the concept of fuzzy linear programming as an extension of linear 

programming. He defined objective functions and constraints as fuzzy parameters; in 1997 (Mohamed, 1997), Mohamed 

drew attention to the relationship between GP and FGP and how one could lead to another. He also proposed the linear 

membership function for the goal and constraints of the multi-objective problem. Further, Zangiabadi and Malek 2007 

enhanced the concept of FGP by introducing the hyperbolic membership function to define goals and constraints. In this 

literature, we have used the FGP approach proposed by Zangiabadi and Malek, and the methodology to solve the proposed 

MOSTM is defined below: The positive deviation (𝑉𝑞
+) and negative deviation (𝑉𝑞

−) variables for the objective functions (𝜉𝑞) 

as follows: 

𝑉𝑞
+ = max(0, 𝜉𝑞 − 𝜉‾𝑞) =

1

2
{(𝜉𝑞 − 𝜉‾𝑞) + |𝜉𝑞 − 𝜉‾𝑞|}, 𝑞 = 1,2, . . . , 𝑄, 

and 

𝑉𝑞
− = 𝑚𝑎𝑥(0, 𝜉‾𝑞 − 𝜉𝑞) =

1

2
{(𝜉‾𝑞 − 𝜉𝑞) + |𝜉‾𝑞 − 𝜉𝑞|}, 𝑞 = 1,2, . . . , 𝑄, 

 

In a minimizing problem, if we require 𝜉𝑞(𝑥) ≤ 𝜉𝑞(𝑥), then minimizing the distance between 𝜉𝑞(𝑥) and 𝜉
𝑞
(𝑥) results in the 

minimization of 𝑉𝑞
+ and considering 𝐷𝑞  and 𝑀𝑞 as the desired and maximum acceptable level of achievement for the q-th 

objective function, respectively. Below are the steps to obtain the solution using FGP for the MOSTM, as described in section 

5.2. 

• Each objective function of MOSTM is solved independently, i.e., considering only a single objective function at 

one time and ignoring the remaining. Considering 𝑙1, 𝑙2, . . . , 𝑙𝑛 are the unknown variables' values obtained after 

solving each objective function independently. 

• Each objective function value is calculated using the unknown variables obtained from step 1. We obtained 𝜉1(𝑙1), 
𝜉1(𝑙2), ..., 𝜉1(𝑙𝑛), 𝜉2(𝑙1), 𝜉2(𝑙2), ..., 𝜉2(𝑙𝑛), ..., 𝜉𝑄(𝑙1), 𝜉𝑄(𝑙2), ..., 𝜉𝑄(𝑙𝑛). 

• Using the value of each objective function obtained from step 2, we find the best (𝐷𝑞) and the worst (𝑀𝑞) value 

for the respective objective function. 

𝐷𝑞=𝑚𝑖𝑛
∀𝑠∈𝑁

 𝜉𝑞(𝑙𝑠) and 𝑀𝑞=𝑚𝑎𝑥
∀𝑠∈𝑁

 𝜉𝑞(𝑙𝑠) 𝑤ℎ𝑒𝑟𝑒 𝑁 = 1,  2,  … , 𝑛, 𝑞 = 1,2, . . . , 𝑄, 

 

• Considering the hyperbolic membership function, the following single objective model emerges: 

 

𝑀𝑖𝑛 Ω 

subject to, 

 
1

2
+
1

2

𝑒
{
(𝐷𝑞+𝑀𝑞)

2
−𝜉𝑞}𝜑𝑞

− 𝑒
−{
(𝐷𝑞+𝑀𝑞)

2
−𝜉𝑞}𝜑𝑞

𝑒
{
(𝐷𝑞+𝑀𝑞)

2
−𝜉𝑞}𝜑𝑞

− 𝑒
−{
(𝐷𝑞+𝑀𝑞)

2
−𝜉𝑔}𝜑𝑞

− 𝑉𝑞
++𝑉𝑞

− = 1 

Ω ≥ 𝑉𝑞
−, q= 1, 2, …, Q, 

𝑉𝑞
+𝑉𝑞

−=0 

constraints (3)-(16) 

0≤ Υ ≤1,  

𝜑𝑞 =
6

𝑀𝑞 − 𝐷𝑞
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6.3 Global Criterion Method 

 

The GCM (Hwang et al., 1979) is a compromise technique to obtain the solution for MOSTM. The principal advantage of 

this approach above other multi-objective optimization approaches is that it does not require the Pareto ranking mechanism 

(Chiandussi et al., 2012). The solution of MOSTM is obtained by minimizing the ratio of the difference between each 

objective function and its respective ideal solution. Below are the steps to obtain the compromise solution using GCM for the 

MOSTM, as described in section 5.2. 

 

• Each objective function (𝛤1, 𝛤2, . . . , 𝛤𝑄) is solved independently, ignoring all others. 

• Using the solution obtained using step 1, the ideal objective vectors are termed as 𝛤1 
𝑚𝑖𝑛 , 𝛤2 

𝑚𝑖𝑛 , … , 𝛤𝑞  
𝑚𝑖𝑛 and 

𝛤1 
𝑚𝑎𝑥 , 𝛤2 

𝑚𝑎𝑥 , … , 𝛤𝑄  
𝑚𝑎𝑥 ,. 

• The MOSTM is converted to a single objective, as shown below: 

 

min{∑ (
𝛤𝑞−𝑞

𝑚𝑖𝑛

𝑞
𝑚𝑖𝑛 )

𝑟
𝑄
𝑞=1 }

1

𝑟

 

subject to, 

constraints (3)-(16) 

1≤ 𝑟 ≤ ∞ 

 

6.4 Neutrosophic Compromise Approach 

 

The Neutrosophic compromise approach (NCA) deals with optimization problems by introducing truth, falsity, and IMF 

(Rizk et al., 2018). The NCA maximizes the degree of TMF and IMF and minimizes the degree of FMF. Below are the steps 

to obtain the compromise solution using NCA for the MOSTM, as described in section 5.2. 

• The objective functions 𝛷1, 𝛷2, . . ., and 𝛷𝑞 are solved individually 

• For the solution obtained using Step 1, we calculate the bounds for each objective function’s minimum (𝜇𝑞) and 

maximum (𝜈𝑞) values. The obtained values are shown below: 

𝜇𝑞=𝑚𝑖𝑛
∀𝑠∈𝑁

{𝛷𝑞}𝑞=1
𝑄

 and 𝜈𝑞=𝑚𝑎𝑥
∀𝑠∈𝑁

{𝛷𝑞}𝑞=1
𝑄

 

 

• The derived value of 𝜇𝑞 and 𝜈𝑞 from step 2 calculates the truth, falsity, and indeterminacy membership bounds. 

 

𝜈𝑞
𝑇 = 𝜈𝑞 , 𝜇𝑞

𝑇 = 𝜇𝑞 truth membership, 

𝜈𝑞
𝐹 = 𝜈𝑞

𝑇 , 𝜇𝑞
𝐹 = 𝜇𝑞

𝑇 + 𝜅𝑞(𝜈𝑞
𝑇 − 𝜇𝑞

𝑇) falsity membership, 

𝜇𝑞
𝐺 = 𝜇𝑞

𝑇 + 𝜖𝑞(𝜈𝑞
𝑇 − 𝜇𝑞

𝑇), 𝜇𝑞
𝐺 = 𝜇𝑞

𝑇  indeterminacy membership 

where 0 ≤ 𝜖𝑞 ≤ 1 and 0 ≤ 𝜅𝑞 ≤ 1 

 

• The MOSTM is converted to a single objective and is stated as follows: 

 

Max 𝜚−𝜒+𝜖 
subject to, 

constraints (3)-(16) 

𝛷𝑞 + (𝜈𝑞
𝑇 − 𝜇𝑞

𝑇)𝜚 ≤ 𝜈𝑞
𝑇 

𝛷𝑞 + (𝜈𝑞
𝐺 − 𝜇𝑞

𝐺)𝜒 ≤ 𝜈𝑞
𝐺  

𝛷𝑞 + (𝜈𝑞
𝐹 − 𝜇𝑞

𝐹)𝜖 ≤ 𝜇𝑞
𝐹 

𝜚 ≥ 𝜖, 𝜚 ≥ 𝜒, 𝜚 + 𝜒 + 𝜖 ≤ 3 

𝜚, 𝜖, 𝜚 ∈ [0,1], 𝑞 = 1, 2, . . . , 𝑄 

 

7. NUMERICAL EXPERIMENTS AND DISCUSSIONS 
 

This section implements the proposed MOSTM in the case study conducted on the Assam flood in 2020. Based on the post-

disaster damage information provided by the Assam state DM authority official website (Assam government report 1, 2020), 

we have considered five source points and three destination points. These source points are the worst affected districts of 
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Assam from where the population will be relocated to destination points, i.e., RC. The location of the RCs is chosen based 

on the least affected districts during the flood. The source points are in Assam's Kokrajhar, Barpeta, Goalpara, Morigaon, and 

Nagaon districts. The RC is in Assam's Baksa, Udalguri, and Hojai districts. The causes of calamity are climate change, 

intense rainfall, deforestation, and the construction of dams and barriers within the Brahmaputra basins. Due to the sudden 

and extreme rain, there needed to be more time for flood preparedness among the population residing in locations designated 

as source points for the mathematical model. The overwhelming flood subsequently led to an electricity shortage and 

disrupted food supply in the affected region. The confluence of the peak of the COVID-19 pandemic and stagnant water 

significantly increased the likelihood of spreading contagious diseases. The decision-maker encounters dual challenges in the 

post-disaster phase: firstly, the risk of disease transmission to non-affected populations and, secondly, the deterioration of the 

health of the already affected population. Given the lack of essential amenities in the affected regions, the proposed relocation 

model is tailored to transfer the population to relief centers efficiently. The model meticulously ensures the segregation of 

contagious and non-contagious populations during transportation, mitigating the risk of further spreading disease. The cost 

and time objectives underpinning the model guarantee both cost-effectiveness and expeditious relocation to relief centers, 

prioritizing the prompt delivery of aid to the affected populace.  

LINGO is an optimization modeling software developed by LINDO Systems Inc. This software is used for modeling, 

solving, and analyzing linear, nonlinear, integer, quadratic, and stochastic models in an efficient, more straightforward, and 

more effective way. The mathematical model is coded in LINGO optimization software and is executed on a mobile 

workstation with the configuration of 11th Gen Intel(R) Core (TM) i9 @ 3.20 GZ processor with 64.00 GB RAM. LINGO 

executes multiple CPU cores to execute models, thereby reducing processing time. It enables us to construct an optimization 

model rapidly in a format that is easily accessible and can extract inputs directly from databases and spreadsheets. A 

significant advantage of LINGO is that decision-makers can work on prototyping problems with small-scale datasets and 

quickly shift to big data to study multiple scenarios. In addition, LINGO can solve mathematical models with up to 32,000 

variables and 16,000 constraints (Optimization software, 2023). 

 

7.1 Input Data for The Real-Life Model 

 

The inputs for the proposed MOSTM in section 5.2 are in Table 11-19 in the appendix. The appendix for all the data associated 

with Table 11-19 is available at https://github.com/bhakunimayank6/appendix-inputs-for-case-study-conducted-on-assam-

flood. Tables 11, 12, 13, 14, 15, and 16 represent the cost of transportation, transportation time, and estimated time for 

contagious and non-contagious populations. Tables 17 and 18 delineate the halt, refueling, and maintenance time the 

conveyance takes. Table 19 depicts input for accommodation time, accommodation and medical cost, capacity of conveyance 

and RC, number of contagious and non-contagious population that needs to be relocated, time restriction of conveyance, 

penalty cost, and restriction in overall cost and time. 

 

7.2 Result Analysis 

 

The MOSTM proposed in section 5.2 consists of two objective functions, and in order to obtain the optimal solution of the 

MOSTM, we used the compromise techniques discussed in section 6. The inputs of MOSTM are based on the actual case 

study conducted on the Assam flood in 2020 and are mentioned in Tables 11-19. The inputs for the model are considered 

SVHNN, which are converted to crisp numbers using the proposed defuzzification method from section 4. 

The solutions obtained using GP, FGP, GCM, and NCA using LINGO optimization software are exhibited in Table 10. 

The solution obtained using NCA and GCM is illustrated in Figure 10, and using GP and FGP is demonstrated in Figure 11. 

Using GP, the cost and time objective function values are 𝑍1 = 2244360 and 𝑍2 = 3931, respectively. 1495 non-contagious 

and 1144 contagious populations, 1934 non-contagious and 1015 contagious populations, and 1106 non-contagious and 1561 

contagious populations were transported from sources to RC 𝑠 = 1, 𝑠 = 2, and 𝑠 = 3, respectively. Among the qth type 

conveyance for the non-contagious population, 2139 were transported using conveyance one while 1743 and 653 were 

transported through conveyance 2 and 3, respectively. Whereas for the contagious population using mth type conveyance, 

1436 were transported using conveyance one while 1535 and 749 were transported through conveyance 2 and 3, respectively.  

 

Table 10. Optimum results were obtained using compromise techniques after defuzzification using the proposed method 

 

GP FGP GCM NCA 

Objective function value 

𝑍1 = 2244360 𝑍1 = 2056758 𝑍1 = 2057063 𝑍1 = 2034725 

𝑍2 = 3931 𝑍2 = 4500 𝑍2 = 3956 𝑍2 = 3923 

Allocations 

https://github.com/bhakunimayank6/Appendix-Inputs-For-Case-Study-Conducted-On-Assam-Flood
https://github.com/bhakunimayank6/Appendix-Inputs-For-Case-Study-Conducted-On-Assam-Flood
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GP FGP GCM NCA 

𝑥131 = 416, 𝑥211 = 889 

𝑥223 = 347, 𝑥321 = 228 

𝑥332 = 384, 𝑥422 = 1359 

𝑥511 = 606, 𝑥533 = 306 

𝑦122 = 810, 𝑦211 = 470 

𝑦222 = 205, 𝑦233 = 365 

𝑦311 = 674, 𝑦432 = 520 

𝑦433 = 292, 𝑦531 = 292 

𝑦533 = 92 and all other 

𝑥𝑔𝑠𝑞 = 0 and 𝑦𝑔𝑠𝑚 = 0. 

𝑥122 = 316, 𝑥211 = 747 

𝑥311 = 113, 𝑥312 = 875 

𝑥321 = 24, 𝑥422 = 304 

𝑥431 = 1055, 𝑥533 = 1101 

𝑦112 = 220, 𝑦122 = 590 

𝑦211 = 340, 𝑦222 = 424 

𝑦231 = 276, 𝑦311 = 674 

𝑦422 = 1, 𝑦431 = 147 

𝑦433 = 664, 𝑦531 = 2 

𝑦533 = 381, 𝑦532 = 1 

and all other 

𝑥𝑔𝑠𝑞 = 0 and 𝑦𝑔𝑠𝑚 = 0 

𝑥122 = 416, 𝑥211 = 1120 

𝑥312 = 615, 𝑥321 = 113 

𝑥422 = 115, 𝑥431 = 806 

𝑥432 = 438, 𝑥533 = 912 

𝑦122 = 810, 𝑦211 = 560 

𝑦222 = 205, 𝑦231 = 57 

𝑦232 = 218, 𝑦311 = 674 

𝑦431 = 148, 𝑦433 = 664 

𝑦533 = 384 and all other 

𝑥𝑔𝑠𝑞 = 0 and 𝑦𝑔𝑠𝑚 = 0 

𝑥122 = 416, 𝑥211 = 1236 

𝑥312 = 499, 𝑥321 = 113 

𝑥422 = 115, 𝑥431 = 790 

𝑥432 = 454, 𝑥533 = 912 

𝑦112 = 218, 𝑦122 = 592 

𝑦211 = 342, 𝑦222 = 423 

𝑦231 = 275, 𝑦311 = 674 

𝑦431 = 148, 𝑦433 = 664 

𝑦533 = 384 and all other 

𝑥𝑔𝑠𝑞 = 0 and 𝑦𝑔𝑠𝑚 = 0 

 

Using FGP, the value of the cost objective is 𝑍1 = 2056758, which is fewer when compared with GP. At the same 

time, the value of the time objective is 𝑍2 = 4500, which is more when compared with GP. Therefore, there is no dominant 

solution between GP and FGP. FGP allocates 1735, 644, and 2156 non-contagious and 1234, 1015, and 1471 contagious 

populations to RC 𝑠 = 1, 𝑠 = 2, and 𝑠 = 3 respectively. Utilizing GCM, the value of cost and time objectives are 𝑍1 =
2057063 and 𝑍2 = 3956, respectively. While comparing the results with GCM, GP, and FGP, the GCM provides a lower 

𝑍1  value when compared with GP while the higher when compared with FGP. Meanwhile, for objective 𝑍2 , the GCM 

provides an intermediate value between the solution obtained using GP and FGP. Hence, there is no dominant solution 

comparing GP, FGP, and GCM. The GCM allocates 1735, 644, and 2156 non-contagious and 1234, 1015, and 1471 

contagious populations to RC = 1, 𝑠 = 2, and 𝑠 = 3, respectively. Employing NCA, the cost objective function value is 

𝑍1=2034725, and the time objective is 𝑍1=3923. While comparing the objective functions' value with GP, FGP, and GCM, 

we found that NCA provides the minimum value. The NCA allocates 1735, 644, and 2156 non-contagious and 1234, 1015, 

and 1471 contagious populations to RC = 1, 𝑠 = 2, and 𝑠 = 3, respectively. 

 

 
 

Figure 10. The allocations made by NCA and GCM 

 

If we analyze the total number of allocations of the contagious and non-contagious population on each RCs 𝑠 = 1,2,3 

made by FGP, GCM, and NCA, we find that all the allocations are the same. However, NCA still provides better results when 

compared with FGP and GCM. This is because the total number of populations allocated to each RC 𝑠 = 1,2,3 is the same, 

but the number of people traveling from different sources and conveyance varies. Referring to Table 9, we find that fewer 

allocations are present in 𝑥312, 𝑥422, 𝑥431, 𝑥533, 𝑦112 , 𝑦222 , 𝑦231  and more allocations are there in 𝑥211, 𝑥122, 𝑥321, 𝑦211 , 

𝑦122, 𝑦431, and 𝑥533 using NCA rather than FGP. Similarly, if we compare NCA with GCM, we find fewer allocations in 

𝑥312, 𝑥422, 𝑥431, 𝑥533, 𝑦112, 𝑦222, 𝑦231, and more in 𝑦222 and 𝑦231. In general, the NCA allocates in such a way that less cost 

and time is utilized to relocate the population from sources Kokrajhar (𝑔 = 1), Barpeta (𝑔 = 2), Goalpara (𝑔 = 3), Morigaon 

(𝑔 = 4), and Nagaon (𝑔 = 5) to the RC at Baksa (𝑠 = 1), Udalguri (𝑠 = 2), and Hojai (𝑠 = 3) using 𝑘 = 1,2,3 type of 

conveyance. 
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Figure 11. The allocations made by GP and FGP 

 

7.3 Some Particular Cases 

 

This section highlights three distinct cases that were explored in the study. The initial case examines the exclusion of the 

penalty cost from the objective function, while the second case involves the elimination of the limited working time of the 

conveyance. Furthermore, the third case compares the existing defuzzification technique RAM and the proposed technique 

RRAM. The study involved solving the MOSTM using both techniques to achieve this comparison. By analyzing and 

comparing the results obtained from both techniques, the research aims to provide valuable insights into the effectiveness of 

these approaches in addressing multi-objective relocation problems. 

 

 
 

Figure 12. The percentage change in objective functions value with the removal of penalty cost 

 

7.3.1 Removal of Penalty Cost 

 

The objective function (1) comprises penalty costs for contagious and non-contagious populations. It is levied when the 

population does not reach the RC within the expected time. The reason for considering the penalty cost is that the arrival to 

each RC must be as quick as possible so that the population can have basic amenities and there is no further increase in 

casualties. In this section, we have solved the MOSTM stated in section 5.2 by removing penalty costs. From the objective 

function 𝑍1, 𝑃�̃�𝑖𝑗𝑘 and 𝑃�̃�𝑖𝑗𝑘 , representing the penalty costs of the non-contagious and contagious population, respectively, 

are excluded. In contrast, objective function 𝑍2, which depicts the time, remains unchanged. Constraints 3 and 4 are excluded 
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as they represent the conditions when a penalty is levied. The constraint 15 is further modified based on removing penalty 

cost. The same inputs mentioned in Tables 10-19 are utilized to obtain the solution using the same compromise solution 

techniques GP, FGP, GCM, and NCA. 

The obtained solution is compared with the previous solution involving the penalty cost. The percentage change obtained 

in the solution using GP, FGP, GCM, and NCA is demonstrated in Figure 12. With the removal of penalty cost, objective 

𝑍1 is decreased, while objective 𝑍2 is increased. Using NCA, 𝑍1 is decreased by 1.43% while 𝑍2 is increased by at least seven 

times the decreased percentage of 10.58%. Similarly, employing GP, FGP, and GCM, the 𝑍2 is decreased by 1.78%, 2.54%, 

and 2.08%, respectively, whereas 𝑍2 has increased at least three times the decreased percentage, which is 8.78%, 8.09%, 

and 7.15%, respectively. The percentage increase in 𝑍2 is very high compared to the absolute value of the percentage change 

in 𝑍1. In the post-disaster phase, time and cost both play a crucial role in allocating the population to RCs. Therefore, there 

is a need to have a proper balance while minimizing both objectives. Analyzing Figure 12, we can conclude that including 

penalty cost in the objective function has helped decrease the time objective 𝑍2 value to a greater extent while having a minor 

effect on the cost objective 𝑍1. 

 

 
 

Figure 13. The percentage change in objective functions value with the removal of limited working time 

 

 
 

Figure 14. The difference in the value of the cost objective function obtains using RAM and RRAM 

 

7.3.2 Removal of Limited Working Time of Conveyance 

 

The constraints 12 and 13 of MOSTM stated in section 5.2 represent the time restrictions in the working time of each type of 

conveyance. With the advancement in technology and accurate weather forecasts in the pre-disaster phase, there may be 

instances where the government and private agencies have an ample number of each type of conveyance. Therefore, there is 
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no regulation on the working time of each conveyance. In this section, we analyzed the result obtained by solving the MOST 

stated in section 5.2 and removing constraints 12 and 13. We have used the same solution techniques GP, FGP, GCM, and 

NCA and inputs as in Table 10-19. 

The change in the percentage value of the objective function 𝑍1 and 𝑍2 when compared with the previous solution 

constituting the limited working time is shown in Figure 13. The percentage change in objective function 𝑍1 is positive, 

delineating the increase in cost; the other way, the percentage change in 𝑍2 is negative, showing a decrease in time. Using 

NCA, the percentage change in 𝑍1  and 𝑍2  is 2.5% and -8.59%, respectively. Similarly, using GP, FGP, and GCM, the 

percentage in 𝑍1 is 1.92%, 1.96%, and 2.24%, respectively, and 𝑍2 is -6.64%, -6.24%, and -5.69%, respectively. The absolute 

percentage change in 𝑍2 is at least three times that in 𝑍1. The time objective 𝑍2 is decreased, portraying that if there is no 

limitation on the working time of conveyance, the relocation process is completed early, whereas the cost objective 𝑍1 is 

increased, meaning that more money is utilized in the relocation process. The significant advantage of this analysis is that in 

the post-disaster phase, if the government and private agencies involved in the relocation process give more importance to 

the timely relocation of the affected population and can withstand the minor increase in the cost of relocation, then they can 

prearrange the ample number of conveyances to decrease the relocation time. 

 

 
 

Figure 15. The difference in the value of the time objective function obtained using RAM and RRAM 

 

7.3.3 Comparison between Removal and Revised Removal Area Method Based on Proposed Multi-Objective Solid 

Transportation Model 

 

In section 4.1, we verify the performance of the proposed RRAM method over existing RAM by comparing its efficiency 

with the existing literature. This section solved the proposed MOSTM from section 5.2 using RAM and RRAM. The fuzzy 

MOSTM is first converted to crisp MOSTM using RAM and RRAM, and then we obtain the compromise solution using 

GCM, FGP, GP, and NCA. The comparison aims to show the proposed RRAM's efficiency over RAM and its perceived 

advantages while solving real-life problems. 

The cost objective values obtained after implementing RAM and incorporating the GCM, FGP, GP, and NCA are 

2415135, 2391632, 2538142, and 2384939, respectively. Similarly, using RRAM and compromise techniques GCM, FGP, 

GP, and NCA, the values are 2057063, 2056758, 2244360, and 2034725, respectively. The values of the time objective 

function utilizing RAM and GCM, FGP, GP, and NCA are 4340, 4603, 4261, and 4197, respectively. Similarly, employing 

RRAM and GCM, FGP, GP, and NCA, the values are 3956, 4500, 3931, and 3923, respectively. The detailed comparison of 

the cost and time objective values is exhibited using Figures 14 and 15, respectively. Analyzing both objective function 

values, we infer that RRAM provides better results than RAM. Since the MOSTM is based on a real-life relocation process, 

the proposed defuzzification technique RRAM is suited to be implemented in real-life case studies. 
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7.4 Sensitivity Analysis 

 

In this section, we examine the change in the cost objective function 𝑍1 of MOSTM, as stated in section 5.2, with a change 

in each component. The aim is to analyze the sensitivity of transportation, penalty, accommodation, and medical costs for 

both non-contagious and contagious populations. The following steps highlight the process of conducting a sensitivity 

analysis: 

We choose one cost at a time, keeping the remaining cost unchanged. For example, we first chose the transportation 

cost for the non-contagious population, and the five costs remained unaffected. The chosen cost in step 1 is increased by 10%, 

20%, 30%, 40%, and 50%, and solutions are obtained using GCM, FGP, GP, and NCA. The results showing percentage 

change in the overall cost objective are delineated using Figure 16. 

 

 
 

Figure 16. Percentage change in overall cost with the percentage increase in the cost of transportation of non-contagious 

population 

 

A similar procedure is followed for the remaining costs. Figures 17, 18, 19, 20, and 21 represent the percentage change 

in overall cost objective with the change in transportation cost of contagious, penalty cost of non-contagious, penalty cost of 

contagious, accommodation and medical cost of non-contagious, and accommodation and medical cost of contagious 

population, respectively. 

The following insights are obtained based on the sensitivity analysis: 

1. On Comparing the cost of transportation of non-contagious (Figure 16) and contagious (Figure 17) populations, 

the percentage increase in the overall cost objective value is higher for the contagious population. For a 10% 

increase in the cost of transportation for a non-contagious population, the overall cost objective percentage change 

obtained using GCM, FGP, GP, and NCP is less when compared with a contagious population. Similar results are 

obtained for 20%, 30%, 40%, and 50%. From Figures 16 and 17 the increase in overall cost objective value for 

10% increase in cost of transportation of non-contagious population is 1.81%, 1.79%, 1.56%, and 1.81%, 

contagious population is 2.27%, 1.86%, 1.76%, and 2.30% and for 50% increase cost of transportation of non-

contagious population is 7.07%, 7.56%, 6.86%, and 8.39%. The contagious population is 10.83%, 12.17%, 

10.55%, and 12.37%. Analyzing this value, we can interpret that the increase in the percentage cost of non-

contagious and contagious populations sharply increases the difference between the percentage change of overall 

cost objective value. Thus, we concluded that the cost of transportation for the contagious population is more 

sensitive than for the non-contagious population.  

2. Considering the penalty costs of non-contagious (Figure 18) and contagious (Figure 19) populations, the 

percentage increase in overall cost objective value for the contagious population is significantly larger. The overall 

cost objective percentage change acquired using GCM, FGP, GP, and NCP for a 10% increase in penalty cost of 

the non-contagious population is 1.14%, 1.08%, 1.01%, and 1.31%, respectively, similarly for contagious are 

1.56%, 1.68%, 1.40%, and 1.56%, respectively showing a minor difference in the values. The difference becomes 

more significant with the increase in percentage values 20%, 30%, 40%, and 50%. For a 50% increase in penalty 

costs of the contagious population, the percentage change in overall cost objective (6.27%, 6.96%, 6.15%, and 

6.98%) is much higher compared to non-contagious (4.94%, 5.15%, 5.68%, and 5.95%). Therefore, we concluded 

that the penalty cost for a contagious population is more sensitive than for a non-contagious population. 
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Figure 17. Percentage change in overall cost with the percentage increase in the cost of transportation of contagious 

population 

 

 
 

Figure 18. Percentage change in overall cost with the percentage increase in penalty cost of non-contagious population 

 

 
 

Figure 19. Percentage change in overall cost with the percentage increase in penalty cost of contagious population 

 

3. The 10% increase in accommodation and medical costs for non-contagious populations (Figure 20) resulted in 

overall cost objective increases of 2.61%, 2.60%, 1.94%, and 2.64% for GCM, FGP, GP, and NCP, respectively. 

Similarly, a 10% increase for contagious populations (Figure 21) caused overall cost objective increases of 4.46%, 

4.47%, 4.00%, and 4.52% for GCM, FGP, GP, and NCP, respectively. Those changes in accommodation and 
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medical costs of contagious populations impact the overall cost objective value more than non-contagious 

populations. The same is validated when accommodation and medical costs are further increased by 20%, 30%, 

40%, and 50%. In general, the increase in accommodation and medical costs of the contagious population has caused 

a substantial rise in the value of the overall cost objective, making it more sensitive than the non-contagious 

population's accommodation and medical costs. 

4. The cost of transportation, penalty, accommodation, and medical care is more sensitive for the contagious population 

than the non-contagious. Of all the six costs associated with the overall cost objective, accommodation and medical 

costs are the most susceptible, followed by transportation and the penalty. 

 

 
 

Figure 20. Percentage change in overall cost with the percentage increase in accommodation and medical cost of non-

contagious population 
 

 
 

Figure 21. Percentage change in overall cost with percentage increase in accommodation and medical cost of contagious 

population 
 

Following the above analysis, we concluded that accommodation and medical costs are more sensitive than 

transportation and penalty. In the pre-disaster phase, while choosing the relocation centers, the decision maker and the center’s 

infrastructure should prioritize that relocation is done where accommodation and medical costs are fewer even though that 

site has slightly higher transportation or penalty costs. This will eventually decrease the overall cost of relocation. If the 

accommodation and medical costs are identical for all the RCs, then the decision maker should choose centers with fewer 

transportation and penalty costs. The cost aligned to the contagious population is more sensitive than non-contagious. Given 

the choices of RCs and type of conveyance, the decision maker must prioritize the selection based on the cost for contagious 

than non-contagious (without compromising the safety and comfort of the affected population). Even if some centers or 

conveyance have a higher cost for contagious and slightly lower costs for non-contagious, those must also be avoided. 

The sensitivity analysis is carried out based on the components of the overall cost objective. We have neglected the time 

objective function in this analysis. However, there may be instances where the cost of accommodation and medical to RCs is 
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low, but the time taken to reach that center is high. So, in that case, the decision maker can choose relocation centers based 

on their preferences. Suppose more priority is given to minimizing the cost of the relief operation. In that case, the decision 

maker must prefer centers with the lower cost of accommodation and medical, transport, and penalty, giving less priority to 

time objective and vice-versa.  

 

8. MANAGERIAL INSIGHTS 
 

The case study has yielded significant managerial insights through its numerical experiments, which offer valuable 

implications for relocation plans of affected populations. By prioritizing the reduction of total costs and time, this study can 

enhance the efficiency and effectiveness of disaster response operations, providing decision-makers with the necessary tools 

for informed decision-making. Based on the numerical outcomes, several key findings have been proposed below: 

1. Given the paramount importance of expeditious and secure relocation for contagious and non-contagious 

populations, selecting a suitable solution method can profoundly impact cost and time. As illustrated in Section 7, 

NCA provides the optimal solution for MOSTM compared to GP, FGP, and GCM. By choosing NCA as the 

preferred solution method, managers can minimize the overall cost and time required for relocation, enabling 

effective resource allocation and ensuring the safety and well-being of affected populations. 

2. To minimize casualties and prevent the proliferation of contagious diseases, swiftly relocate affected populations 

within an expected time frame. As outlined in Section 7.3.1, incorporating a penalty cost function into the 

relocation process can offer several benefits, including reducing overall relocation time. For managers, integrating 

a penalty cost function into the objective function can mitigate disease spread, promote social cohesion, and 

enhance resource access. 

3. Although technological advancements and accurate weather forecasting can sometimes aid in predicting the 

magnitude of damage caused by disasters, there are instances where the intensity of a disaster may be 

unpredictable, resulting in a deviation from the expected number of casualties. Consequently, there are two 

possible scenarios depending on the prediction of post-disaster repercussions. 

a. In the first scenario, given this uncertainty, managers can prepare for disasters during the pre-disaster phase 

by arranging adequate vehicles, assuming that predictions align with post-disaster data. Section 7.3.2 

highlights the benefits of arranging ample conveyances, such as reduced relocation time, prompt relocation, 

and decreased incidence of post-traumatic stress disorder, emotional instability, sleep disturbances, anxiety, 

and depression.  

b. In the second scenario, where disaster repercussions differ from predicted estimations, a more realistic 

approach to the relocation model can be achieved by including limited working time. This approach provides 

authorities waiting at temporary relocation centers with better estimations of affected populations' arrival and 

settlement time. It enables them to pre-arrange medical aids and basic amenities at the respective centers. 

4. In relocating, the influence of cost sensitivity on managerial decision-making holds significant implications. The 

insights outlined in Section 7.4 highlight two critical considerations for managers: 

a. Accommodation and medical costs are more sensitive than transportation and penalty costs. Hence, to reduce 

relocation expenses, managers are advised to concentrate on choosing sites or temporary housing with lower 

Accommodation and medical costs, even if transportation and penalty costs are slightly elevated. 

b. The analysis further underscores that the cost of relocating contagious individuals is more susceptible than 

that of non-contagious individuals. To minimize relocation costs effectively, managers should prioritize the 

selection of temporary housing and transportation options tailored to the needs of the contagious population. 

 

9. CONCLUSION AND FUTURE WORK 
 

This research paper presents a MOSTM for relocating both contagious and non-contagious populations in the post-disaster 

phase. The model's primary objective is to minimize the costs and time required for population relocation, including 

transportation, penalty, accommodation, and medical expenses. In contrast, the time objective aims to reduce transportation 

and accommodation time, along with conveyance haul, refueling, and maintenance time. The mathematical model considers 

separate conveyances to ensure a seamless, contactless relocation process for contagious and non-contagious populations. 

The proposed solution employs a fuzzy input approach using SVHNN to accommodate the uncertainty present in post-disaster 

input data. A new defuzzification technique called RRAM is introduced to convert fuzzy inputs into crisp values, and its 

effectiveness is validated by comparing it to existing literature. The solution is obtained using compromise techniques, such 

as GP, FGP, GCM, NCA, and the LINGO optimization software. A case study was conducted on the Assam flood in 2020, 

one of the most flood-prone states in India, to demonstrate the effectiveness of the proposed MOSTM.  
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The particular cases involving the removal of penalty costs and limited working time are investigated. The removal of 

penalty cost delineates the significant increase in the relocation time and marginal decrease in the cost objective, thus 

representing its significant importance in the objective function. The limited working time removal showcases a significant 

decrease in the relocation time and a minor increase in the relocation cost. It further delineates that if the government and 

private agencies involved in the relocation process give more importance to the timely relocation of the affected population 

and can withstand the minor increase in the cost of relocation, then they can prearrange an ample number of conveyances to 

decrease the relocation time. Further, a particular case involving the solution of proposed MOSTM using the existing RAM 

and proposed RRAM is done to show the efficiency of the proposed defuzzification technique. A sensitivity analysis of the 

cost objective divulges that accommodation and medical costs are more sensitive than transportation and penalty costs. 

Furthermore, it is ascertained that transportation, penalty, accommodation, and medical costs are more sensitive for the 

contagious population than the non-contagious. Finally, the study provides managerial insights that aid in making better 

decisions and devising effective measures for potential future disasters. 

In response to the escalating occurrence of both natural and man-made disasters, the proposed MOSTM offers an 

effective solution for the relocation of affected populations. Utilizing the LINGO optimization solver, the MOSTM facilitates 

swift decision-making by providing optimal solutions, specifying the number of individuals to be relocated from distinct 

sources to designated relief centers, and outlining the appropriate mode of transportation. The MOSTM addresses many 

constraints, capturing the complexities of real-life scenarios post-disaster. Given the uncertainties in post-disaster data, the 

suggested defuzzification technique for SVHNN emerges as a proficient approach to confront this challenge. The combined 

use of the MOSTM and the defuzzification technique not only aids decision-makers in overcoming the hurdles associated 

with post-disaster relocation but also effectively addresses the simultaneous transportation of contagious and non-contagious 

populations to relief centers. The successful real-world implementation of the MOSTM and the defuzzification technique is 

a significant milestone, paving the way for decision-makers to consider their application in response to various types of 

disasters. 

Considering the research's future perspective, a MOSTM involving a two-stage relocation process can be proposed. 

Since the initial phase of the disaster, the number of affected populations spread along the affected areas. Thus, the first stage 

can include the transportation of contagious and non-contagious populations to temporary campsites near the affected areas. 

The second stage will include relocating campsites to the relocation centers. The model can also incorporate efficient 

relocation strategies to minimize the carbon footprints in the relation process. We can incorporate the relief distribution to 

the relocation centers along with humanitarian relocation models. The study can be further extended to other uncertain 

environments like type-2 fuzzy, stochastic, and probabilistic. 
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