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The main goal of this paper is to present a new approach for measuring the performance of n-stage series systems in the 

presence of uncertain data, which are two challenging issues in evaluating the efficiency of Decision-Making Units (DMUs) 

using traditional Data Envelopment Analysis (DEA) models. By using a Network DEA model and its dual, as well as using 

Bertsimas et al.'s robustness technique, two Robust Network DEA have been presented. These models can display a range of 

DMUs performance with appropriate accuracy. Proposed models were used to determine the efficiency range of Iranian dairy 

companies' supply chain with three stages. The results show that the proposed models are applicable and effective. Total 

efficiency bounds are obtained with percentage deviations of 20%, 10% and 5%. The lower bounds have relative errors of 

0.39, 0.23 and 0.12 and a correlation coefficient of more than 97%, and the upper bounds have relative error of 1.1, 0.84 and 

0.62 and a correlation coefficient of about 90%. Therefore, the proposed model for calculating the lower bound is more 

accurate. The calculation of the efficiency bounds of the sub-stages also confirms this issue. Finally, the obtained results have 

been compared with the values obtained through a fuzzy three-stage DEA model, our results have a higher correlation 

coefficient and more accurate upper bounds. 
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1. INTRODUCTION 
 

To measure the relative effectiveness of Decision-Making Units (DMUs), Charnes et al. (1978) developed Data Envelopment 

Analysis (DEA), a non-parametric linear Programming (LP) based method. This method generalizes Farrell's (1957) single-

input, single-output technical efficiency measure for multiple-input, multiple-output situations. By comparing the weighted 

sum of outputs to the weighted sum of inputs and performing operations using mathematical programming, DEA provides 

relational performance efficiency. DEA does not call for an explicit functional form linking inputs and outputs, in contrast to 

parametric approaches. The DEA constant returns to scale (CRS) model, which assumes that all businesses function at their 

ideal scale, is a technique for measuring efficiency. The variable Return to Scale (VRS) was later added to DEA by Banker 

et al. (2004). 

Although DEA has gained widespread acceptance as a reliable way to gauge a system's efficiency, in many real-world 

scenarios, DMUs have a network structure and are composed of numerous interconnected divisions. The inputs and outputs 

were specific to each division. According to Färe and Grosskopf (2000), Castelli et al. (2001), and Liu and Tone (2008), an 

intermediate output from one division becomes an intermediate input for another division. According to Biresh et al. (2014), 

traditional DEA models view DMUs as "black boxes" that use a set of inputs and outputs to calculate an efficiency score. 
Researchers like Färe and Grosskopf (2000), Lewis and Sexton (2004), Sexton and Lewis (2003), Tone and Tsutsui 

(2009), and Färe et al. (2013) have generalized the Network DEA (NDEA) model to analyze the network structure of systems. 

This has helped open the "black box" and gain more insight into the production process. The network DEA model was first 

developed by Färe and Grosskopf (2000) and subsequently enhanced and expanded by various researchers. An expansion of 

the two-stage DEA model proposed by Sexton and Lewis (2003, 2004) presented a network DEA model for a multistage 
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system. Their research separately resolved the DEA model for each node. To evaluate efficiency when inputs and outputs 

may not change proportionally, Tone and Tsutsui (2009) proposed a network slack-based measure model (NSBM) (Huang et 

al., 2014). 
Kao and Hwang (2008) created a DEA model to quantify the efficiency of the system and component processes 

simultaneously for systems made up of two processes connected in series. The efficiency of the system is a product of these 

two processes, which is an interesting discovery. They could expand their model to include more than two processes. Kao 

(2014) examined research on network DEA by examining the models applied and the network system structures of the 

problem under study. From a methodological standpoint, this study identifies certain possibilities for future research, and 

from an empirical standpoint, it serves as a motivation to investigate new areas of application. Tsihrintzis et al. (2019) 

explained the essential principles of network DEA approaches and their advantages over traditional DEA approaches. 

Additionally, they conducted a critical analysis of contemporary techniques in the discipline and offered a comprehensive, 

uniform categorization of a sizable body of network DEA literature. For more information, refer to Kao (2014) and Koronakos 

(2019). 

Data uncertainty is one of the most important problems in DEA. Because the DEA technique produces a problem 

formulation in the form of linear programming, it is difficult to handle uncertainty using conventional methods when the 

input data are uncertain. 

Three general approaches to deal with data uncertainty in mathematical optimization have been developed so far: 

stochastic optimization, fuzzy optimization and robust optimization. 

In stochastic optimization, we need enough historical data to fit the distribution function. Therefore, it is difficult to 

achieve the true distribution function. In stochastic optimization, the answer is justified with probability, and it may be 

unjustified for some real situations. Although the probability of this is low, if it happens, it will impose a high cost. 

In fuzzy optimization, determining the shape of the membership function faces similar challenges. In fact, random and 

fuzzy optimization have a soft approach to constraints. Also, in these approaches, the complexity of the problem has also 

increased, and even in the scenario-based stochastic method, this happens with the increase in the number of scenarios. 

(Rouyendegh B.D. et al., 2020; Demir E., 2014). 
Robust optimization is a method in which the problem is optimized for the worst case. In robust optimization, the 

solution is feasible for all scenarios. In fact, in robust optimization, the best solution is selected among the solutions that are 

justified for all scenarios. This method is a hard and precise approach. In this method, the general certainty set is a closed and 

convex set that determines the parameter change limits. In this way, we do not need to determine the shape of the distribution 

function or the membership function, and only knowing the range of changes or Support in the interpretation of the fuzzy 

literature is sufficient. Therefore, it can be applied to almost all real DEA problems.  

Robust optimization was suggested by Soyster (1972) to deal with uncertainty. To further explore inexact linear 

programs, Falk (1976) conducted more studies. Ben-Tal and Nemirovski (1999) presented a unique strategy based on the art 

of cone programming. El-Ghaoui and Lebret (1997) and Ben-Tal and Nemirovski (1998, 1999, and 2000) proposed a new 

model for uncertain data based on ellipsoidal uncertainty sets. Bertsimas and Sim (2003, 2004, and 2006) and Bertsimas et 

al. (2004) developed robust optimization methods based on polyhedral uncertainty sets. This approach can preserve the class 

of problems under consideration. Recently, some studies on DEA have used robust optimization to deal with data uncertainty, 

called robust data envelopment analysis (RDEA) (Wu et al., 2017; Lu et al., 2019; Tavana et al., 2021). 

Sadjadi and Omrani (2008) were also the first to propose the concept of a robust two-stage NDEA model to deal with 

uncertainty in data. They compared the performance of two robust approaches established by Ben-Tal and Nemirovski (1999) 

and Bertsimas and Sim (2003) to address uncertainty in two applications from the energy and telecom industries.  

Peykani et al. (2020) examined milestone approaches to dealing with uncertainty in DEA. Full classifications of robust 

data envelopment analysis (RDEA) are presented in this study. It included 73 studies from 2008 to 2019. The report concludes 

with recommendations for further research on RDEA. To investigate regional efficiency in China, Chen et al. (2020) 

constructed a two-stage Environmental Sustainability index consisting of a Production Efficiency index and an eco-efficiency 

index. They used a multiplicative relational network data envelopment analysis model and window analysis. 

Radsar et al. (2022) proposed a robust three-stage model based on Bertsimas and sim (2004) approach in the field of 

efficiency evaluation in conditions of uncertainty and having an undesirable output. Also, Peykani et al. (2022) applied a 

two-stage robust network DEA for performance evaluation and ranking of 15 Mutual funds in the presence of uncertain data. 

They showed that the discriminatory power in the robust NDEA approach is more than in deterministic NDEA models. 

In most of the previous studies, according to the need and simplicity of the problems, two or three-stage models of 

network data envelopment analysis have been used. Also, previous researchers have only obtained one value to approximate 

the efficiency score of DMUs. Therefore, according to the development of science and the more complexity of problems in 

the future world, the need to use models with more stages is strongly felt. In this research, two values have been produced to 

approximate the efficiency score of the units, which can be low approximation and high approximation of the efficiency score 

of the units. Therefore, in this study, a new general approach for robust network data envelopment analysis (RNDEA) was 
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presented based on the development of Kao and Hwang's two-stage DEA model and its dual model and the robustness method 

of Bertsimas et al. This model helps researchers to provide the appropriate approximate efficiency range for each DMU for 

all series network systems to evaluate the efficiency and ranking of DMUs with respect to internal structure and data 

uncertainty. Also, the application and efficiency of the proposed approach was shown by measuring the three-stage supply 

chain performance of 40 dairy companies active in the capital market of Iran. 
The structure of this paper is organized as follows. The literature review classification and literature gaps are introduced 

in Section 1. The theoretical background, including the structure of series network systems and NDEA modeling based on 

Kao and Hwang (2008), as well as the formulation of the robust model (RNDEA) based on the Bertsimas et al. technique to 

evaluate the performance of DMUs under uncertainty, is presented in Section 2. In Section 3, a new robust network DEA 

(RNDEA) model is proposed. The applicability of the proposed approach is shown by a real case study in Section 4, and the 

results are compared with the three-stage fuzzy data envelopment analysis (TSFDEA) model. Finally, the conclusions and 

directions for future research are presented in Section 5. 

 

2. LITERATURE  
 

In this section, the history of the research will be presented. In the first subsection, the multi-stage DEA model and its dual 

are presented to calculate the total efficiency score and the efficiency score of each stage. In the second subsection, Bertsimas 

et al.'s robustness technique is introduced and applied to the traditional DEA model. 

 

2.1  Multi-Stage DEA Models 

 

Consider an h-process series system. Let 𝑥𝑖𝑗
𝑡 , 𝑖 = 1, . . . , 𝑀𝑡  and 𝑦𝑟𝑗

𝑡 , 𝑟 = 1, . . . , 𝑆𝑡, be defined as the inputs and outputs of 

process t, which 𝑥𝑖𝑗
1 , 𝑖 = 1, . . . , 𝑀1 are initial process inputs and 𝑦𝑟𝑗

ℎ , 𝑟 = 1, . . . , 𝑆ℎ , final process outputs, respectively. For 

DMU j, 𝑧𝑑𝑗
𝑡 , 𝑑 = 1, … , 𝐷𝑡 , denote the dth intermediate product of process t, t = 1,…, h-1. The intermediate products of process 

t are both the process t outputs and the process t + 1 inputs. It should be noted that the final outputs of the system are the 

intermediate products of the last process h. Each process may have a varied number of input, intermediate, and output 

products, 𝑀𝑡 , 𝑆𝑡 and 𝐷𝑡. It is assumed here that they are the same for all processes, 𝑀𝑡 = 𝑀, 𝑆𝑡 = 𝑆, 𝐷𝑡 = 𝐷,𝑡 = 1, . . . , ℎ, 

only to simplify notation. The mechanism is depicted graphically in Figure 1. 

Let us introduce the following basic notation: 

𝑗 ∈ 𝐽 = {1, . . . , 𝑛}: The index set of the n DMUs. 

𝑘 ∈ {1, . . . , 𝑛}: Denotes the index of under evaluation DMU. 

𝑋𝑗
𝑡 = (𝑥𝑖𝑗

𝑡 ; 𝑖 = 1, . . . , 𝑀𝑡 , 𝑡 = 1, … , ℎ): The vector of stage t external inputs used by DMU j. 

𝑍𝑗
𝑡 = (𝑧𝑑𝑗

𝑡 , 𝑑 = 1, . . . , 𝐷𝑡; 𝑡 = 1, . . . , ℎ− 1): The vector of stage t intermediate outputs produced by DMUj. 

𝑌𝑗
𝑡 = (𝑦𝑙𝑗

𝑡 ; 𝑙 = 1, . . . , 𝑆𝑡 , 𝑡 = 1, … , ℎ): The vector of stage t final outputs produced by DMU j. 

𝑉𝑡 = (𝑣𝑖
𝑡; 𝑖 = 1, . . . , 𝑀𝑡 , 𝑡 = 1, … , ℎ):  The vector of weights for the stage t external inputs. 

𝑊𝑡 = (𝑤𝑑
𝑡 , 𝑑 =, . . . , 𝐷𝑡; 𝑡 = 1, . . . , ℎ− 1): The vector of weights for stage t intermediate outputs. 

𝑈𝑡 = (𝑢𝑟
𝑡 ; 𝑟 = 1, . . . , 𝑆𝑡 , 𝑡 = 1, … , ℎ): The vector of weights for the stage t external outputs. 

𝜆𝑡 = (𝜆𝑗
𝑡 , 𝑗 = 1, . . . , 𝑛; 𝑡 = 1, . . . , ℎ): The vector of weights for DMU j in stage t.  

𝐸𝑘: The overall efficiency of DMU k. 

𝐸𝑘
𝑡(𝑡 = 1, … , ℎ− 1): The stage t efficiency of DMU k. 

 

 

Figure 1. The multi-stage series system with intermediate products 
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The following model based on the generalized of Kao and Hwang (2008) is used to calculate the system efficiency of 

DMU k: 

 

𝐸𝑘 = 𝑚𝑎𝑥 ∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1   (1.1) 

𝑠. 𝑡.    ∑ ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡𝑀
𝑖=1

ℎ
𝑡=1 = 1,    (1.2) 

∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + ∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,                     𝑗 = 1, . . . , 𝑛  (1.3) 

∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 − ∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  𝑡 = 2, . . . , ℎ − 1   (1.4) 

∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑆
𝑟=1 − ∑ 𝑤𝑑

ℎ−1𝑧𝑑𝑗
ℎ−1𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0,                 𝑗 = 1, . . . , 𝑛    (1.5) 

∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑗

𝑡𝑆
𝑟=1

ℎ
𝑡=1 − ∑ ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1
ℎ
𝑡=1 ≤ 0,     (1.6) 

𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,    𝑟 = 1, . . . , 𝑆,  𝑖 = 1, . . . , 𝑀, 𝑑 = 1, . . . , 𝐷, 𝑡 = 1, . . . , ℎ.  (1) 

 

As can be observed, constraint (1.6) equals the sum of constraints (1.2) until (1.5). As a result, it can be ignored. As a 

result, model (1) may be summarized as follows: 

 

𝐸𝑘 = 𝑚𝑎𝑥 ∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1   (2.1) 

𝑠. 𝑡.          ∑ ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡𝑀
𝑖=1

ℎ
𝑡=1 = 1,  (2.2) 

∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + ∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,                      𝑗 = 1, . . . , 𝑛  (2.3) 

∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 − ∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  𝑡 = 2, . . . , ℎ− 1 (2.4) 

∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑆
𝑟=1 − ∑ 𝑤𝑑

ℎ−1𝑧𝑑𝑗
ℎ−1𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0,                 𝑗 = 1, . . . , 𝑛  (2.5) 

𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,                   𝑟 = 1, . . . , 𝑆,      𝑖 = 1, . . . , 𝑀,       𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ.  (2) 

 

The efficiency of each process for DMU k is calculated by replacing the following relations for relations (2.1) and (2.2) 

in the preceding model, along with the same additional constraints: 

 

𝐸𝑘
1 = 𝑚𝑎𝑥 ∑ 𝑤𝑑

1𝑧𝑑𝑘
1𝐷

𝑑=1 + ∑ 𝑢𝑟
1𝑦𝑟𝑘

1𝑆
𝑟=1   (3.1) 

𝑠. 𝑡.          ∑ 𝑣𝑖
1𝑥𝑖𝑘

1 = 1𝑀
𝑖=1 ,  (3.2) 

∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + ∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,                      𝑗 = 1, . . . , 𝑛  

∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 − ∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛, 𝑡 = 2, . . . , ℎ− 1  

∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑆
𝑟=1 − ∑ 𝑤𝑑

ℎ−1𝑧𝑑𝑗
ℎ−1𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0,                 𝑗 = 1, . . . , 𝑛  

𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,                   𝑟 = 1, . . . , 𝑆,      𝑖 = 1, . . . , 𝑀,  

  𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ.  

(3) 

 

The efficiency score for each stage T, (𝑇 = 2, … , ℎ− 1), is as follows. 

 

𝐸𝑘
𝑇 = 𝑚𝑎𝑥 ∑ 𝑤𝑑

𝑇𝑧𝑑𝑘
𝑇𝐷

𝑑=1 + ∑ 𝑢𝑟
𝑇𝑦𝑟𝑘

𝑇𝑆
𝑟=1   (4.1) 

𝑠. 𝑡.          ∑ 𝑤𝑑
𝑇−1𝑧𝑑𝑘

𝑇−1𝐷
𝑑=1 + ∑ 𝑣𝑖

𝑇𝑥𝑖𝑘
𝑇 = 1𝑀

𝑖=1 ,  (4.2) 

∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + ∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,                      𝑗 = 1, . . . , 𝑛    

∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 − ∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛        

𝑡 = 2, . . . , ℎ − 1  

∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑆
𝑟=1 − ∑ 𝑤𝑑

ℎ−1𝑧𝑑𝑗
ℎ−1𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0,                 𝑗 = 1, . . . , 𝑛  

𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,                  𝑟 = 1, . . . , 𝑆,      𝑖 = 1, . . . , 𝑀,  

𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ  

(4) 

 

and the following model is used to calculate the efficiency score for the final stage. 

 

𝐸𝑘
ℎ = 𝑚𝑎𝑥 ∑ 𝑢𝑟

ℎ𝑦𝑟𝑘
ℎ𝑆

𝑟=1   (5.1) 

𝑠. 𝑡.          ∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑘

ℎ−1𝐷
𝑑=1 + ∑ 𝑣𝑖

ℎ𝑥𝑖𝑘
ℎ = 1𝑀

𝑖=1 ,    (5.2) 

∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + ∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,                      𝑗 = 1, . . . , 𝑛  

∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 − ∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛        

= 2, . . . , ℎ− 1  

∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑆
𝑟=1 − ∑ 𝑤𝑑

ℎ−1𝑧𝑑𝑗
ℎ−1𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0,                 𝑗 = 1, . . . , 𝑛  

(5) 
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𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,                  𝑟 = 1, . . . , 𝑆,      𝑖 = 1, . . . , 𝑀,  

𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ.  
 

On the other hand, the dual of model (2) can be represented as follows. 

 

𝐸𝑘 = 𝑚𝑖𝑛 𝜃  

s.t.    ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑘

𝑡 ,         𝑖 = 1, . . . , 𝑚,   𝑡 = 1, . . . , ℎ  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑛
𝑗=1 𝑧𝑑𝑗

𝑡 ≥ 0, 𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 1  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

𝑡 ,          𝑟 = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ  

𝜆𝑗
𝑡 ≥ 0,                       𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ− 1  

(6) 

 

As the same way, the dual of model (3), the efficiency of the first stage, is as follows. 

 

𝐸𝑘
1 = 𝑚𝑖𝑛 𝜃1  

s.t.    ∑ 𝜆𝑗
1𝑥𝑖𝑗

1𝑛
𝑗=1 ≤ 𝜃1𝑥𝑖𝑘

1 ,          𝑖 = 1, . . . , 𝑚,  

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                  𝑖 = 1, . . . , 𝑚,   𝑡 = 2, . . . , ℎ  

∑ (𝜆𝑗
1 − 𝜆𝑗

2)𝑛
𝑗=1 𝑧𝑑𝑗

1 ≥ 𝑧𝑑𝑘
1 , 𝑑 = 1, . . . , 𝐷,  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑛
𝑗=1 𝑧𝑑𝑗

𝑡 ≥ 0, 𝑑 = 1, . . . , 𝐷,    𝑡 = 2, . . . , ℎ− 1  

∑ 𝜆𝑗
1𝑦𝑟𝑗

1𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

1 ,          𝑟 = 1, . . . , 𝑠,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 ≥ 0,          𝑟 = 1, . . . , 𝑠,     𝑡 = 2, . . . , ℎ  

𝜆𝑗
𝑡 ≥ 0,                       𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ  

(7) 

 

For each intermediate stage, 𝑇 = 2, . . . , ℎ− 1, dual model of (4) is equal to 

 

𝐸𝑘
𝑇 = 𝑚𝑖𝑛 𝜃𝑇  

s.t.   ∑ 𝜆𝑗
𝑇𝑥𝑖𝑗

𝑇𝑛
𝑗=1 ≤ 𝜃𝑇𝑥𝑖𝑘

𝑇 ,           𝑖 = 1, . . . , 𝑚,  

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                    𝑖 = 1, . . . , 𝑚,   𝑡 = 1, . . . , ℎ, 𝑡 ≠ 𝑇  

∑ (𝜆𝑗
𝑇−1 − 𝜆𝑗

𝑇)𝑧𝑑𝑗
𝑇−1𝑛

𝑗=1 + 𝜃𝑇𝑧𝑑𝑘
𝑇−1 ≥ 0,  𝑑 = 1, . . . , 𝐷,  

∑ (𝜆𝑗
𝑇 − 𝜆𝑗

𝑇+1)𝑛
𝑗=1 𝑧𝑑𝑗

𝑇 ≥ 𝑧𝑑𝑘
𝑇 ,  𝑑 = 1, . . . , 𝐷,  

(8) 

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑛
𝑗=1 𝑧𝑑𝑗

𝑡 ≥ 0,  𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 1, 𝑡 ≠ 𝑇  

∑ 𝜆𝑗
𝑇𝑦𝑟𝑗

𝑇𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

𝑇 ,          𝑟 = 1, . . . , 𝑠,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 ≥ 0,          𝑟 = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ, 𝑡 ≠ 𝑇  

𝜆𝑗
𝑡 ≥ 0,                       𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ  

 

 

and for the last stage, the dual of model (5) is as follows. 

 

𝐸𝑘
ℎ = 𝑚𝑖𝑛 𝜃ℎ  

s.t.   ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                    𝑖 = 1, . . . , 𝑚,   𝑡 = 1, . . . , ℎ− 1  

∑ 𝜆𝑗
ℎ𝑥𝑖𝑗

ℎ𝑛
𝑗=1 ≤ 𝜃ℎ𝑥𝑖𝑘

ℎ ,           𝑖 = 1, . . . , 𝑚,  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑛
𝑗=1 𝑧𝑑𝑗

𝑡 ≥ 0,  𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 2  

∑ (𝜆𝑗
ℎ−1 − 𝜆𝑗

ℎ)𝑛
𝑗=1 𝑧𝑑𝑗

ℎ−1 ≥ −𝜃ℎ𝑧𝑖𝑘
ℎ−1,          𝑑 = 1, . . . , 𝐷,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 ≥ 0,          𝑟 = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ− 1  

∑ 𝜆𝑗
ℎ𝑦𝑟𝑗

ℎ𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

ℎ ,          𝑟 = 1, . . . , 𝑠,  

𝜆𝑗
𝑡 ≥ 0,                       𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ  

(9) 
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2.2 Robust Model with Bertsimas Technique 

 

Consider the following nominal linear optimal problem: 

 

𝑚𝑎𝑥  𝑐𝑥  

s.t:  
𝐴̃𝑥 ≤ 𝑏    𝑙 ≤ 𝑥 ≤ 𝑢.  

(10) 

 

Assume that just the elements of matrix 𝐴̃ = [𝑎̃𝑖𝑗] are uncertain in the previous formulation. Without losing generality, 

suppose object function c is not uncertain, and we can utilize maximize object z, add constraint 𝑧 − 𝑐𝑥 ≤ 0 and incorporate 

this constraint in 𝐴̃𝑥 ≤ 𝑏 (Bertsimas and Sim, 2002). 

Bertsimas and Sim (2003, 2004, and 2006) and Bertsimas et al. (2004) proposed a method for robust linear optimization 

with complete control over the conservative degree. They used a particular row 𝑖 of the matrix 𝐴̃ and assumed 𝑎̃𝑖𝑗 ∈

[𝑎𝑖𝑗 − 𝑎̂𝑖𝑗, 𝑎𝑖𝑗 + 𝑎̂𝑖𝑗], 𝑗 ∈ 𝐽𝑖as a limited and symmetric independent random variable (but with unknown distribution) that 𝐽𝑖 =

{𝑗|𝑎̂𝑖𝑗 > 0}, 𝑖 = 1, . . . , 𝑚and defined the standard deviation of nominal value 𝑎𝑖𝑗 as 𝜂𝑖𝑗 =
(𝑎̃𝑖𝑗−𝑎𝑖𝑗)

𝑎̂𝑖𝑗
. Where 𝑎̃𝑖𝑗 and 𝑎𝑖𝑗 are 

uncertain and nominal values, respectively, and 𝑎̂𝑖𝑗 represents the approximation's correctness. Clearly, 𝜂𝑖𝑗has an uneven but 

unknown distribution with values in the range [−1,1]. The total scaled deviation of the ith constraint, on the other hand, can 

be any amount in the interval [−𝑛, 𝑛], but is restricted to ∑ 𝜂𝑖𝑗
𝑛
𝑗=1 = 𝛤𝑖 . 

The job of the constraint parameter 𝛤𝑖 is to adjust the suggested method's stability to the conservative level of the 

problem, which does not have to be an integer for any constraint i and takes a value in the interval [0, |𝐽𝑖|]. The cost of the 

constraint's uncertainty is denoted by 𝛤𝑖, where: 

 

∑ 𝑎̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = ∑ (𝑎𝑖𝑗 + 𝜂𝑖𝑗𝑎̂𝑖𝑗)𝑥𝑗

𝑛
𝑗=1 = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 + ∑ 𝑎̂𝑖𝑗𝜂𝑖𝑗𝑥𝑗𝑗∈𝐽𝑖

,    𝑖 = 1, . . . , 𝑚  (10) 

 

Now, model (10) is formulated as follows 

 

𝑚𝑖𝑛  𝑐𝑥  

s.t.  
𝐴𝑖𝑥 + 𝑚𝑎𝑥𝜂𝑖𝑗∈[−1,1] ∑ 𝑎̂𝑖𝑗𝑥𝑗𝜂𝑖𝑗𝑗∈𝐽𝑖

≤ 𝑏𝑖 ,   𝑖 = 1, . . . , 𝑚  

𝑙 ≤ 𝑥 ≤ 𝑢  

 

 

Then, the robust counterpart model for model (10) is given as follows (Bertsimas and Sim, 2004). 

 

𝑚𝑖𝑛  𝑐𝑥  

s.t.    A𝑖𝑥 + 𝛤𝑖𝑝𝑖 + ∑ 𝑞𝑖𝑗𝑗∈𝐽𝑖
≤ 𝑏𝑖            𝑖 = 1, . . . , 𝑚  

𝑝𝑖 + 𝑞𝑖𝑗 ≥ 𝑎̂𝑖𝑗𝑗
|𝑥𝑗|              𝑗 ∈ 𝐽𝑖 , 𝑖 = 1, . . . , 𝑚  

𝑝𝑖 , 𝑞𝑖𝑗 ≥ 0,                         𝑗 ∈ 𝐽𝑖 , 𝑖 = 1, . . . , 𝑚  

𝑥 ∈ 𝑋.  

(11) 

 

2.2.1 DEA Counterpart Models Based on Bertsimas and Sim Method 

 

Consider an input-oriented DEA model with uncertain output,𝑦̃𝑟𝑗 = 𝑦𝑟𝑗 + 𝜂𝑟𝑗
𝑦 𝑦̂𝑟𝑗,𝑦̂𝑟𝑗 ≥ 0, 𝜂𝑟𝑗

𝑦 ∈ [−1,1], such as follow: 

 

𝐸𝑘 = 𝑚𝑎𝑥  𝑤  

s.t.   𝑤 − ∑ 𝑢𝑟𝑦̃𝑟𝑘
𝑠
𝑟=1 ≤ 0  

∑ 𝑢𝑟𝑦̃𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0,    𝑗 = 1, . . . , 𝑛  

∑ 𝑣𝑖𝑥𝑖𝑘
𝑚
𝑖=1 = 1  

𝑣𝑟 , 𝑢𝑖 ≥ 0     𝑖 = 1, . . . , 𝑚     r = 1, . . . , 𝑠  

 

 

According to Bertsimas et al. method, we must have 

 

𝐸𝑘 = 𝑚𝑎𝑥  𝑤   
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s.t.    𝑤 − (∑ 𝑢𝑟𝑦𝑟𝑘 +𝑠
𝑟=1 𝑚𝑖𝑛 ∑ 𝑢𝑟𝜂𝑟𝑘

𝑦 𝑦̂𝑟𝑘
𝑠
𝑟=1 ) ≤ 0  

(∑ 𝑢𝑟𝑦𝑟𝑗 +𝑠
𝑟=1 𝑚𝑎𝑥 ∑ 𝑢𝑟𝜂𝑟𝑗

𝑦 𝑦̂𝑟𝑗
𝑠
𝑟=1 ) − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0,  𝑗 = 1, . . . , 𝑛  

∑ 𝑣𝑖𝑥𝑖𝑘
𝑚
𝑖=1 = 1  

𝑣𝑟 , 𝑢𝑖 ≥ 0                            𝑖 = 1, . . . , 𝑚,         r = 1, . . . , 𝑠  

 

In the first constraint, 𝑚𝑖𝑛 ∑ 𝑢𝑟𝜂𝑟𝑘
𝑦 𝑦̂𝑟𝑘

𝑠
𝑟=1 is equal to −𝑚𝑎𝑥 ∑ 𝑢𝑟(−𝜂𝑟𝑘

𝑦 )𝑦̂𝑟𝑘
𝑠
𝑟=1 . We define 𝜉𝑟𝑘

𝑦 = −𝜂𝑟𝑘
𝑦 , 𝜉𝑟𝑘

𝑦 ∈ [−1,1] 

and so it will be equal to −𝑚𝑎𝑥 ∑ 𝑢𝑟𝜉𝑟𝑘
𝑦 𝑦̂𝑟𝑘

𝑠
𝑟=1 , 𝜉𝑟𝑘

𝑦 ∈ [−1,1]. So, we'll have the following relationship. 

 

𝑚𝑖𝑛 ∑ 𝑢𝑟𝜂𝑟𝑘
𝑦 𝑦̂𝑟𝑘

𝑠
𝑟=1 = −𝑚𝑎𝑥 ∑ 𝑢𝑟𝜂𝑟𝑘

𝑦 𝑦̂𝑟𝑘
𝑠
𝑟=1 , 𝜂𝑟𝑘

𝑦 ∈ [−1,1].   

 

Also 𝑢𝑟 ≥ 0 implies |𝑢𝑟| = 𝑢𝑟. As maintained above, the Bertsimas et al. The robust DEA (BRDEA) model based on 

uncertainty in outputs is as follows: 

 

𝐸𝑘 = 𝑚𝑎𝑥  𝑤  

s.t.    w − (∑ 𝑢𝑟𝑦𝑟𝑘
𝑠
𝑟=1 − 𝑝𝑘𝛤𝑘 − ∑ 𝑞𝑟𝑘

𝑠
𝑟−1 ) ≤ 0  

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 + 𝑝𝑗𝛤𝑗 + ∑ 𝑞𝑟𝑗

𝑠
𝑟−1 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0,    𝑗 = 1, . . . , 𝑛  

∑ 𝑣𝑖𝑥𝑖𝑘
𝑚
𝑖=1 = 1  

𝑝𝑗 + 𝑞𝑟𝑗 ≥ 𝑦̂𝑟𝑗𝑢𝑟,                𝑟 = 1, . . . , 𝑠          𝑗 = 1, . . . , 𝑛  

𝑞𝑟𝑗 , 𝑣𝑟, 𝑝𝑗, 𝑢𝑖 ≥ 0     𝑖 = 1, . . . , 𝑚   𝑟 = 1, . . . , 𝑠   𝑗 = 1, . . . , 𝑛.  

(12) 

 

Bertsimas et al. (2004) developed a counterpart model based on linear programming difficulties. In other words, by 

employing this strategy, the primary problem classification can be preserved. For example, the robust counterpart of a linear 

programming problem, like DEA, is a linear programming problem, such as model (12). 

 

3. BERTSIMAS ROBUST NETWORK DEA (BRNDEA) MODELS 
 

In this section, using the network DEA models presented in section 2.1 and the robustness technique presented in section 2.2, 

we will build our robust network DEA models. 

First, assume that the external input data, 𝑥𝑖𝑗
𝑡 , are definite values, but the values of intermediate products, 𝑧𝑑𝑗

𝑡 , and output 

products,𝑦𝑟𝑗
𝑡 , are subject to uncertain data, that's mean 

 

𝑦̃𝑟𝑗
𝑡 = 𝑦𝑟𝑗

𝑡 + 𝜂𝑟𝑗
𝑦𝑡

𝑦̂𝑟𝑗
𝑡   ,      𝑦̂𝑑𝑗

𝑡 ≥ 0, 𝜂𝑟𝑗
𝑦𝑡

∈ [−1,1]  

𝑧̃𝑑𝑗
𝑡 = 𝑧𝑑𝑗

𝑡 + 𝜂𝑑𝑗
𝑧𝑡

𝑧̂𝑑𝑗
𝑡   ,       𝑧̂𝑑𝑗

𝑡 ≥ 0, 𝜂𝑑𝑗
𝑧𝑡

∈ [−1,1].  
(*) 

 

We remember that 𝑦̂𝑟𝑗
𝑡  and 𝑧̂𝑑𝑗

𝑡  are devotions from nominal data and so 𝑦̂𝑟𝑗
𝑡 < 𝑦𝑟𝑗

𝑡  and 𝑧̂𝑑𝑗
𝑡 < 𝑧𝑑𝑗

𝑡 . Then 𝑦̃𝑟𝑗
𝑡 ≥ 0 and 

𝑧̃𝑑𝑗
𝑡 ≥ 0, 𝑡 = 1, . . . , ℎ. 

 

3.1 Multi-Stage Robust Model based on Kao and Hwang Model (model (2)) 

 

In model (2), we use 𝑚𝑎𝑥  𝑤and add constraint 𝑤 − ∑ ∑ 𝑢𝑟
𝑡𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1 ≤ 0. By substituting uncertain data in (*), the modal 

will be as follows 

 

𝐸𝑘 = 𝑚𝑎𝑥 𝑤  

𝑠. 𝑡.  ∑ ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡𝑀
𝑖=1

ℎ
𝑡=1 = 1,  

w- ∑ ∑ (𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡 + 𝑢𝑟
𝑡𝜂𝑟𝑘

𝑦𝑡

𝑦̂𝑟𝑘
𝑡 )𝑆

𝑟=1
ℎ
𝑡=1 ≤ 0  

∑ (𝑤𝑑
1𝑧𝑑𝑗

1 + 𝑤𝑑
1𝜂𝑑𝑗

𝑧1
𝑧̂𝑑𝑗

1 )𝐷
𝑑=1 + ∑ (𝑢𝑟

1𝑦𝑟𝑗
1 + 𝑢𝑟

1𝜂𝑟𝑗
𝑦1

𝑦̂𝑟𝑗
1 )𝑆

𝑟=1 − ∑ 𝑣𝑖
1𝑥𝑖𝑗

1𝑀
𝑖=1 ≤ 0,  𝑗 = 1, . . . , 𝑛  

∑ (𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡 + 𝑤𝑑
𝑡 𝜂𝑑𝑗

𝑧1
𝑧̂𝑑𝑗

𝑡 )𝐷
𝑑=1 + ∑ (𝑢𝑟

𝑡𝑦𝑟𝑗
𝑡 + 𝑢𝑟

𝑡 𝜂𝑟𝑗
𝑦𝑡

𝑦̂𝑟𝑗
𝑡 )𝑆

𝑟=1 − ∑ (𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1 + 𝑤𝑑
𝑡−1𝜂𝑑𝑗

𝑧1−1
𝑧̂𝑑𝑗

𝑡−1)𝐷
𝑑=1   

− ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡𝑀
𝑖=1 ≤ 0,    𝑗 = 1, . . . , 𝑛, 𝑡 = 2, . . . , ℎ− 1  

∑ (𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ + 𝑢𝑟
ℎ𝜂𝑟𝑗

𝑦ℎ𝑦̂𝑟𝑗
ℎ )𝑆

𝑟=1 − ∑ (𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1 + 𝑤𝑑
ℎ−1𝜂𝑑𝑗

𝑧ℎ−1
𝑧̂𝑑𝑗
ℎ−1)𝐷

𝑑=1 − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ𝑀
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  
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 𝑢𝑟
𝑡 ≥ 0, 𝑣𝑖

𝑡 ≥ 0, 𝑤𝑑
𝑡 ≥ 0,                   𝑟 = 1, . . . , 𝑆,      𝑖 = 1, . . . , 𝑀,  

𝜂𝑟𝑘
𝑦𝑡

, 𝜂𝑑𝑗
𝑧𝑡

∈ [−1,1]                                                 𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ.  

 

The above uncertain model will be replaced by the following model as a result of Bertsimas et al.' appointment for 

robustness. 

 

𝐸𝑘 = 𝑚𝑎𝑥 𝑤  

s.t.    ∑ ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡𝑀
𝑖=1

ℎ
𝑡=1 = 1,  

w − (∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1 + 𝑚𝑖𝑛

𝜂𝑟𝑘
𝑦𝑡

,∈[−1,1]

∑ ∑ 𝑢𝑟
𝑡 𝜂𝑟𝑘

𝑦𝑡

𝑦̂𝑟𝑘
𝑡𝑆

𝑟=1
ℎ
𝑡=1 ) ≤ 0,  

(∑ 𝑤𝑑
1𝑧𝑑𝑗

1

𝐷

𝑑=1

+ 𝑚𝑎𝑥
𝜂𝑑𝑗

𝑧1
∈[−1,1]

∑ 𝑤𝑑
1𝜂𝑑𝑗

𝑧1
𝑧̂𝑑𝑗

1

𝐷

𝑑=1

) + (∑ 𝑢𝑟
1𝑦𝑟𝑗

1

𝑆

𝑟=1

+ 𝑚𝑖𝑛
𝜂𝑟𝑘

𝑦1
∈[−1,1]

∑ 𝑢𝑟
1𝜂𝑟𝑗

𝑦1

𝑦̂𝑟𝑗
1

𝑆

𝑟=1

) − ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡

𝑚

𝑖=1

≤ 0, 𝑗 = 1, . . . , 𝑛 

(∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + 𝑚𝑎𝑥

𝜂𝑑𝑗
𝑧𝑡

∈[−1,1]

∑ 𝑤𝑑
𝑡 𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑚𝑖𝑛
𝜂𝑟𝑘

𝑦𝑡
∈[−1,1]

∑ 𝑢𝑟
𝑡 𝜂𝑟𝑗

𝑦𝑡

𝑦̂𝑟𝑗
𝑡𝑆

𝑟=1 )  

− (∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 + 𝑚𝑖𝑛

𝜂𝑑𝑗
𝑧𝑡−1

∈[−1,1]

∑ 𝑤𝑑
𝑡−1𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡−1𝐷
𝑑=1 ) − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0,  𝑡 = 2, . . . , ℎ− 1,   𝑗 = 1, . . . , 𝑛  

(∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ

𝑠

𝑟=1

+ 𝑚𝑎𝑥
𝜂𝑟𝑘

𝑦ℎ
∈[−1,1]

∑ 𝑢𝑟
ℎ𝜂𝑟𝑗

𝑦ℎ𝑦̂𝑟𝑗
ℎ

𝑠

𝑟=1

) − (∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1

𝐷

𝑑=1

+ 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧ℎ−1
∈[−1,1]

∑ 𝑤𝑑
ℎ−1𝜂𝑑𝑗

𝑧ℎ−1
𝑧̂𝑑𝑗
ℎ−1

𝐷

𝑑=1

) − ∑ 𝑣𝑖
ℎ𝑥𝑖𝑗

ℎ

𝑀

𝑖=1

≤ 0, 

𝑗 = 1, . . . , 𝑛 

𝑢𝑟
𝑡 , 𝑣𝑖

𝑡, 𝑤𝑑
𝑡 ≥ 0,        r = 1, . . . , 𝑠,        𝑖 = 1, . . . , 𝑚,     𝑑 = 1, . . . , 𝐷,       𝑡 = 1, . . . , ℎ, 

𝜂𝑟𝑘
𝑦𝑡

, 𝜂𝑑𝑗
𝑧1

∈ [−1,1] 

(13) 

 

Now, we must find a robust equivalent for each constraint according to Bertsimas et al.'s approach. In the third 

constraint, statement 𝑚𝑖𝑛
𝜂𝑟𝑘

𝑦𝑡
,∈[−1,1]

∑ ∑ 𝑢𝑟
𝑡𝜂𝑟𝑘

𝑦𝑡

𝑦̂𝑟𝑘
𝑡𝑆

𝑟=1
ℎ
𝑡=1 is equal to − 𝑚𝑎𝑥

𝜂𝑟𝑘
𝑦𝑡

,∈[−1,1]

∑ ∑ 𝑢𝑟
𝑡 𝜂𝑟𝑘

𝑦𝑡

𝑦̂𝑟𝑘
𝑡𝑆

𝑟=1
ℎ
𝑡=1 . According Bertsimas et al. 

method, because 𝑢𝑟
𝑡 ≥ 0, 𝑦𝑟𝑘

𝑡 ≥ 0, then we have 

 

𝑚𝑎𝑥 ∑ ∑ 𝑢𝑟
𝑡 𝜂𝑟𝑘

𝑦𝑡

𝑦̂𝑦𝑘
𝑡

𝑆

𝑟=1

ℎ

𝑡=1

 

𝑠. 𝑡.   0 ≤ 𝜂𝑟𝑘
𝑦𝑡

≤ 1,     𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ, 

∑ 𝜂𝑟𝑘
𝑦𝑡

𝑆

𝑟=1

= 𝛤𝑘
𝑡 ,   𝑡 = 1, . . . , ℎ 

 

 

The dual of the above model is expressed as follows 

 

𝑚𝑖𝑛     ∑ 𝑝𝑘
𝑦𝑡

𝛤𝑘
𝑦𝑡

ℎ
𝑡=1 + ∑ ∑ 𝑞𝑟𝑘

𝑦𝑡
𝑆
𝑟=1

ℎ
𝑡=1   

𝑠. 𝑡.      𝑝𝑘
𝑦𝑡

+ ∑ 𝑞𝑟𝑘
𝑦𝑡

𝑠
𝑟=1 ≥ 𝑦̂𝑟𝑘

𝑡 𝑢𝑟
𝑡 , 𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ,  

𝑞𝑟𝑘
𝑦𝑡

≥ 0,                     𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ,  

𝑝𝑘
𝑦𝑡

≥ 0,                     𝑡 = 1, . . . , ℎ.  

 

 

Then, it's robust counterpart constraint will be as follow 

 

𝑤 − (∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1 − ∑ 𝑝𝑘

𝑦𝑡

𝛤𝑘
𝑦𝑡

ℎ
𝑡=1 − ∑ ∑ 𝑞𝑟𝑘

𝑦𝑡
𝑆
𝑟=1

ℎ
𝑡=1 ) ≤ 0  

𝑠. 𝑡.    𝑝𝑘
𝑦𝑡

+ ∑ 𝑞𝑟𝑘
𝑦𝑡

𝑠
𝑟=1 ≥ 𝑦̂𝑟𝑘

𝑡 𝑢𝑟
𝑡 , 𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ,  

𝑞𝑟𝑘
𝑦𝑡

≥ 0,                     𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ,  
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𝑝𝑘
𝑦𝑡

≥ 0,                     𝑡 = 1, . . . , ℎ.  
 

Also, in the same way, for each 𝑡 = 1, . . . , ℎ, the robust counterpart of 𝑚𝑎𝑥
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝑤𝑑
𝑡 𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝐷
𝑑=1 is equal to 

 

𝑚𝑖𝑛     𝑝𝑗
𝑧𝑡

𝛤𝑗
𝑧𝑡

+ ∑ 𝑞𝑑𝑗
𝑧𝑡𝐷

𝑑=1   

𝑠. 𝑡.      𝑝𝑗
𝑧𝑡

+ 𝑞𝑟𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝑤𝑑

𝑡 ,   𝑑 = 1, . . . , 𝐷  

𝑝𝑗
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,             𝑑 = 1, . . . , 𝐷  

 

 

and so, the robust counterpart model for 𝑚𝑎𝑥
𝜂𝑟𝑘

𝑦𝑡
∈[−1,1]

∑ 𝑢𝑟
𝑡 𝜂𝑟𝑗

𝑦𝑡

𝑦̂𝑟𝑗
𝑡𝑠

𝑟=1 is  

 

𝑚𝑖𝑛     𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑑𝑗
𝑦𝑡

𝑠
𝑟=1   

𝑠. 𝑡.     𝑝𝑗
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝑢𝑟

𝑡 ,   r = 1, . . . , 𝑠  

𝑝𝑗
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,          r = 1, . . . , 𝑠  

 

 

Therefore, a counterpart robust multi-stage model based on model (2) in the Bertsimas et al. method will be as follows. 

 

𝐸𝑘 = 𝑚𝑎𝑥 𝑤  

s.t.      
∑ ∑ 𝑣𝑖

𝑡𝑥𝑖𝑘
𝑡𝑀

𝑖=1
ℎ
𝑡=1 = 1,  

𝑤 − (∑ ∑ 𝑢𝑟
𝑡 𝑦𝑟𝑘

𝑡𝑆
𝑟=1

ℎ
𝑡=1 − ∑ 𝑝𝑘

𝑦𝑡

𝛤𝑘
𝑦𝑡

ℎ
𝑡=1 − ∑ ∑ 𝑞𝑟𝑘

𝑦𝑡
𝑆
𝑟=1

ℎ
𝑡=1 ) ≤ 0,  

(∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + 𝑝𝑗

𝑧1
𝛤𝑗

𝑧1
+ ∑ 𝑞𝑑𝑗

𝑧1𝐷
𝑑=1 ) + (∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 + 𝑝𝑗
𝑦1

𝛤𝑗
𝑦1

+ ∑ 𝑞𝑟𝑗
𝑦1

) − ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  

(∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑡
𝛤𝑗

𝑧𝑡
+ ∑ 𝑞𝑑𝑗

𝑧𝑡𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

)  

− (∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − 𝑝𝑗

𝑧𝑡−1
𝛤𝑗

𝑧𝑡−1
− ∑ 𝑞𝑑𝑗

𝑧𝑡−1𝐷
𝑑=1 ) − ∑ 𝑣𝑖

𝑡𝑥𝑖𝑗
𝑡𝑀

𝑖=1 ≤ 0, 𝑡 = 2, . . . , ℎ− 1    𝑗 = 1, . . . , 𝑛  

(∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑠
𝑟=1 + 𝑝𝑗

𝑦ℎ𝛤𝑗
𝑦ℎ + ∑ 𝑞𝑟𝑗

𝑦ℎ) − (∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1𝐷
𝑑=1 − 𝑝𝑗

𝑧ℎ−1
𝛤𝑗

𝑧ℎ−1
− ∑ 𝑞𝑑𝑗

𝑧ℎ−1𝐷
𝑑=1 ) − ∑ 𝑣𝑖

ℎ𝑥𝑖𝑗
ℎ𝑀

𝑖=1 ≤ 0,   

 𝑗 = 1, . . . , 𝑛  

𝑝𝑗
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝑢𝑟

𝑡 ,                𝑗 = 1, . . . , 𝑛,       𝑟 = 1, . . . , 𝑠,      𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

+ 𝑞𝑟𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝑤𝑑

𝑡 ,               𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑝𝑗
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                        𝑗 = 1, . . . , 𝑛,      𝑟 = 1, . . . , 𝑠,       𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                         𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑣𝑖
𝑡 , 𝑢𝑟

𝑡 , 𝑤𝑑
𝑡 ≥ 0,      𝑖 = 1, . . . , 𝑚,    𝑟 = 1, . . . , 𝑠,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ.  

(14) 

 

Furthermore, the robust counterpart models for calculating the performance evaluation of each stage t for each DMU 

are generated as follows based on Bertsimas et al. achievement and Kao and Hwang's network DEA model and the 

aforementioned technique. 

 

𝐸𝑘
1 = 𝑚𝑎𝑥 𝑤  

𝑠. 𝑡.      ∑ 𝑣𝑖
1𝑥𝑖𝑘

1 = 1𝑀
𝑖=1 ,  

𝑤 − ∑ 𝑤𝑑
1𝑧𝑑𝑘

1𝐷
𝑑=1 + 𝑝𝑘

𝑧1
𝛤𝑘

𝑧1
+ ∑ 𝑞𝑑𝑘

𝑧1𝐷
𝑑=1 − ∑ 𝑢𝑟

1𝑦𝑟𝑘
1𝑆

𝑟=1 + 𝑝𝑘
𝑦1

𝛤𝑘
𝑦1

+ ∑ 𝑞𝑟𝑘
𝑦1

𝑆
𝑟=1 ≤ 0   

(∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + 𝑝𝑗

𝑧1
𝛤𝑗

𝑧1
+ ∑ 𝑞𝑑𝑗

𝑧1𝐷
𝑑=1 ) + (∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 + 𝑝𝑗
𝑦1

𝛤𝑗
𝑦1

+ ∑ 𝑞𝑟𝑗
𝑦1

) − ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0,     𝑗 = 1, . . . , 𝑛 

(∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑡
𝛤𝑗

𝑧𝑡
+ ∑ 𝑞𝑑𝑗

𝑧𝑡𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

) − (∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − 𝑝𝑗

𝑧𝑡−1
𝛤𝑗

𝑧𝑡−1
−

∑ 𝑞𝑑𝑗
𝑧𝑡−1𝐷

𝑑=1 ) − ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡𝑀
𝑖=1 ≤ 0, 𝑡 = 2, … , ℎ − 1    𝑗 = 1, … , 𝑛  

(∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑠
𝑟=1 + 𝑝𝑗

𝑦ℎ𝛤𝑗
𝑦ℎ + ∑ 𝑞𝑟𝑗

𝑦ℎ) − (∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1𝐷
𝑑=1 − 𝑝𝑗

𝑧ℎ−1
𝛤𝑗

𝑧ℎ−1
− ∑ 𝑞𝑑𝑗

𝑧ℎ−1𝐷
𝑑=1 ) − ∑ 𝑣𝑖

ℎ𝑥𝑖𝑗
ℎ𝑀

𝑖=1 ≤ 0,  𝑗 =

1, . . . , 𝑛  

(15) 
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𝑝𝑗
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝑢𝑟

𝑡 ,                𝑗 = 1, . . . , 𝑛,       𝑟 = 1, . . . , 𝑠,      𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

+ 𝑞𝑟𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝑤𝑑

𝑡 ,               𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑝𝑗
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                        𝑗 = 1, . . . , 𝑛,      𝑟 = 1, . . . , 𝑠,       𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                         𝑗 = 1, … , 𝑛,      𝑑 = 1, … , 𝐷,      𝑡 = 1, … , ℎ− 1        

𝑣𝑖
𝑡 , 𝑢𝑟

𝑡 , 𝑤𝑑
𝑡 ≥ 0,      𝑖 = 1, . . . , 𝑚,    𝑟 = 1, . . . , 𝑠,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ.  

 

 

and for stage T, 𝑇 = 2, . . . , ℎ− 1 

 

𝐸𝑘
𝑇 = 𝑚𝑎𝑥 𝑤  

𝑠. 𝑡.    ∑ 𝑤𝑑
𝑇−1𝑧𝑑𝑘

𝑇−1𝐷
𝑑=1 + ∑ 𝑣𝑖

𝑇𝑥𝑖𝑘
𝑇 = 1𝑀

𝑖=1   

𝑤 − ∑ 𝑤𝑑
𝑇𝑧𝑑𝑘

𝑇𝐷
𝑑=1 + 𝑝𝑘

𝑧𝑇
𝛤𝑘

𝑧𝑡
+ ∑ 𝑞𝑑𝑘

𝑧𝑇𝐷
𝑑=1 − ∑ 𝑢𝑟

𝑇𝑦𝑟𝑘
𝑇𝑆

𝑟=1 + 𝑝𝑘
𝑦𝑇

𝛤𝑘
𝑦𝑇

+ ∑ 𝑞𝑟𝑘
𝑦𝑇

𝑆
𝑟=1 ≤ 0,   

(∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + 𝑝𝑗

𝑧1
𝛤𝑗

𝑧1
+ ∑ 𝑞𝑑𝑗

𝑧1𝐷
𝑑=1 ) + (∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 + 𝑝𝑗
𝑦1

𝛤𝑗
𝑦1

+ ∑ 𝑞𝑟𝑗
𝑦1

) − ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  

(∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑡
𝛤𝑗

𝑧𝑡
+ ∑ 𝑞𝑑𝑗

𝑧𝑡𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

) − (∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 − 𝑝𝑗

𝑧𝑡−1
𝛤𝑗

𝑧𝑡−1
−

∑ 𝑞𝑑𝑗
𝑧𝑡−1𝐷

𝑑=1 )  

− ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡𝑀
𝑖=1 ≤ 0,  𝑗 = 1, . . . , 𝑛,  𝑡 = 2, . . . , ℎ− 1, 𝑡 ≠ 𝑇 − 1, 𝑇  

(16) 

 

(∑ 𝑤𝑑
𝑇𝑧𝑑𝑗

𝑇𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑇
𝛤𝑗

𝑧𝑇
+ ∑ 𝑞𝑑𝑗

𝑧𝑇𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑇𝑦𝑟𝑗
𝑇𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑇

𝛤𝑗
𝑦𝑇

+ ∑ 𝑞𝑟𝑗
𝑦𝑇

) − ∑ 𝑤𝑑
𝑇−1𝑧𝑑𝑗

𝑇−1𝐷
𝑑=1   

∑ 𝑣𝑖
𝑇−1𝑥𝑖𝑗

𝑇−1𝑀
𝑖=1 ≤ 0,     𝑗 = 1, . . . , 𝑛  

∑ 𝑤𝑑
𝑇−1𝑧𝑑𝑗

𝑇−1𝐷
𝑑=1 + (∑ 𝑢𝑟

𝑇−1𝑦𝑟𝑗
𝑇−1𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑇−1

𝛤𝑗
𝑦𝑇−1

+ ∑ 𝑞𝑟𝑗
𝑦𝑇−1

) − (∑ 𝑤𝑑
𝑇−2𝑧𝑑𝑗

𝑇−2𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑇−2
𝛤𝑗

𝑧𝑇−2
+

∑ 𝑞𝑑𝑗
𝑧𝑇−2𝐷

𝑑=1 ) − ∑ 𝑣𝑖
𝑇−2𝑥𝑖𝑗

𝑇−2𝑀
𝑖=1 ≤ 0,      𝑗 = 1, … , 𝑛         

(∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑠
𝑟=1 + 𝑝𝑗

𝑦ℎ𝛤𝑗
𝑦ℎ + ∑ 𝑞𝑟𝑗

𝑦ℎ) − (∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1𝐷
𝑑=1 − 𝑝𝑗

𝑧ℎ−1
𝛤𝑗

𝑧ℎ−1
− ∑ 𝑞𝑑𝑗

𝑧ℎ−1𝐷
𝑑=1 ) − ∑ 𝑣𝑖

ℎ𝑥𝑖𝑗
ℎ𝑀

𝑖=1 ≤ 0,  𝑗 =

1, . . . , 𝑛  

𝑝𝑗
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝑢𝑟

𝑡 ,                𝑗 = 1, . . . , 𝑛,       𝑟 = 1, . . . , 𝑠,      𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

+ 𝑞𝑟𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝑤𝑑

𝑡 ,               𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑝𝑗
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                        𝑗 = 1, . . . , 𝑛,      𝑟 = 1, . . . , 𝑠,       𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                         𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑣𝑖
𝑡 , 𝑢𝑟

𝑡 , 𝑤𝑑
𝑡 ≥ 0,      𝑖 = 1, . . . , 𝑚,    𝑟 = 1, . . . , 𝑠,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ.  

 

𝐸𝑘
ℎ = 𝑚𝑎𝑥 𝑤  

𝑠. 𝑡.  
 

∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑘

ℎ−1𝐷
𝑑=1 + ∑ 𝑣𝑖

ℎ𝑥𝑖𝑘
ℎ = 1𝑀

𝑖=1 ,  

𝑤 − ∑ 𝑢𝑟
ℎ𝑦𝑟𝑘

ℎ𝑆
𝑟=1 + 𝑝𝑘

𝑦ℎ𝛤𝑘
𝑦ℎ + ∑ 𝑞𝑟𝑘

𝑦ℎ𝑆
𝑟=1 ≤ 0,   

(∑ 𝑤𝑑
1𝑧𝑑𝑗

1𝐷
𝑑=1 + 𝑝𝑗

𝑧1
𝛤𝑗

𝑧1
+ ∑ 𝑞𝑑𝑗

𝑧1𝐷
𝑑=1 ) + (∑ 𝑢𝑟

1𝑦𝑟𝑗
1𝑆

𝑟=1 + 𝑝𝑗
𝑦1

𝛤𝑗
𝑦1

+ ∑ 𝑞𝑟𝑗
𝑦1

) − ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛  

(∑ 𝑤𝑑
𝑡 𝑧𝑑𝑗

𝑡𝐷
𝑑=1 + 𝑝𝑗

𝑧𝑡
𝛤𝑗

𝑧𝑡
+ ∑ 𝑞𝑑𝑗

𝑧𝑡𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡 𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

)          − (∑ 𝑤𝑑
𝑡−1𝑧𝑑𝑗

𝑡−1𝐷
𝑑=1 −

𝑝𝑗
𝑧𝑡−1

𝛤𝑗
𝑧𝑡−1

− ∑ 𝑞𝑑𝑗
𝑧𝑡−1𝐷

𝑑=1 ) − ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡𝑀
𝑖=1 ≤ 0, 𝑡 = 2, . . . , ℎ− 2,    𝑗 = 1, . . . , 𝑛  

(∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1𝐷
𝑑=1 ) + (∑ 𝑢𝑟

𝑡𝑦𝑟𝑗
𝑡𝑆

𝑟=1 + 𝑝𝑗
𝑦𝑡

𝛤𝑗
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

) − (∑ 𝑤𝑑
ℎ−2𝑧𝑑𝑗

ℎ−2𝐷
𝑑=1 − 𝑝𝑗

𝑧ℎ−2
𝛤𝑗

𝑧ℎ−2
− ∑ 𝑞𝑑𝑗

𝑧ℎ−2𝐷
𝑑=1 ) −

∑ 𝑣𝑖
ℎ−1𝑥𝑖𝑗

ℎ−1𝑀
𝑖=1 ≤ 0,        𝑗 = 1, . . . , 𝑛  

(∑ 𝑢𝑟
ℎ𝑦𝑟𝑗

ℎ𝑠
𝑟=1 + 𝑝𝑗

𝑦ℎ𝛤𝑗
𝑦ℎ + ∑ 𝑞𝑟𝑗

𝑦ℎ) − ∑ 𝑤𝑑
ℎ−1𝑧𝑑𝑗

ℎ−1𝐷
𝑑=1 − ∑ 𝑣𝑖

ℎ𝑥𝑖𝑗
ℎ𝑀

𝑖=1 ≤ 0,   𝑗 = 1, . . . , 𝑛  

 

𝑝𝑗
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝑢𝑟

𝑡 ,                𝑗 = 1, . . . , 𝑛,       𝑟 = 1, . . . , 𝑠,      𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

+ 𝑞𝑟𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝑤𝑑

𝑡 ,               𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

(17) 
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𝑝𝑗
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                        𝑗 = 1, . . . , 𝑛,      𝑟 = 1, . . . , 𝑠,       𝑡 = 1, . . . , ℎ  

𝑝𝑗
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                         𝑗 = 1, . . . , 𝑛,      𝑑 = 1, . . . , 𝐷,      𝑡 = 1, . . . , ℎ− 1  

𝑣𝑖
𝑡 , 𝑢𝑟

𝑡 , 𝑤𝑑
𝑡 ≥ 0,      𝑖 = 1, . . . , 𝑚,    𝑟 = 1, . . . , 𝑠,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ.  

 

3.2 Multi-Stage Robust Model Based on Dual of Kao and Hwang Model (model (6)) 

 

Applying the assumption of uncertainty (*) for intermediate and ultimate products, the model (6) is changed as follows. 

 

𝐸𝑘 = 𝑚𝑖𝑛 𝜃  

s.t.     ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑘

𝑡 ,                             𝑖 = 1, . . . , 𝑚,     𝑡 = 1, . . . , ℎ  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1) (𝑧𝑑𝑗
𝑡 + 𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡 )𝑛
𝑗=1 ≥ 0,    d = 1, . . . , 𝐷,     𝑡 = 2, . . . , ℎ − 1  

∑ 𝜆𝑗
𝑡(𝑦𝑟𝑗 + 𝜂𝑟𝑗

𝑦 𝑦̂𝑟𝑗)𝑛
𝑗=1 ≥ (𝑦𝑟𝑘 + 𝜂𝑟𝑘

𝑦 𝑦̂𝑟𝑘),     r = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ  

𝜆𝑗
𝑡 , 𝑧̄𝑑𝑘

𝑡 ≥ 0,                𝑗 = 1, . . . , 𝑛,     𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 1.  

 

 

To obtain a robust solution, we must have: 

 

𝐸𝑘 = 𝑚𝑖𝑛 𝜃  

s.t.     ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑘,                                 𝑖 = 1, . . . , 𝑚,    𝑡 = 1, . . . , ℎ  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑧𝑑𝑗
𝑡𝑛

𝑗=1 + 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝜂𝑑𝑗
𝑧𝑡

𝑧̂𝑑𝑗
𝑡𝑛

𝑗=1 ≥ 0,     d = 1, . . . , 𝐷,   

𝑡 = 2, . . . , ℎ − 1  

(∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦

∈[−1,1]
∑ 𝜆𝑗

𝑡𝜂𝑟𝑗
𝑦 𝑦̂𝑟𝑗

𝑛
𝑗=1 ) ≥ 𝑦𝑟𝑘 + 𝑚𝑎𝑥

𝜂𝑟𝑘
𝑦

∈[−1,1]
𝜂𝑟𝑘

𝑦 𝑦̂𝑟𝑘 ,   𝑟 = 1, . . . , 𝑠,  

𝑡 = 1, . . . , ℎ  

𝜆𝑗
𝑡 ≥ 0,                                            𝑗 = 1, . . . , 𝑛,         𝑡 = 1, . . . , ℎ.  

 

 

Or 

 

𝐸𝑘 = 𝑚𝑖𝑛 𝜃  

s.t.     ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑘

𝑡 ,                                      𝑖 = 1, . . . , 𝑚,         𝑡 = 1, . . . , ℎ  

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 + 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 − 𝑚𝑎𝑥

𝜂𝑑𝑗
𝑧𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡+1𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 ≥ 0,   

d = 1, . . . , 𝐷,       𝑡 = 2, . . . , ℎ− 1  

(∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑟𝑗

𝑦𝑡

𝑦̂𝑟𝑗
𝑡𝑛

𝑗=1 ) ≥ 𝑦𝑟𝑘
𝑡 + 𝑚𝑎𝑥

𝜂
𝑟𝑗
𝑦𝑡

∈[−1,1]

𝜂𝑟𝑘
𝑦𝑡

𝑦̂𝑟𝑘
𝑡 ,  

 𝑟 = 1, . . . , 𝑠,      𝑡 = 1, . . . , ℎ  

𝜆𝑗
𝑡 ≥ 0,                                                  𝑗 = 1, . . . , 𝑛,         𝑡 = 1, . . . , ℎ.  

 

 

The first constraint won't change because it is dependent on input parameters that are presumed to be deterministic. 

With regard to the second constraint, for each 𝑡 = 1, . . . , ℎ, the equation 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1  is equivalent to:  

 

− 𝑚𝑖𝑛 (𝛤𝑑𝑗
𝑧𝑡

𝑝𝑗
𝑧𝑡

+ ∑ 𝑞𝑑𝑗
𝑧𝑡𝐷

𝑑=1 )  

s.t.       𝑝𝑗
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡𝑧̂𝑑𝑗

𝑡 ,     d = 1, . . . , 𝐷  

 𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,              d = 1, . . . , 𝐷  

 

 

 

In a similar vein, the robust counterpart of the expression 𝑚𝑎𝑥
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝜆𝑗
𝑡+1𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 is equal to: 
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𝑚𝑖𝑛 (𝛤𝑑𝑗
𝑧𝑡

𝑝𝑗
𝑧𝑡

+ ∑ 𝑞𝑑𝑗
𝑧𝑡𝐷

𝑑=1 )  

s.t.       𝑝𝑗
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡+1𝑧̂𝑑𝑗

𝑡 ,     d = 1, … , 𝐷             

𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,              d = 1, . . . , 𝐷  

 

 

and 𝑚𝑖𝑛
𝜂

𝑟𝑗
𝑦𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑟𝑗

𝑦𝑡

𝑦̂𝑟𝑗
𝑡𝑛

𝑗=1 is equal to 

 

− 𝑚𝑖𝑛 (𝛤𝑟
𝑦𝑡

𝑝𝑟
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

𝑛
𝑗=1 )  

𝑠. 𝑡.  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝑦̂𝑟𝑗
𝑡 𝜆𝑗

𝑡 ,     𝑗 = 1, . . . , 𝑛,    𝑟 = 1, . . . , 𝑠  

𝑝𝑟
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,              𝑗 = 1, . . . , 𝑛,    𝑟 = 1, . . . , 𝑠.  

 

As one can see, 𝑚𝑎𝑥 𝜂𝑟𝑘
𝑦𝑡

𝑦̂𝑟𝑘
𝑡  for 𝜂𝑟𝑘

𝑦𝑡

∈ [−1,1] equals to𝑦̂𝑟𝑘
𝑡 . Therefore, the multi-stage robust counterpart DEA model 

based on model (6) is as follows: 

 

𝐸𝑘 = 𝑚𝑖𝑛 𝜃  

s.t.    ∑ 𝜆𝑗
1𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑘 ,                                             𝑖 = 1, . . . , 𝑚  

∑ (𝜆𝑗
𝑡 − 𝜆𝑗

𝑡+1)𝑧𝑑𝑗
𝑡𝑛

𝑗=1 − (𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

+ ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 ) − (𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

+ ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 ) ≥ 0,  𝑑 = 1, . . . , 𝐷  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 − (𝛤𝑟

𝑦𝑡

𝑝𝑟
𝑦𝑡

+ ∑ 𝑞𝑟𝑗
𝑦𝑡

𝑗∈𝐽𝑟
) ≥ 𝑦𝑟𝑘

𝑡 + 𝑦̂𝑟𝑘
𝑡 ,             r = 1, . . . , 𝑠  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡𝑦̂𝑟𝑗

𝑡                          𝑗 = 1, . . . , 𝑛,          r = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝜆𝑗

𝑡 ,     𝑗 = 1, . . . , 𝑛,  𝑑 = 1, . . . , 𝐷,   𝑡 = 1, . . . , ℎ− 1  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝑧̂𝑑𝑗
𝑡 𝜆𝑗

𝑡+1,   𝑗 = 1, . . . , 𝑛,  𝑑 = 1, . . . , 𝐷,   𝑡 = 1, . . . , ℎ − 1  

𝑝𝑟
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,            𝑗 = 1, . . . , 𝑛,    r = 1, . . . , 𝑠,    𝑡 = 1, . . . , ℎ  

𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0 ,            𝑗 = 1, . . . , 𝑛,   𝑑 = 1, . . . , 𝐷,   𝑡 = 1, . . . , ℎ − 1  

𝜆𝑗
𝑡 ≥ 0,                     𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ.  

(18) 

 

As previously stated, in order to build the robust counterpart model, we assume that the stage's input values are certain 

and deterministic. We can calculate robust counterpart models for (7), (8), and (9) models using the same procedure. 

 

𝐸𝑘
1 = 𝑚𝑖𝑛 𝜃1  

s.t.    ∑ 𝜆𝑗
1𝑥𝑖𝑗

1𝑛
𝑗=1 ≤ 𝜃1𝑥𝑖𝑘

1 ,          𝑖 = 1, . . . , 𝑚,  

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                  𝑖 = 1, . . . , 𝑚,   𝑡 = 2, . . . , ℎ  

∑ 𝜆𝑗
1𝑧𝑑𝑗

1𝑛
𝑗=1 − ∑ 𝜆𝑗

2𝑧𝑑𝑗
1𝑛

𝑗=1 + 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧1
∈[−1,1]

∑ 𝜆𝑗
1𝜂𝑑𝑗

𝑧1
𝑧̂𝑑𝑗

1𝑛
𝑗=1 − 𝑚𝑎𝑥

𝜂𝑑𝑗
𝑧1

∈[−1,1]

∑ 𝜆𝑗
2𝜂𝑑𝑗

𝑧1
𝑧̂𝑑𝑗

1𝑛
𝑗=1 ≥ 𝑧𝑑𝑘

1 + 𝑚𝑎𝑥
𝜂𝑑𝑗

𝑧1
∈[−1,1]

𝜂𝑑𝑗
𝑧1

𝑧̂𝑑𝑗
1 ,  

                                                                                                                      𝑑 = 1, . . . , 𝐷,  

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 + 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 − 𝑚𝑎𝑥

𝜂𝑑𝑗
𝑧𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡+1𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 ≥ 0,     𝑑 = 1, . . . , 𝐷,  

                                                                                                                     𝑡 = 2, . . . , ℎ− 1  

 ∑ 𝜆𝑗
1𝑦𝑟𝑗

1𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦𝑡

∈[−1,1]

∑ 𝜆𝑗
1𝜂𝑟𝑗

𝑦1

𝑦𝑟𝑗
1𝑛

𝑗=1 ≥ 𝑦𝑟𝑘
1 + 𝑚𝑎𝑥

𝜂
𝑟𝑗
𝑦1

∈[−1,1]

𝜂𝑟𝑘
𝑦1

𝑦̂𝑟𝑘
1 ,          𝑟 = 1, . . . , 𝑠,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑟𝑗

𝑦𝑡

𝑦𝑟𝑗
𝑡𝑛

𝑗=1 ≥ 0,                    𝑟 = 1, . . . , 𝑠,     𝑡 = 2, . . . , ℎ  

𝜆𝑗
𝑡 ≥ 0, 𝜂𝑟𝑗

𝑦𝑡

≥ 0, 𝜂𝑑𝑗
𝑧𝑡

≥ 0                   𝑟 = 1, . . . , 𝑠,  𝑑 = 1, . . . , 𝐷,   𝑗 = 1, . . . , 𝑛,     𝑡 = 1, . . . , ℎ  

 

Or 

 

𝐸𝑘
1 = 𝑚𝑖𝑛 𝜃1  

(19) 
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s.t.    ∑ 𝜆𝑗
1𝑥𝑖𝑗

1𝑛
𝑗=1 ≤ 𝜃1𝑥𝑖𝑘

1 ,          𝑖 = 1, … , 𝑚,         

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                  𝑖 = 1, . . . , 𝑚,   𝑡 = 2, . . . , ℎ  

∑ 𝜆𝑗
1𝑧𝑑𝑗

1𝑛
𝑗=1 − ∑ 𝜆𝑗

2𝑧𝑑𝑗
1𝑛

𝑗=1 − 𝛤𝑑
𝑧1

𝑝𝑑
𝑧1

− ∑ 𝑞𝑑𝑗
𝑧1𝑛

𝑗=1 − 𝛤𝑑
𝑧1

𝑝𝑑
𝑧1

− ∑ 𝑞𝑑𝑗
𝑧1𝑛

𝑗=1 ≥ 𝑧𝑑𝑘
1 + 𝑧̂𝑑𝑘

1 ,  

𝑑 = 1, . . . , 𝐷,  

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

− ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

− ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 ≥ 0,  

𝑑 = 1, . . . , 𝐷,  𝑡 = 2, . . . , ℎ− 1  

∑ 𝜆𝑗
1𝑦𝑟𝑗

1𝑛
𝑗=1 − 𝛤𝑟

𝑦1

𝑝𝑟
𝑦1

− ∑ 𝑞𝑟𝑗
𝑦1

𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

1 + 𝑦̂𝑟𝑘
1 ,                𝑟 = 1, . . . , 𝑠,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 − 𝛤𝑟

𝑦𝑡

𝑝𝑟
𝑦𝑡

− ∑ 𝑞𝑟𝑗
𝑦𝑡

𝑛
𝑗=1 ≥ 0,                 𝑟 = 1, . . . , 𝑠,     𝑡 = 2, . . . , ℎ  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡𝑧̂𝑑𝑗

𝑡 ,              𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ− 1  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡+1𝑧̂𝑑𝑗

𝑡 ,            𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ− 1  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡𝑦̂𝑟𝑗

𝑡 ,                r = 1, . . . , 𝑠,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡+1𝑦̂𝑟𝑗

𝑡 ,              r = 1, . . . , 𝑠,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ  

𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                         𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,    t = 1, . . . , ℎ  

𝑝𝑟
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                          r = 1, … , 𝑠,      j = 1, … , 𝑛,    t = 1, … , ℎ         

𝜆𝑗
𝑡 ≥ 0,                                                     𝑗 = 1, . . . , 𝑛,      𝑡 = 1, . . . , ℎ  

 

and for each T, 𝑇 = 2, . . . , ℎ − 1 , we must have  

 

𝐸𝑘
𝑇 = 𝑚𝑖𝑛 𝜃𝑇  

s.t.     ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 𝜃𝑇𝑥𝑖𝑘

𝑇 ,     𝑖 = 1, … , 𝑚,  

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,     𝑖 = 1, … , 𝑚,     𝑡 = 1, … , ℎ, 𝑡 ≠ 𝑇,  

∑ 𝜆𝑗
𝑇−1𝑧𝑑𝑗

𝑇−1𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑇𝑧𝑑𝑗
𝑇−1𝑛

𝑗=1 + 𝜃𝑇𝑧𝑑𝑗
𝑇−1 ≥ 0,     𝑑 = 1, … , 𝐷,  

∑ 𝜆𝑗
𝑇𝑧𝑑𝑗

𝑇

𝑛

𝑗=1

+ 𝑚𝑖𝑛
𝜂𝑑𝑗

𝑧𝑇
∈[−1,1]

∑ 𝜆𝑗
𝑇𝑧̂𝑑𝑗

𝑇

𝑛

𝑗=1

− ∑ 𝜆𝑗
𝑇+1𝑧𝑑𝑗

𝑇

𝑛

𝑗=1

− 𝑚𝑎𝑥
𝜂𝑑

𝑧𝑇
∈[−1,1]

∑ 𝜆𝑗
𝑇+1𝜂𝑑𝑗

𝑧𝑇
𝑧̂𝑑𝑗

𝑇

𝑛

𝑗=1

≥ 𝑧𝑑𝑗
𝑇 + 𝑚𝑎𝑥

𝜂𝑑𝑗
𝑧𝑇

∈[−1,1]

𝜂𝑑𝑗
𝑧𝑇

𝑧̂𝑑𝑗
𝑇 , 𝑑 = 1, … , 𝐷, 

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂𝑑𝑗
𝑧𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 − 𝑚𝑎𝑥
𝜂𝑑𝑗

𝑧𝑡
∈[−1,1]

∑ 𝜆𝑗
𝑡+1𝜂𝑑𝑗

𝑧𝑡
𝑧̂𝑑𝑗

𝑡𝑛
𝑗=1 ≥ 0,  

𝑑 = 1, … , 𝐷,     𝑡 = 1, … , ℎ− 1, 𝑡 ≠ 𝑇 − 1, 𝑇,  

∑ 𝜆𝑗
𝑇𝑦𝑟𝑗

𝑇𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦𝑇

∈[−1,1]

∑ 𝜆𝑗
𝑇𝜂𝑟𝑗

𝑦𝑇

𝑦̂𝑟𝑗
𝑇𝑛

𝑗=1 ≥ 𝑦𝑖𝑘
𝑇 + 𝑚𝑎𝑥

𝜂
𝑟𝑗
𝑦𝑇

∈[−1,1]

𝜂𝑟𝑘
𝑦𝑇

𝑦̂𝑟𝑘
𝑇 ,                             𝑟 = 1, … , 𝑠,  

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 + 𝑚𝑖𝑛

𝜂
𝑟𝑗
𝑦𝑡

∈[−1,1]

∑ 𝜆𝑗
𝑡𝜂𝑟𝑗

𝑦𝑡

𝑦̂𝑟𝑗
𝑡𝑛

𝑗=1 ≥ 0,                            𝑟 = 1, … , 𝑠,     𝑡 = 1, … , ℎ, 𝑡 ≠ 𝑇,  

𝜆𝑗
𝑡 ≥ 0,                                                                    𝑟 = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ  

 

Or

  

 

𝐸𝑘
𝑇 = 𝑚𝑖𝑛 𝜃𝑇  

s.t.    ∑ 𝜆𝑗
𝑇𝑥𝑖𝑗

𝑇𝑛
𝑗=1 ≤ 𝜃𝑇𝑥𝑖𝑘

𝑇 ,          𝑖 = 1, . . . , 𝑚,  

∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                  𝑖 = 1, . . . , 𝑚,   𝑡 = 2, . . . , ℎ, 𝑡 ≠ 𝑇,  

∑ 𝜆𝑗
𝑇−1𝑧𝑑𝑗

𝑇−1𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑇𝑧𝑑𝑗
𝑇−1𝑛

𝑗=1 + 𝜃𝑇𝑧𝑑𝑘
𝑇−1 ≥ 0,  𝑑 = 1, . . . , 𝐷,  

∑ 𝜆𝑗
𝑇𝑧𝑑𝑗

𝑇𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑇+1𝑧𝑑𝑗
𝑇𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑇

𝑝𝑑
𝑧𝑇

− ∑ 𝑞𝑑𝑗
𝑧𝑇𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑇

𝑝𝑑
𝑧𝑇

− ∑ 𝑞𝑑𝑗
𝑧𝑇𝑛

𝑗=1 ≥ 𝑧𝑑𝑘
𝑇 + 𝑧̂𝑑𝑘

𝑇 , 𝑑 = 1, . . . , 𝐷,   

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

− ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

− ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 ≥ 0, 𝑑 = 1, . . . , 𝐷,  𝑡 = 1, . . . , ℎ− 1,  

 𝑡 ≠ 𝑇 − 1, 𝑇  

∑ 𝜆𝑗
𝑇𝑦𝑟𝑗

𝑇𝑛
𝑗=1 − 𝛤𝑟

𝑦𝑇

𝑝𝑟
𝑦𝑇

− ∑ 𝑞𝑟𝑗
𝑦𝑇

𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

𝑇 + 𝑦̂𝑟𝑘
𝑇 ,                𝑟 = 1, . . . , 𝑠,  

(20) 

 

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡

𝑛

𝑗=1

− 𝛤𝑟
𝑦𝑡

𝑝𝑟
𝑦𝑡

− ∑ 𝑞𝑟𝑗
𝑦𝑡

𝑛

𝑗=1

≥ 0,              𝑟 = 1, . . . , 𝑠,     𝑡 = 1, . . . , ℎ, 𝑡 ≠ 𝑇 
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 𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡𝑧̂𝑑𝑗

𝑡 ,                 𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ− 1 

 𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡+1𝑧̂𝑑𝑗

𝑡 ,               𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ− 1 

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡𝑦̂𝑟𝑗

𝑡 ,                  r = 1, . . . , 𝑠,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ 

 𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡+1𝑦̂𝑟𝑗

𝑡 ,                r = 1, . . . , 𝑠,    j = 1, . . . , 𝑛,     t = 1, . . . , ℎ 

 𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                           𝑑 = 1, . . . , 𝐷,    j = 1, . . . , 𝑛,    t = 1, . . . , ℎ 

𝑝𝑟
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                            r = 1, . . . , 𝑠,      j = 1, . . . , 𝑛,    t = 1, . . . , ℎ 

 𝜆𝑗
𝑡 ≥ 0,                                                         𝑗 = 1, . . . , 𝑛,      𝑡 = 1, . . . , ℎ 

 

Also, for the last stage, we have 

 

𝐸𝑘
ℎ = 𝑚𝑖𝑛 𝜃ℎ  

s.t.   ∑ 𝜆𝑗
𝑡𝑥𝑖𝑗

𝑡𝑛
𝑗=1 ≤ 0,                                 𝑖 = 1, . . . , 𝑚,   𝑡 = 1, . . . , ℎ− 1,  

∑ 𝜆𝑗
ℎ𝑥𝑖𝑗

ℎ𝑛
𝑗=1 ≤ 𝜃ℎ𝑥𝑖𝑘

ℎ ,                                                  𝑖 = 1, . . . , 𝑚,  

∑ 𝜆𝑗
𝑡𝑧𝑑𝑗

𝑡𝑛
𝑗=1 − 𝛤𝑑

𝑧𝑡
𝑝𝑑

𝑧𝑡
− ∑ 𝑞𝑑𝑗

𝑧𝑡𝑛
𝑗=1 − ∑ 𝜆𝑗

𝑡+1𝑧𝑑𝑗
𝑡𝑛

𝑗=1 − 𝛤𝑑
𝑧𝑡

𝑝𝑑
𝑧𝑡

− ∑ 𝑞𝑑𝑗
𝑧𝑡𝑛

𝑗=1 ≥ 0,   

𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 2,  
∑ 𝜆𝑗

ℎ−1𝑧𝑑𝑗
ℎ−1𝑛

𝑗=1 − ∑ 𝜆𝑗
ℎ𝑧𝑑𝑗
ℎ−1𝑛

𝑗=1 ≥ −𝜃ℎ𝑧𝑖𝑘
ℎ−1,                     𝑑 = 1, . . . , 𝐷,   

∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡𝑛
𝑗=1 − 𝛤𝑟

𝑦𝑡

𝑝𝑟
𝑦𝑡

− ∑ 𝑞𝑟𝑗
𝑦𝑡

𝑛
𝑗=1 ≥ 0,     𝑟 = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ− 1,  

∑ 𝜆𝑗
ℎ𝑦𝑟𝑗

ℎ𝑛
𝑗=1 − 𝛤𝑟

𝑦ℎ𝑝𝑟
𝑦ℎ − ∑ 𝑞𝑟𝑗

𝑦ℎ𝑛
𝑗=1 ≥ 𝑦𝑟𝑘

ℎ + 𝑦̂𝑟𝑘
ℎ ,                𝑟 = 1, . . . , 𝑠,  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡𝑧̂𝑑𝑗

𝑡 ,     𝑗 = 1, . . . , 𝑛,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ− 1  

𝑝𝑑
𝑧𝑡

+ 𝑞𝑑𝑗
𝑧𝑡

≥ 𝜆𝑗
𝑡+1𝑧̂𝑑𝑗

𝑡 ,     𝑗 = 1, . . . , 𝑛,    𝑑 = 1, . . . , 𝐷,    𝑡 = 1, . . . , ℎ − 1  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡𝑦̂𝑟𝑗

𝑡 ,       𝑗 = 1, . . . , 𝑛,     r = 1, . . . , 𝑠,    𝑡 = 1, . . . , ℎ− 1  

𝑝𝑟
𝑦𝑡

+ 𝑞𝑟𝑗
𝑦𝑡

≥ 𝜆𝑗
𝑡+1𝑦̂𝑟𝑗

𝑡 ,     𝑗 = 1, . . . , 𝑛,     r = 1, . . . , 𝑠,    𝑡 = 1, . . . , ℎ − 1  

𝑝𝑑
𝑧𝑡

, 𝑞𝑑𝑗
𝑧𝑡

≥ 0,                 𝑗 = 1, . . . , 𝑛,    𝑑 = 1, . . . , 𝐷,   𝑡 = 1, . . . , ℎ − 1  

𝑝𝑟
𝑦𝑡

, 𝑞𝑟𝑗
𝑦𝑡

≥ 0,                𝑗 = 1, . . . , 𝑛,      r = 1, . . . , 𝑠,   𝑡 = 1, . . . , ℎ− 1  

𝜆𝑗
𝑡 ≥ 0,                                            𝑗 = 1, . . . , 𝑛,        𝑡 = 1, . . . , ℎ.  

(21) 

 

4. NUMERICAL EXAMPLE 
 

Two examples are provided in this part to demonstrate the applicability of the produced models. The first is a case study of 

data from Iran's top 40 dairy supply chains, which Khalili-Damghani and Taghavi-Fard (2012)  used.  

The proposed robust models were written in LINGO 17.0 software and run on a Pentium V laptop with a Core i7, 2 

GHz CPU and Windows 8.1 running on 8 GB of RAM. 

 

4.1 Application of the RNDEA Model in a Dairy Supply Chain: a Three-Stage Example 

 

Food industries with a continuous production process are typically more complex than other sectors due to issues such as 

product perishability, a large number of completed goods, a wide range of manufacturing routes, specialized storage 

equipment, common and by-products, and changeable recipes. 

 

 
 

Figure 2. Three stage network 
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Each dairy company is viewed as its own supply chain, with three-stage sub-processes linked in a chain of JIT methods, 

prospective agility indicators, contingency agility indicators, and performance goals (Khalili-Damghani and Taghavi-Fard, 

2012). 

Khalili-Damghani and Taghavi-Fard (2012) gathered supply chain managers' opinions about the values of indicators in 

various sectors of a specific supply chain and, used triangular fuzzy numbers to represent each criterion, and then used a 

three-stage fuzzy DEA model for performance evaluation of dairy supply chains. (For a full discussion regarding these 

examples, see Khalili-Damghani and Taghavi-Fard (2012)). They solved the problem and determined the lower and upper 

bounds of its efficiency score. The findings of the models are displayed in Table 1's LB-TSFDEA and UP-TSFDEA columns, 

respectively. 

We use the conceptual model (Figure 2) and data used in that research and convert the fuzzy data to robust data for run 

the models suggested in our research. For this, we Consider 𝑥𝑖 =
(𝑥𝑖

𝐿+𝑥𝑖
𝑈)

2
and𝑥̂𝑖 =

(𝑥𝑖
𝑈−𝑥𝑖

𝐿)

2
.  

First, a three-stage DEA is used to calculate the specific total efficiency of DMUs. The efficiency value is determined 

using model (2) for this purpose and is shown in the second column of Table 1.  

 

Table 1. Total efficiency values of the three-stage model with Bertsimas et al. technique  

 

model (18) 
model (2) 

model (14) 

20% 10% 5% 5% 10% 20%  

0.981 0.861 0.747 0.511 0.455 0.398 0.300 DMU 1 

0.641 0.561 0.496 0.261 0.227 0.202 0.163 DMU 2 

0.452 0.395 0.349 0.204 0.178 0.157 0.123 DMU 3 

0.686 0.605 0.528 0.296 0.260 0.227 0.180 DMU 4 

1.471 1.252 1.093 0.567 0.475 0.416 0.329 DMU 5 

0.804 0.706 0.639 0.412 0.360 0.325 0.264 DMU 6 

0.641 0.553 0.482 0.301 0.259 0.221 0.169 DMU 7 

1.173 1.026 0.906 0.527 0.455 0.411 0.335 DMU 8 

0.505 0.446 0.386 0.236 0.206 0.181 0.139 DMU 9 

0.779 0.690 0.594 0.397 0.353 0.312 0.241 DMU 10 

1.028 0.894 0.761 0.320 0.271 0.229 0.174 DMU 11 

0.727 0.640 0.536 0.382 0.336 0.293 0.234 DMU 12 

1.028 0.892 0.791 0.500 0.437 0.383 0.302 DMU 13 

0.854 0.741 0.668 0.444 0.394 0.357 0.294 DMU 14 

0.964 0.833 0.750 0.494 0.434 0.382 0.306 DMU 15 

0.861 0.793 0.686 0.411 0.360 0.313 0.242 DMU 16 

0.762 0.678 0.615 0.396 0.326 0.292 0.240 DMU 17 

0.840 0.741 0.640 0.436 0.389 0.292 0.261 DMU 18 

1.144 0.968 0.837 0.507 0.436 0.380 0.301 DMU 19 

0.702 0.622 0.543 0.296 0.236 0.232 0.177 DMU 20 

0.883 0.767 0.670 0.467 0.415 0.356 0.268 DMU 21 

0.712 0.650 0.559 0.286 0.263 0.240 0.184 DMU 22 

0.785 0.691 0.625 0.397 0.338 0.297 0.224 DMU 23 

0.732 0.667 0.575 0.361 0.322 0.291 0.226 DMU 24 

1.406 1.218 1.056 0.638 0.545 0.482 0.381 DMU 25 

0.760 0.674 0.596 0.405 0.356 0.309 0.238 DMU 26 

1.032 0.893 0.758 0.496 0.432 0.370 0.269 DMU 27 

0.990 0.883 0.785 0.523 0.449 0.390 0.301 DMU 28 

1.223 1.053 0.931 0.531 0.467 0.415 0.326 DMU 29 

0.565 0.496 0.430 0.277 0.246 0.220 0.172 DMU 30 

0.834 0.750 0.643 0.374 0.324 0.282 0.221 DMU 31 

0.785 0.670 0.606 0.420 0.376 0.324 0.327 DMU 32 

0.887 0.774 0.687 0.456 0.408 0.363 0.299 DMU 33 

0.793 0.705 0.628 0.417 0.378 0.339 0.274 DMU 34 

1.339 1.153 1.049 0.717 0.630 0.562 0.447 DMU 35 

0.966 0.844 0.742 0.452 0.398 0.349 0.269 DMU 36 

0.963 0.855 0.747 0.395 0.336 0.301 0.243 DMU 37 
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model (18) 
model (2) 

model (14) 

20% 10% 5% 5% 10% 20%  

0.560 0.513 0.459 0.273 0.244 0.217 0.172 DMU 38 

0.773 0.674 0.588 0.355 0.306 0.264 0.202 DMU 39 

0.611 0.561 0.481 0.309 0.270 0.231 0.175 DMU 40 

0.86605 0.7597 0.66655 0.411175 0.35875 0.315125 0.2498 Average 

1.471 1.252 1.093 0.717 0.63 0.562 0.447 Max 

0.452 0.395 0.349 0.204 0.178 0.157 0.123 Min 

0.90298 0.90290 0.91739  0.99609 0.99059 0.97015 Correlation 

 

Accompanying the model (14) and the model (18) are calculated and shown in columns 3 through 8 of the accompanying 

table, assuming a deviation of 5, 10, and 20% of the nominal data values. 

The total efficiency values presented in Table 1 are also plotted in the following diagram. As can be seen from the 

efficiency values shown in Table 1 as well as in Figure 3, the robust efficiency scores obtained from model (14) give lower 

bounds to the efficiency scores of the nominal three-stage model, and model (18) provide upper bounds for them. Therefore, 

one can provide an efficiency interval for each DMU using the robust efficiency scores obtained from Model (14) and Model 

(18). Furthermore, as shown in the last line of Table 1, the results obtained for the upper and lower bounds of the DMU's 

efficiency score have a high correlation with the definite efficiency values of the DMUs, with the lower limit values being 

more accurate. Furthermore, as the conservatism coefficient in the Bertsimas technique decreases, the accuracy of model 

calculations increases, and the results of the proposed models converge to the efficiency values obtained from definitive data. 

 

 
 

Figure 3. Diagram of nominal and robust efficiency scores 

 

The relative efficiency of sub-DMUs was calculated using (26) to (31) and (38) to (41). The results have been 

represented in Table 7. It is notable that the experts’ order of preference was first, second, and third sub-DMU in our case.  
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Table 2. Sub-DMUs efficiency values of the three-stage model with the Bertsimas et al. technique  

 

 Stage 1 Stage 2 Stage 3 

 R-kao Kao R-Dkao R-kao Kao R-Dkao R-kao Kao R-Dkao 

DMU1 0.82097 0.95985 1.30272 0.94110 1.00000 1.56044 0.93075 1.00000 1.64860 

DMU2 0.75670 0.84810 1.35227 0.91304 1.00000 1.96538 0.65013 0.75651 0.97762 

DMU3 0.87769 1.00000 1.73087 0.94301 1.00000 1.68668 0.30760 0.37508 0.36528 

DMU4 0.78833 0.99605 1.43794 0.90738 1.00000 2.35086 0.67378 1.00000 1.22337 

DMU5 0.94544 1.00000 1.91883 0.52301 0.67389 1.26612 0.85822 1.00000 1.72163 

DMU6 0.65716 0.82042 1.23681 0.88451 1.00000 1.54794 0.94118 1.00000 1.49995 

DMU7 0.55265 0.71797 1.07077 0.93333 1.00000 1.55556 0.40020 0.52545 0.56994 

DMU8 0.93548 1.00000 1.75398 0.38429 0.58921 1.27091 0.92885 1.00000 1.85396 

DMU9 0.58676 0.83656 1.56368 0.62636 0.81904 1.29992 0.58244 0.78618 0.72380 

DMU10 0.74573 0.93072 1.38781 0.84970 1.00000 2.07097 0.92000 1.00000 0.89895 

DMU11 0.93231 1.00000 2.57224 0.47970 0.59308 0.92505 0.44772 0.64411 0.79281 

DMU12 0.59484 0.76305 1.26428 0.92079 1.00000 1.91111 0.69736 0.84811 0.70627 

DMU13 0.94737 1.00000 1.66702 0.44211 0.64634 1.09607 0.90880 1.00000 1.09227 

DMU14 0.70529 1.00000 2.15572 0.93548 1.00000 1.63587 0.79266 0.91577 0.64253 

DMU15 0.61565 0.75888 1.17380 0.93346 1.00000 2.07815 0.72349 0.85017 0.69003 

DMU16 0.82607 1.00000 1.62182 0.91639 1.00000 1.53852 0.67457 0.85514 0.97945 

DMU17 0.95108 1.00000 1.61446 0.68696 0.88712 1.39135 0.57985 0.67471 0.56641 

DMU18 0.47999 0.66364 1.12719 0.87936 1.00000 2.10998 0.70318 0.81162 0.95206 

DMU19 0.71555 0.86087 1.16652 0.86387 1.00000 1.98218 0.90448 1.00000 1.55424 

DMU20 0.74090 0.88516 1.30939 0.84474 1.00000 1.49963 0.67395 0.85460 1.20039 

DMU21 0.77664 1.00000 1.76587 0.68860 0.95563 1.69301 0.77242 0.98094 1.69994 

DMU22 0.74690 0.84810 1.32109 0.91304 1.00000 1.97129 0.82230 0.98030 1.42846 

DMU23 0.87769 1.00000 1.73087 0.93464 1.00000 1.67484 0.67823 0.81684 0.67464 

DMU24 0.78833 0.99605 1.45909 0.88884 1.00000 2.30497 0.79070 1.00000 1.26967 

DMU25 0.94495 1.00000 1.88053 0.51240 0.68252 1.13298 0.92035 1.00000 2.20979 

DMU26 0.65354 0.96985 1.66739 0.88451 1.00000 1.54794 0.86574 1.00000 1.41671 

DMU27 0.58089 0.73605 1.13962 0.89583 1.00000 1.50000 0.67287 0.82044 0.87611 

DMU28 0.93384 1.00000 1.72803 0.37180 0.52923 1.08616 0.82209 1.00000 1.14503 

DMU29 0.82652 1.00000 1.99401 0.59994 0.74559 1.10607 0.90065 1.00000 1.25193 

DMU30 0.72112 0.88644 1.30140 0.90411 1.00000 1.95604 0.83537 0.99540 0.96723 

DMU31 0.92857 1.00000 1.72650 0.88886 1.00000 1.62188 0.56532 0.67508 0.72720 

DMU32 0.58877 0.73488 1.33686 0.88888 0.99928 1.68889 0.85110 1.00000 0.82855 

DMU33 0.89163 0.96147 1.52525 0.40603 0.48837 0.73303 0.92671 1.00000 1.33541 

DMU34 0.77346 1.00000 2.15572 0.91398 1.00000 1.54727 0.82461 0.96820 0.63587 

DMU35 0.74855 0.95087 1.87114 0.92007 1.00000 1.54131 0.91411 1.00000 1.13001 

DMU36 0.84005 1.00000 1.62268 0.94872 1.00000 1.53852 0.77150 0.95505 1.03429 

DMU37 0.92495 0.99642 1.53860 0.69053 0.89254 1.40342 0.65645 0.77332 0.88253 

DMU38 0.44453 0.69807 1.18117 0.69053 1.00000 2.20992 0.44291 0.62794 0.67320 

DMU39 0.71420 0.87640 1.20527 0.85415 1.00000 1.85540 0.68749 0.87639 1.06672 

DMU40 0.73290 0.87809 1.28184 0.84207 1.00000 1.52724 0.68150 0.85269 0.97094 

          

Average 0.76535 0.914349 1.546526 0.786153 0.912546 1.609572 0.742541 0.880501 1.072095 

Min 0.44453 0.66364 1.07077 0.3718 0.48837 0.73303 0.3076 0.37508 0.36528 

Max 0.95108 1 2.57224 0.94872 1 2.35086 0.94118 1 2.20979 

Correlation 0.877869  0.733266 0.952559  0.773214 0.942328  0.67356 

 
As shown in Table 2, the proposed models' findings provide appropriate constraints for the efficiency of each stage. The 

results obtained show that the third step has a reduced efficiency. However, the lower bounds of the efficiency score obtained 

have higher correlation and accuracy. 
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4.2 Comparison of TSBRNDEA with TSFDEA 

 

Khalili-Damghani and Taghavifard (2012) used a three-stage fuzzy DEA model (TSFDEA) to tackle this problem and 

estimated the lower and upper bound values of efficiency scores. The table below displays the upper and lower bound values 

generated by them, as well as the efficiency scores calculated by our proposed models. 

 

Table 3. Comparison values of the TSBRNDEA model and FTSDEA model 
 

 Model (14) 

20% 

LB 

TSFDEA 

Model (14) 

10% 
Model (5) 

Model (18) 

10% 

UB 

TSFDEA 

Model (18) 

20% 

DMU1 0.300 0.348 0.398 0.511 0.861 0.958 0.981 

DMU2 0.163 0.240 0.202 0.261 0.561 0.723 0.641 

DMU3 0.123 0.130 0.157 0.205 0.395 0.533 0.452 

DMU4 0.180 0.220 0.227 0.296 0.605 0.785 0.686 

DMU5 0.329 0.434 0.416 0.567 1.252 0.776 1.471 

DMU6 0.264 0.321 0.325 0.412 0.706 0.906 0.804 

DMU7 0.169 0.289 0.221 0.301 0.553 0.705 0.641 

DMU8 0.335 0.466 0.411 0.527 1.026 0.576 1.173 

DMU9 0.139 0.249 0.181 0.236 0.446 0.746 0.505 

DMU10 0.241 0.282 0.312 0.397 0.690 0.807 0.779 

DMU11 0.174 0.227 0.229 0.320 0.894 0.644 1.028 

DMU12 0.234 0.328 0.293 0.382 0.640 0.965 0.727 

DMU13 0.302 0.347 0.383 0.500 0.892 0.645 1.028 

DMU14 0.294 0.353 0.357 0.444 0.741 0.932 0.854 

DMU15 0.306 0.380 0.382 0.493 0.833 0.847 0.964 

DMU16 0.242 0.364 0.313 0.411 0.793 0.887 0.861 

DMU17 0.240 0.263 0.292 0.369 0.678 0.693 0.762 

DMU18 0.261 0.362 0.292 0.436 0.741 0.677 0.840 

DMU19 0.301 0.453 0.380 0.507 0.968 0.900 1.144 

DMU20 0.177 0.235 0.232 0.296 0.622 0.671 0.702 

DMU21 0.268 0.339 0.356 0.467 0.767 0.946 0.883 

DMU22 0.184 0.274 0.240 0.286 0.650 0.810 0.712 

DMU23 0.224 0.288 0.297 0.397 0.691 0.870 0.785 

DMU24 0.226 0.308 0.291 0.361 0.667 0.920 0.732 

DMU25 0.381 0.552 0.482 0.638 1.128 0.788 1.406 

DMU26 0.238 0.307 0.309 0.405 0.674 0.868 0.760 

DMU27 0.269 0.453 0.370 0.496 0.893 1.000 1.032 

DMU28 0.301 0.453 0.390 0.523 0.883 0.576 0.990 

DMU29 0.326 0.455 0.415 0.531 1.053 0.888 1.223 

DMU30 0.172 0.192 0.220 0.277 0.496 0.718 0.565 

DMU31 0.221 0.327 0.282 0.374 0.750 0.810 0.834 

DMU32 0.327 0.347 0.324 0.420 0.670 0.969 0.785 

DMU33 0.299 0.408 0.363 0.456 0.774 0.659 0.887 

DMU34 0.274 0.335 0.339 0.417 0.705 0.892 0.793 

DMU35 0.447 0.849 0.562 0.716 1.153 0.865 1.339 

DMU36 0.269 0.399 0.349 0.452 0.844 0.914 0.966 

DMU37 0.243 0.294 0.301 0.394 0.855 0.676 0.963 

DMU38 0.172 0.213 0.317 0.272 0.513 0.614 0.560 

DMU39 0.202 0.320 0.264 0.355 0.674 0.860 0.773 

DMU40 0.175 0.244 0.231 0.309 0.561 0.804 0.611 

Average 0.2498 0.3412 0.317625 0.410425 0.75745 0.795575 0.86605 

Max 0.447 0.849 0.562 0.716 1.252 1 1.471 

Min 0.123 0.13 0.157 0.205 0.395 0.533 0.452 

Correlation 0.969388 0.911342 0.969944 1 0.902426 0.293912 0.904376 
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It can be seen from Table 3 that the efficiency interval of our proposed model with a 10% deviation from the nominal 

data is more accurate than the TSFDEA model, and its efficiency interval with a 20% deviation is significantly accurate. 

When the data in Table 3 are compared, it is clear that the suggested technique's findings, while having good accuracy, have 

a larger correlation coefficient than the fuzzy method. 

 

5. CONCLUSION  
 

The efficiency of n-stage series systems was evaluated in this article by taking into account the structure and internal 

processes, as well as under uncertain conditions, using the network data envelopment analysis model. Initially, models for 

evaluating the efficiency of an n-stage network with deterministic data were presented. When only the upper and lower 

bounds of the data are known, the output data and non-deterministic intermediate products are introduced. The Bertsimas and 

Sim (2004) approach was then used, and robust optimization models for n-stage networks with non-deterministic outputs and 

intermediate products were demonstrated. In an n-stage network model with non-deterministic outputs and intermediate 

products, the models presented in this study calculate the upper and lower bounds of efficiency. The results show that the 

proposed approach is effective for evaluating dairy companies' supply chain performance and internal activities in the face 

of data uncertainty. 

According to the performance evaluation analysis for these companies, the third stage is the most inefficient; therefore, 

it is recommended that different companies pay more attention to the processes of performance goals in order to increase the 

efficiency of their performance. 

In addition, the results for the efficiency intervals of the decision-making units were compared to the results from Khalili 

et al. (2012)'s three-stage network fuzzy envelope analysis model. It was obtained using the fuzzy method; additionally, the 

proposed method yielded higher correlation coefficients. According to Table 1, we find that the bounds of the total efficiency 

calculated by the proposed models almost maintain the ranking of the units, and on the other hand, the lower the deviation of 

the data, the higher the accuracy of the obtained values. By reducing the amount of deviation in the data from 20% to 10% 

and then 5% of the data-deterministic value, the average lower efficiency bound increases from 0.2498 to 0.315125 and then 

0.358750, and the average upper-efficiency bound increases from 0.86605 to 0.7597. and then it decreases to 0.6655, while 

the definitive efficiency value is 0.411175. Also, the correlation coefficient of the lower bounds increased from 0.97015 to 

0.99059 and then 0.99609, and the correlation coefficient of the upper bounds increased from 0.90298 to 0.90290 and then 

0.91739, which shows that the proposed model has better accuracy and performance for calculating the lower bound. Also, 

paying attention to the results of Table 2 for calculating the upper and lower bounds of the efficiency of the intermediate 

steps confirms the above results. The proposed models for calculating the lower bound have higher accuracy and correlation 

coefficients than the models proposed for calculating the upper bound. 

In Table 3, the results of the proposed models with the results of the TSFDEA model presented by Khalili et al, it can 

be seen that the proposed model has comparable accuracy, although it has a higher correlation coefficient. Also has Especially 

in the upper limit, the accuracy of the values of the proposed model is higher, and it also has a higher correlation coefficient. 

In this paper, a novel approach to evaluating the performance of envelopment analysis of network data with non-

deterministic data is presented. The models presented here are for series multiphase systems with non-deterministic outputs 

and intermediate products. This method is applicable to all types of network systems, including parallel network systems with 

performance evaluation indicators such as undesirable inputs and outputs used in contracts and new models. Because most 

industries' data contains uncertainty, the model presented in this article can be applied to a variety of industries. 
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