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The main goal of this paper is to present a new approach for measuring the performance of n-stage series systems in the
presence of uncertain data, which are two challenging issues in evaluating the efficiency of Decision-Making Units (DMUSs)
using traditional Data Envelopment Analysis (DEA) models. By using a Network DEA model and its dual, as well as using
Bertsimas et al.'s robustness technique, two Robust Network DEA have been presented. These models can display a range of
DMUs performance with appropriate accuracy. Proposed models were used to determine the efficiency range of Iranian dairy
companies' supply chain with three stages. The results show that the proposed models are applicable and effective. Total
efficiency bounds are obtained with percentage deviations of 20%, 10% and 5%. The lower bounds have relative errors of
0.39, 0.23 and 0.12 and a correlation coefficient of more than 97%, and the upper bounds have relative error of 1.1, 0.84 and
0.62 and a correlation coefficient of about 90%. Therefore, the proposed model for calculating the lower bound is more
accurate. The calculation of the efficiency bounds of the sub-stages also confirms this issue. Finally, the obtained results have
been compared with the values obtained through a fuzzy three-stage DEA model, our results have a higher correlation
coefficient and more accurate upper bounds.
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1. INTRODUCTION

To measure the relative effectiveness of Decision-Making Units (DMUSs), Charnes et al. (1978) developed Data Envelopment
Analysis (DEA), a non-parametric linear Programming (LP) based method. This method generalizes Farrell's (1957) single-
input, single-output technical efficiency measure for multiple-input, multiple-output situations. By comparing the weighted
sum of outputs to the weighted sum of inputs and performing operations using mathematical programming, DEA provides
relational performance efficiency. DEA does not call for an explicit functional form linking inputs and outputs, in contrast to
parametric approaches. The DEA constant returns to scale (CRS) model, which assumes that all businesses function at their
ideal scale, is a technique for measuring efficiency. The variable Return to Scale (VRS) was later added to DEA by Banker
et al. (2004).

Although DEA has gained widespread acceptance as a reliable way to gauge a system's efficiency, in many real-world
scenarios, DMUs have a network structure and are composed of numerous interconnected divisions. The inputs and outputs
were specific to each division. According to Fare and Grosskopf (2000), Castelli et al. (2001), and Liu and Tone (2008), an
intermediate output from one division becomes an intermediate input for another division. According to Biresh et al. (2014),
traditional DEA models view DMUs as "black boxes" that use a set of inputs and outputs to calculate an efficiency score.

Researchers like Fare and Grosskopf (2000), Lewis and Sexton (2004), Sexton and Lewis (2003), Tone and Tsutsui
(2009), and Fare et al. (2013) have generalized the Network DEA (NDEA) model to analyze the network structure of systems.
This has helped open the "black box™ and gain more insight into the production process. The network DEA model was first
developed by Fére and Grosskopf (2000) and subsequently enhanced and expanded by various researchers. An expansion of
the two-stage DEA model proposed by Sexton and Lewis (2003, 2004) presented a network DEA model for a multistage
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system. Their research separately resolved the DEA model for each node. To evaluate efficiency when inputs and outputs
may not change proportionally, Tone and Tsutsui (2009) proposed a network slack-based measure model (NSBM) (Huang et
al., 2014).

Kao and Hwang (2008) created a DEA model to quantify the efficiency of the system and component processes
simultaneously for systems made up of two processes connected in series. The efficiency of the system is a product of these
two processes, which is an interesting discovery. They could expand their model to include more than two processes. Kao
(2014) examined research on network DEA by examining the models applied and the network system structures of the
problem under study. From a methodological standpoint, this study identifies certain possibilities for future research, and
from an empirical standpoint, it serves as a motivation to investigate new areas of application. Tsihrintzis et al. (2019)
explained the essential principles of network DEA approaches and their advantages over traditional DEA approaches.
Additionally, they conducted a critical analysis of contemporary techniques in the discipline and offered a comprehensive,
uniform categorization of a sizable body of network DEA literature. For more information, refer to Kao (2014) and Koronakos
(2019).

Data uncertainty is one of the most important problems in DEA. Because the DEA technique produces a problem
formulation in the form of linear programming, it is difficult to handle uncertainty using conventional methods when the
input data are uncertain.

Three general approaches to deal with data uncertainty in mathematical optimization have been developed so far:
stochastic optimization, fuzzy optimization and robust optimization.

In stochastic optimization, we need enough historical data to fit the distribution function. Therefore, it is difficult to
achieve the true distribution function. In stochastic optimization, the answer is justified with probability, and it may be
unjustified for some real situations. Although the probability of this is low, if it happens, it will impose a high cost.

In fuzzy optimization, determining the shape of the membership function faces similar challenges. In fact, random and
fuzzy optimization have a soft approach to constraints. Also, in these approaches, the complexity of the problem has also
increased, and even in the scenario-based stochastic method, this happens with the increase in the number of scenarios.
(Rouyendegh B.D. et al., 2020; Demir E., 2014).

Robust optimization is a method in which the problem is optimized for the worst case. In robust optimization, the
solution is feasible for all scenarios. In fact, in robust optimization, the best solution is selected among the solutions that are
justified for all scenarios. This method is a hard and precise approach. In this method, the general certainty set is a closed and
convex set that determines the parameter change limits. In this way, we do not need to determine the shape of the distribution
function or the membership function, and only knowing the range of changes or Support in the interpretation of the fuzzy
literature is sufficient. Therefore, it can be applied to almost all real DEA problems.

Robust optimization was suggested by Soyster (1972) to deal with uncertainty. To further explore inexact linear
programs, Falk (1976) conducted more studies. Ben-Tal and Nemirovski (1999) presented a unique strategy based on the art
of cone programming. EI-Ghaoui and Lebret (1997) and Ben-Tal and Nemirovski (1998, 1999, and 2000) proposed a new
model for uncertain data based on ellipsoidal uncertainty sets. Bertsimas and Sim (2003, 2004, and 2006) and Bertsimas et
al. (2004) developed robust optimization methods based on polyhedral uncertainty sets. This approach can preserve the class
of problems under consideration. Recently, some studies on DEA have used robust optimization to deal with data uncertainty,
called robust data envelopment analysis (RDEA) (Wu et al., 2017; Lu et al., 2019; Tavana et al., 2021).

Sadjadi and Omrani (2008) were also the first to propose the concept of a robust two-stage NDEA model to deal with
uncertainty in data. They compared the performance of two robust approaches established by Ben-Tal and Nemirovski (1999)
and Bertsimas and Sim (2003) to address uncertainty in two applications from the energy and telecom industries.

Peykani et al. (2020) examined milestone approaches to dealing with uncertainty in DEA. Full classifications of robust
data envelopment analysis (RDEA) are presented in this study. It included 73 studies from 2008 to 2019. The report concludes
with recommendations for further research on RDEA. To investigate regional efficiency in China, Chen et al. (2020)
constructed a two-stage Environmental Sustainability index consisting of a Production Efficiency index and an eco-efficiency
index. They used a multiplicative relational network data envelopment analysis model and window analysis.

Radsar et al. (2022) proposed a robust three-stage model based on Bertsimas and sim (2004) approach in the field of
efficiency evaluation in conditions of uncertainty and having an undesirable output. Also, Peykani et al. (2022) applied a
two-stage robust network DEA for performance evaluation and ranking of 15 Mutual funds in the presence of uncertain data.
They showed that the discriminatory power in the robust NDEA approach is more than in deterministic NDEA models.

In most of the previous studies, according to the need and simplicity of the problems, two or three-stage models of
network data envelopment analysis have been used. Also, previous researchers have only obtained one value to approximate
the efficiency score of DMUSs. Therefore, according to the development of science and the more complexity of problems in
the future world, the need to use models with more stages is strongly felt. In this research, two values have been produced to
approximate the efficiency score of the units, which can be low approximation and high approximation of the efficiency score
of the units. Therefore, in this study, a new general approach for robust network data envelopment analysis (RNDEA) was
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presented based on the development of Kao and Hwang's two-stage DEA model and its dual model and the robustness method
of Bertsimas et al. This model helps researchers to provide the appropriate approximate efficiency range for each DMU for
all series network systems to evaluate the efficiency and ranking of DMUs with respect to internal structure and data
uncertainty. Also, the application and efficiency of the proposed approach was shown by measuring the three-stage supply
chain performance of 40 dairy companies active in the capital market of Iran.

The structure of this paper is organized as follows. The literature review classification and literature gaps are introduced
in Section 1. The theoretical background, including the structure of series network systems and NDEA modeling based on
Kao and Hwang (2008), as well as the formulation of the robust model (RNDEA) based on the Bertsimas et al. technique to
evaluate the performance of DMUs under uncertainty, is presented in Section 2. In Section 3, a new robust network DEA
(RNDEA) model is proposed. The applicability of the proposed approach is shown by a real case study in Section 4, and the
results are compared with the three-stage fuzzy data envelopment analysis (TSFDEA) model. Finally, the conclusions and
directions for future research are presented in Section 5.

2. LITERATURE

In this section, the history of the research will be presented. In the first subsection, the multi-stage DEA model and its dual
are presented to calculate the total efficiency score and the efficiency score of each stage. In the second subsection, Bertsimas
et al.'s robustness technique is introduced and applied to the traditional DEA model.

2.1 Multi-Stage DEA Models

Consider an h-process series system. Let xfj,i =1,...,M"and yrt]-,r =1,...,5¢ be defined as the inputs and outputs of

process t, which x}j,i =1,...,M" are initial process inputs and yfj,r =1,...,5" final process outputs, respectively. For
DMU j, z,gj, d =1, ..., D¢, denote the d intermediate product of process t, t = 7, ..., h-1. The intermediate products of process
t are both the process t outputs and the process t + 1 inputs. It should be noted that the final outputs of the system are the
intermediate products of the last process h. Each process may have a varied number of input, intermediate, and output
products, M¢, St and Dt. It is assumed here that they are the same for all processes, Mt = M, St =S, Dt =D,t =1,...,h,
only to simplify notation. The mechanism is depicted graphically in Figure 1.

Let us introduce the following basic notation:

j €J=1{1,...,n}: The index set of the n DMUEs.

k € {1,...,n}: Denotes the index of under evaluation DMU.

X! =(xf;i=1,...,M" t = 1,...,h): The vector of stage t external inputs used by DMU j.

Zf = (zf;,d =1,...,D%t =1,...,h — 1): The vector of stage t intermediate outputs produced by DMUj.

Yt =(yf;l=1,...,5%t=1,..,h): The vector of stage t final outputs produced by DMU j.

Vt=fi=1,...,M%t =1,..,h): The vector of weights for the stage t external inputs.

Wt =Wwjd=,...,D5t =1,...,h — 1): The vector of weights for stage t intermediate outputs.

Ut =wtr=1,...,85t =1, .., h): The vector of weights for the stage t external outputs.

A= (A,j=1,...,n;t =1,...,h): The vector of weights for DMU j in stage t.

E}: The overall efficiency of DMU k.

Ef(t =1,..,h — 1): The stage t efficiency of DMU k.

I h
DMU Yiliz1. M Yili=1,.,M"
v v
1 1 t h
e Stage1 |—4¢ p-——--- Stager |——4 yp ----| Stageh 14 >
i=lL.,M' d=1..D' d=1..,D' r=1..8"
1
Yilr=1..8" Yi r=1..8"
v \ 4

Figure 1. The multi-stage series system with intermediate products
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The following model based on the generalized of Kao and Hwang (2008) is used to calculate the system efficiency of

DMU k:

— h S t
Ek - max2t=1 Zr:luf‘yrk (11)
s.t. YhooYM vixh =1, 1.2)
D 1,1 S 1,,1 M 1..1 P
Ya=1WaZgj + Xr=1UrYrj = Li=1 Vi Xij < 0, j=1...n (1.3)
D t, t S ta,t D t—-1,t-1 M t..t ;o _
Zd=1WdZd]-+Zr=1uryrj—2d=1wd Zd]' _Zizlvixi]' SO,] —_ 1,...,71 t— 2,,h—1 (14)
=1 uﬁYﬁj - 23=1Wg_1z¢h11_'1 - Z?ilv{qx{lj <0 j=1...n (1.5)
te1 X uf"yﬁj DY EP ) Vitxitj <0, (1.6)
ut>0,vf=0wf>0 r=1,..,S i=1,..Md=1,.,Dt=1,..,h (1)

As can be observed, constraint (1.6) equals the sum of constraints (1.2) until (1.5). As a result, it can be ignored. As a

result, model (1) may be summarized as follows:

By = max Nio; Y31 UiV (21)
s.t. Vi1 XL vixh =1, (2.2)
Ya=1wazgj + X1 uryy; — XiLy vixj; <0, j=1..,n (23)
Yo Wiz + e utyr — Yaoawi izt =X vix <0,j=1,...,n t=2,...,h—1 (2.4)

P=1 uﬁ)’f}' - 22:1Wg_12¢h11_'1 - €i1vihxihj <0, j=L...,n (2.5)
ut > 0,vf =0,w} >0, r=1,..,S i=1,..,M, d=1,...,D, t=1,...,h 2

The efficiency of each process for DMU k is calculated by replacing the following relations for relations (2.1) and (2.2)

in the preceding model, along with the same additional constraints:

Eg = max ¥g_, wazg, + X1 i vk (1)
s.t. M ovix} =1, (3.2)
Ya-1Wazq; + Xi—1uryy — XL vix; <0, j=1..,n

Yoo wazh; + Yo ubyl = Yo w2zt =Y vixf; <0,j =1, nt=2,...,h—1

o wiyry — Ta=awi za;t — By vix; <0, j=1..n (3)
ut > 0,vf =0,w} >0, r=1,....S, i=1,...,M,

d=1,...,D, t=1,...,h
The efficiency score for each stage T, (T = 2, ..., A — 1), is as follows.

T _ D, T,T S T
Ey =max Y- wyzg, + Zrzléur}T/rkT 4.2)
D T-1,T-1 —
s.t. 21:d=1 wy de1 + Ziﬁl vilxif =1, (4.2)
D 1 N 1 -
Yd=1WaZaj + Xr=1 UrYrj — Ni=1 Vi Xj; < 0, j=1...n
D tt s tat D t-1,t-1 M t.t -
Ya=1WaZaj + Xr=1WrVrj = Xa=1Wa Za; — Li=aViX; <0,j=1,...,n
t=2,....,h—1 )
S hah D h=1,h=1 _ M o h h P
r=1UrYrj — Xa=1Wa  Zaj — Xi=1ViXj <0, j=1..n
ul > 0,vf =0,wj =0, r=1,...S i=1...,M,
d=1,...,D, t=1,...,h

and the following model is used to calculate the efficiency score for the final stage.

Ep = max ¥i_, ulyl (5.1)
s.t. D whizh M vhxl =1, (5.2)
Ya-1wazgj + X1 uryy; — XiLy vixg; <0, j=1..,n )
Yd-1 WaZgj + Yoo ubyr; — Ya-1 Wé_lzgz;l -2 vix;;<0,j=1...,n
=2,....h—1

vl — S Wil - S vl <0, = Len
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1,...,D, t=1,...,h

On the other hand, the dual of model (2) can be represented as follows.

E, =min6

st X7y Alxf; < 0xf, i=1,...m t=1,...,h

yr (A=Y >0,d=1,...,D, t=1,...,h—1 6
Jj=1\"Y ) dj

7=1/1]ty,€]2y,fk, T'=1,...,S, t=1,,h

A =0, j=1,...,n, t=1,...,h—1

As the same way, the dual of model (3), the efficiency of the first stage, is as follows.

Ef =min6?!

st Yl Afxl < 0'x, i=1,....m,

;-’zl/lfxithO, i=1,....m t=2,...,h

Y (A = A) zg; = zhyd = 1,...,D, -
YA =AY zh;20,d=1,...,D, t=2,...,h—1

AV 2 Ve =18

Ty =0,  r=1,..s t=2..h

A =0, j=1,...n, t=1,...,h

For each intermediate stage, T = 2,..., 2 — 1, dual model of (4) is equal to

El = mingT

st X7, Al xl; < 07xfy, i=1,....,m
n gt f . _ _
jzlljxijSO, i=1,...m, t=1,... ht+T (8)

(T = A)zht + 0725 20, d =1,...,D,
(A = A7) 285 2 24, d = 1,...,D,
T =) zh;20,d=1,...,D, t=1,...,h—1t#T

Ly Zyhe r=1..5
Yl Alyri =0, r=1,...,s, t=1,...,ht*T
2 =0, j=1,...,n, t=1,...,h

and for the last stage, the dual of model (5) is as follows.

E! = min 6"

st Xio, Axf; <0, i=1..m t=1,...,h—1

Ty Alxl; < 0", i=1,..m

Y (A -zl =20,d=1,...,D, t=1,...,h—2 o
(YT =)zt 2 002, d=1,...,D,

YAyt =0, r=1..s t=1..h-1

o1 /1;}})’;1; >yl r=1,..s,

A =20, j=1,...n, t=1,...,h
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2.2 Robust Model with Bertsimas Technique
Consider the following nominal linear optimal problem:

max cx
s.t: (10)
Ax<b I<x<u

Assume that just the elements of matrix 4 = [di]-] are uncertain in the previous formulation. Without losing generality,
suppose object function c is not uncertain, and we can utilize maximize object z, add constraint z — cx < 0 and incorporate
this constraint in Ax < b (Bertsimas and Sim, 2002).

Bertsimas and Sim (2003, 2004, and 2006) and Bertsimas et al. (2004) proposed a method for robust linear optimization
with complete control over the conservative degree. They used a particular row iof the matrix A and assumed a; €
[aij —a;j,a;; + ai]-],j € J;as a limited and symmetric independent random variable (but with unknown distribution) that J; =
(@ij-aij)

7]

{jlaij > 0},i =1,...,mand defined the standard deviation of nominal value a;jas n;; = . Where d;;and a;;are

uncertain and nominal values, respectively, and a;; represents the approximation's correctness. Clearly, n; ;has an uneven but
unknown distribution with values in the range [—1,1]. The total scaled deviation of the i constraint, on the other hand, can
be any amount in the interval [—n, n], but is restricted to ¥.7_; n;; = I;.

The job of the constraint parameter I;is to adjust the suggested method's stability to the conservative level of the
problem, which does not have to be an integer for any constraint i and takes a value in the interval [0, |/;|]. The cost of the
constraint's uncertainty is denoted by I;, where:

Xie1 @y = Xjea(aiy + 18i)% = By aijx; + Zjeg, iy, i=1,...,m (10)
Now, model (10) is formulated as follows

min cx

s.t.

Aix + maxy, .e[-1,1] Zje]i ainjnij <b, i=1,....m

l<x<u

Then, the robust counterpart model for model (10) is given as follows (Bertsimas and Sim, 2004).

min cx

s.t. Aix+1"l-pi+zje]iqij£bi i=1,...,m

pi + qy = 8y || jEJpi=1,...m (11)
pi,qij = 0, jeEJ,i=1,....m

x € X.

2.2.1 DEA Counterpart Models Based on Bertsimas and Sim Method
Consider an input-oriented DEA model with uncertain output,y,; = y,; + nryjfzﬁ,f/ﬁ >0, nryj € [—1,1], such as follow:

E, =max w

s.t. W_Zfﬁzluryrk <0

Yoy — Xt vix; <0, j=1,..,n
Yt vixy =1

vou; =20 i=1,...m r=1,...,s

According to Bertsimas et al. method, we must have
E, =max w
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. y A
st. w— (275’:1 WUy Y +MIiN Y7y urnrkyrk) <0
Vs m P
(Zsoiuryrj +max ¥so, urﬂr,-ym') —2Xvix; <0, j=1,...,n
Yt vixy =1
v,u; =0 i=1,...,m, r=1,...,s

In the first constraint, min Y.5_; u,n2, 9-is equal to —max ¥3_; u, (-0, )9ri. We define &, = —n2,, &% € [-1,1]
and so it will be equal to —max Y5_, w2 Vi, € € [—1,1]. So, we'll have the following relationship.

: Y 5 — Y 5 y
minYr_ 1 Uy Irie = —max Xo—y Uty I My € [=1,1].

Also u, = 0 implies |u,| = u,. As maintained above, the Bertsimas et al. The robust DEA (BRDEA) model based on
uncertainty in outputs is as follows:

E, =max w

st W= Qo1 W Yrk — Pl — X5-1Gr) <0

Zi:l urYrj + pj[]" + 215”—1 er - Zﬁlvixij = 0: ] = 1,...,7’1
Yit vixy =1

p; + qrj = Jrjly, r=1,..,s j=1...,n
QGpeppu; =20 i=1,...,.mr=1,..s j=1,...,n

(12)

Bertsimas et al. (2004) developed a counterpart model based on linear programming difficulties. In other words, by
employing this strategy, the primary problem classification can be preserved. For example, the robust counterpart of a linear
programming problem, like DEA, is a linear programming problem, such as model (12).

3. BERTSIMAS ROBUST NETWORK DEA (BRNDEA) MODELS

In this section, using the network DEA models presented in section 2.1 and the robustness technique presented in section 2.2,
we will build our robust network DEA models.

First, assume that the external input data, x{j, are definite values, but the values of intermediate products, z} ;> and output
products,yﬁ]-, are subject to uncertain data, that's mean

t t
=y, 9= 0m e-11]
~ t . N t
Zg; = z4; +ni2e; . Z24; =20, € [-1,1].

*)

. >0 and

We remember that $7; and Z; are devotions from nominal data and so y;; < y;; and 2§; < z§;. Then ¥,

3.1 Multi-Stage Robust Model based on Kao and Hwang Model (model (2))

In model (2), we use max wand add constraint w — Y7_; ¥'5_, ulyf, < 0. By substituting uncertain data in (*), the modal
will be as follows

E, = maxw
h M t.,t __
S.t. Yo dis Vixh =1,
t
WS ot t vt st
w- Zt:l Zr:l (uryrk + urnrkyrk) <0
D 1.1 1. z15 s 1.1 1.y 51 M 1.1 .
Zd:l(wdzdj + Wd’?djzdj) + 271 (uryrj + urn;; yrj) —2i=1Vix;; <0, j=1,...,n
D t ot t.zls S tat t. ¥t D t-1_t—1 t—1,,z17 1 5t—1
Ya-1(wizg; +wing;25;) + X1 (uryrj +urn;; yrj) = Yoo (witzgst +wi g 28)
M t.t C_ —
—Zizlvixij <0, j=1,...n,t=2,...,h—1

h h—1
N ha,h h, V' 55h D h—1_h—-1 h=1,z sh—1 M hyh P
r:l(uryrj +urT]”yr])— d=1 (Wd Zdj +Wd nd] Zdj )_ izlvixij S 0,] = 1,...,n
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ut = 0,vf =0,wf =0, r=1..S i=1..M,
Yo ns; € [-1,1] d=1,...D, t=1,..h

The above uncertain model will be replaced by the following model as a result of Bertsimas et al.' appointment for
robustness.

E, = maxw
h M t.t _
s.t. i ie Vixfe =1,

t
h §S  tat ; oS ot Vit
w-= <Zt:1 Yy UrYrk T min Yi=1Lr=1 urnrkyrk> <0,

07 El-1,1]
D D s s m
1,1 1,21 51 1,,1 ; 1,7 51 tot _
(Z Wiz + Jnax dendjzdj>+<2uryrj+ ylmm Zurnﬁyﬁ)—z%-x” <0,j=1,...,n
d=1 a1 g5 =1 nyy €-115 5 i=1
Dt t D .t zist S tat ; s Yot
d=1WaZgj + max Yg_iWalgjZaj | +| Lr=awryry + min Yoo urn;; 9y;
n7€l-11] n?, €l-11] (13)
D t-1,t-1 ; D t-1,z¢ 5t-1 Mt t — -
—|(2Za=1Wa zq;- + ,min d=1Wq MajZq; |~ Xi=avixj<0,t=2...,h—1 j=1,...,n
ngj €l-11]
N N D D M
h h—1
Ty h hp V' sh h=1_h-1 ; h=1,z" 1 sh-1 hoh
=1 N €111 =1 a=1 maj €-1UGT i=1
j=1...,n

ub,vi,wi >0, r=1,..,s, i=1,....m d=1,...D, t=1,...,h

t 1

Now, we must find a robust equivalent for each constraint according to Bertsimas et al.'s approach. In the third

t t
i ] h S t,, Y 5t h N t,, YV 5t i i
constraint, statement min Yoy Yoy Urny Yrids equal to — max Yo Yoo urfy I According Bertsimas et al.
n7€l-11] nY€l-11]
method, because ut > 0, yt, = 0, then we have

s
t
t., Y ot
max Z Z urnrkyyk
t=1r:1t
s.it. 0<nY, <1, r=1,...,5 t=1,..,h

N
Enry,f =Lt t=1,...h
r=1
The dual of the above model is expressed as follows

. t Lt t
min ?:11’1)() Fky +Z'Z=1Z§=1qryk

yt s oyt o st ot _
Pi TXe1 Qo 2 Iunr=1,...,s, t=1,...,h
0, r=1,...,s, t=1,...,h
0, t=1,...,h

S.

~e R
xS e
[\

p
Then, it's robust counterpart constraint will be as follow

t t t
w = ( to1 Dpm1 ULYrk — Xima P?{/ Fky D)D)= qfk) <0

t t
sit. py X5 qh = Phubr=1,...,s, t=1,...,h
t
gy =0, r=1,...,s, t=1,...,h
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pl =0, t=1,..,h
Also, in the same way, for each t = 1,..., h, the robust counterpart of max ¥g_, wéngjéfijis equal to
ngj€l-11]
. t t t
min  p; ;" +¥3-14;
s.t. pft + qf]t > 25wy, d=1,...,D
p?,q%; 20, d=1,...,D

t oy
and so, the robust counterpart model for max Zi=1u$nfjf1ﬁj|s
nel-11]
t t t
i vy s Y
min pjt[]" _:-Zr=1qdj
y yOo ottt L
s.t. p; +qu Zyrjur, r=1,...,s

t t
p]y.quZO, r=1,...,s
Therefore, a counterpart robust multi-stage model based on model (2) in the Bertsimas et al. method will be as follows.

E, = maxw

s.t.

Z?:l Zﬁ1 vixh =1, - ,

w— (Z}t'=1 Y ulyh =Ytk I — Xt Yio qfk) <0,
1 1 1 1 1 1 3

(Zh-1wazg; + v 7 + X5, q5;) + ( P Uryr + p}’ I}y + quyj ) — 2t vix;j<0,j=1,...,n
t t t t t t

(SBoywhaty +pf 7 + 281 q3)) + (Sioawiyly + ) [ + X))

—( 3=1W§_lz§;1—pft_ll}zt_1— gzlqgj.'l)— Movix;<0,t=2,...,h—1 j=1,...,n "
(i:1u¢3¢j+p;/h1}yh+zqr;)_( 3=1Wg_1221_'1_p}?h_11}2h_1_ 3:1‘15;_1)_ ﬁlv{lx{ffgo' o
j=1,...,n

p}’t+qﬁ’;2f/ﬁjuﬁ, j=1,...,n, r=1,...,s, t=1,...,h

pi +aqZ = 25w, j=1,...n, d=1,..,D, t=1,..,h—1

p}'t,qﬁ/jtzo, j=1,...,n, r=1,...,5, t=1,...,h

p?,q%; =0, j=1,...n, d=1,..,D, t=1,...,h—1

viutL,wh>0, i=1,...m, r=1,...,s, d=1,...,D, t=1,...,h

Furthermore, the robust counterpart models for calculating the performance evaluation of each stage t for each DMU
are generated as follows based on Bertsimas et al. achievement and Kao and Hwang's network DEA model and the
aforementioned technique.

Ep = maxw
s.t. YMovixk =1, o )
1 1 1

W = Xa-1 WaZge + Pi TE + Xa=1 @l — Zicayi + 0 I + 2314 <0

1 1 1 1 1 1 )
(Zh=awazg +pf 7 +X59-1q%;) + (Z§=1 wyy+p] I+ % qu) — ¥R, vx; <0, j=1,...,n

t t t t t t _ _ t—1 t—1
(2B wizly +p 7 + 251 ad;) + (Becaubyy + ) [ + 202 ) — (BRoa w285t —pf ' -

t— .
9-145; 1) YL vixf;<0,t=2,...,h=1 j=1,..,n

(15)

h_ yh h h=1 _, ,h—1 h-1
s hayh vy y D h=1_h—1 z z D z M o h,h T
( GRS A N D) qrj) - (Zd=1W Zg; —pj 7 — Xa=144; ) — iz Vx5 <0, j=

1,...,n
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t t
y yEo ot ot
pj + qrj = yrjur:
zt zt N
pj tarj = Z3;Wa,
t t
vty
p; .4y >0,
Zt Zt
Pj »qa; = 0,
t t t >0
vi,ut,wj =0,

and forstage T, T = 2,...,h —

El = maxw
s.t.
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j=1,...,n, r=1,..,s5 t=1,...,h
j=1,...,n, =1....D, t=1,....h—1
j=1,...,n, r=1,...,s, t=1,...,h
j=1,..,n, =1,..,D, t=1,.,h=-1
.m, r=1,...,s, d=1,...,D, t=1,...,h
1

D T-1,T-1 M T.T _
d=1Waq Zgk T Xizivixjp =1

D T T T gt D T s T T yT Ry s T
W — Xa=1WaZar + Dk ¥ +Xd=1qak — 2r=1 WY T 0 I} + 27215 <0,

1 1 1 1 1 1 )
(X8=1wazg; + 0 7 +X0.,q5;) + (Z§=1 wyy+o] I +quj) — ¥ v <0,j=1,...,n

(16)
D wtst o zfrzf_l_ZD 2 4 (Y5 utvi. + ytl"yt+2 vt _ (D wt-1gt=1 _ pzt i pzt™t
d=1WaZq; T Pj 1 d=194j r=1WrYrj T D; 1 a4y d=1Wa Zqj bj i
t—-1
22=1Q§j )
M v <0, j=1,..m t=2,.. h—1t#T—1T
T T T T T T _ _

(SBoawizly + 0717 + S0 a2]) + (Sl + 07 17 + 20 ) - $0ey w123

vl X7 <0, j=1,...,n

T-1 T-1 T-1 T— T—
S wizl (B Ty ) B 4 Rq) ) - (BRawl P T+
T-2 — — .
Y2 iq% ) - v P <0, j=1.n
h h h h h=1_h— h—1 h—1 h—1 hoh ,
(Zf‘:luf"yrj—l_p;‘] r’ +Zq1¥j)_(ZdD:1Wd ‘zg;t —pf [T —Xa-14G; )—Zﬁ1vixij3011—
1,...,n
t t
p; +aqy; = 9;uf, ji=1,...,n =1,...,s, t=1,...,h
pft+qrzjt225jwé, j=1,...mn, =1,...,D, =1,....,h—1
Y =0 = = t= h
pJ quj = Y ] - 4L » 1Y - 4 ;S; - 4 LN
p?,q%; =0, j=1,..,n, d=1,..,D, t=1,...,h—1
vhut,wb>0, i=1,..m, r=1,.,s, d=1,....D, t=1,...,h
E} = maxw
17)

S.t.

D h=1,_h-1 M o hoh _
Ya=1Wd Zgk +Zi=hlvihxik =1, ,
S ok vy s ¥
W= Yoo WYk t pi Iy + Yr=1 r < 0,

1 1 1 1 1 1 )
(22:1 Wézcllj + P]Z I}Z +X5-1 qgj) + (Z£=1 u%)’rlj + P}J'/ I}y + quy,- ) — 2t vix;j<0,j=1,...,n

t t t
( d=1WaZa; +P] " + Xd= qgj) + (Zﬁ:l utyf;
M t..t _
)_Zi=1vixij <0,t=2,..

D zt-1

Zt—l Zt—l
p; — Zd=194j

D t t

-1,t-1
d=1Wa Zq; —

-

t t t
+p}3.11—}y +Zq7¥j)
Lh=2, j=1,...,n

h=1_h— t t t h=2 _h— h—2 h—2 h—2
(R wh 2l ) + (B ubyly + ) 1 + S0 ) — (Shoawi 22l —pf L7 - 38 45 ) -

M h=1.,.h—1
=1V Xj =0,

t t
y y St t
p; t4q;; =Yy

zt zt st t
pj +qr; = Zg;Wg,

J

h h h
s ahah vy y D . h-1_h—1
( r=1UrYrj T 0j I +quj)_2d=1wd Zgj —

=1,...,n

M hoh T
= Vi < 0, j=1,...,n
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t t
vty
p] iqr]' 2 0!
Zt Zt
p;j ,49a; 20,
t t t
v, u,wg =0,

Robust Network DEA Models for Multi-Stage Series Systems

j=1,...,n, r=1,...,5s, t=1,...,h

j=1,...,n, d=1,...,D, t=1,....h—1
i=1,...m, r=1,...,s, d=1,...,D, t=1,...,h

3.2 Multi-Stage Robust Model Based on Dual of Kao and Hwang Model (model (6))

Applying the assumption of uncertainty (*) for intermediate and ultimate products, the model (6) is changed as follows.

E, = min@

t..t
s.t. 14X <

< Oxk, i=1,...m, t=1,..h

1@? f“)@w+nw%020,d=1w”D,t=2“wh—1
T i ey + ) 9ri) 2 e + 05 FIm), T=10s, t=1,..,h

/lt z4 =0,

j=1,...n, d=1,...,D, t=1,...,h—1.

To obtain a robust solution, we must have:

E, =min@

s.t. T Afxij < Oy i=1,. t=1,...,h
1(&1’ At+1)zd} + tmm Z] 1(/1t lt+1) d}Zd] > O, d= 1,__.'D,

t=2,....,h—

/N

t=1,...,h

t

A =0,

Or

E; =min9
s.t. Abxt

]1111_

n t
Z] 1A]Zdj

d=1,...,D,

n%€el-11]

PP yr]+ min ZJ LA AP | 2 Ve + jmax e T=1,...,s,
Y el-11] [-1,1]

Ny €l=

< 6xt, i=1. t=1,...,h
t+1 t+1,z8 ot
T Az + min ¥ Jr]djzd] max Y A nai2q5 = 0,
"d}e[ 1,1] ndje[ 1,1]
=2,...,h—1

t
t Y 5t
Z] =1 }Yr]—l' ymln Z Jnr]yrj 2Yrk—}_ plax Mk Yrier

r=1,...,s,
A =20,

jel-11] ) €l-11]

t=1,...,h

j=1,...,n, t=1,..., A

The first constraint won't change because it is dependent on input parameters that are presumed to be deterministic.
With regard to the second constraint, for each ¢ = 1,..., h, the equation min Y7 1Atnd]zd] is equivalent to:

77,1] [-11]

. t t t
—min (r;,- p: + Y81 q%)
s.it. p] +qu > Afz5, d=1,...,D

t
Pa 'CIaj =0,

d=1,...,D

In a similar vein, the robust counterpart of the expression max Y= A}“nd]zdjls equal to:

‘r]dje[ 1,1]
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. t t t
min (I by 3k 1 a%)
st pf "+ qd} > %125, d=1,..,D

pgt:CIdeO, d=1,...,D
and Jnin py/a r;rj yL;is equal to
n E[ 1,1]

. t ot t
—min (') + S a7;)
St
pr +q” 2954, j=1..,n r=1,..5s
pr,qr]>0 j=1,...,n, r=1,...,s

t t
As one can see, max 0y, 95 forn?, € [—1,1] equals toPf,. Therefore, the multi-stage robust counterpart DEA model

based on model (6) is as follows:

E, =min@
st XM= 1A < Oxy, i=1,....m
t t t
X (A = A )zg; — (Fd i + XL 1qa])—(FaZ pé +Z7=1q§j)20, d=1,..,D
t
lFYrtj_(ry 24 +Zje1rqrj)2%k+)’rtk' r=1,...,s
t P — —
pr +q” _Ayr] j=1...,n r=1,...,s, t=1,...,h (18)

pd +qdj>zdj/1j, j=1,...,n,d=1,...,D, t=1,...,h—1
Py +aqi =250 j=1,..,nd=1..D, t=1,..,h-1

pﬁ’t,qutz 0, j=1,...,n, r=1,...,s5, t=1,...,h
p3,q%; =0, j=1,...n d=1,...,D, t=1,...,h—1
A =0, j=1..,n t=1,.,h

As previously stated, in order to build the robust counterpart model, we assume that the stage's input values are certain

and deterministic. We can calculate robust counterpart models for (7), (8), and (9) models using the same procedure.

Or

Ej =min@1
st Xh, Axl < 60'x, i=1,....m
Z}llltxfjso i=1,....m t=2,...,h
T1Ajza; — Xjo Azgp + min X0, ]nd]Zd] max Yj, nd]Zd]>de+ max Ud;de
Udje[ 1,1] 77d] [-11] ﬂdje[ 1,1]
d=1,.
Y Afzg — Xh Atz + tmln P} dj-z“fij max Xj 1At+1ndjzd] >0, d=1,...,D,
ng;€l-11] nd} [-11]
t=2,...,h—1
Zn /‘ll + Z 1 + yls1 =1 (19)
j=14 Yrj mln ]T]T] yr] Yrke Inax Mk Yris r=4=L...s
nYjel-11] ny; €l-11]
t
Y Ay + min X An) vy 20, r=1,...,s, t=2,...,h
11”6[ 1,1]
t
A= 0,0 20,20 r=1,...,s,d=1,..D, j=1,...,n t=1,..,h

E} = min6?!
36



Sanchooli et al.

Robust Network DEA Models for Multi-Stage Series Systems

St /11 3']_91 iks i=1,...,m
/foJSO i=1,..m t=2,...h
1,1 1 1,1 1 R
?1 ]Zd] 27 1/1]22011'_1:12 pa — ?:1‘16211'_1:12 P4 _Z?zlqéj > Zhe + Zag
d=1,...,D
nogt,t o _yn /1t+1t_1—vzt zt __yn zt_I—-zt zt _yn zt>0
Yi—14j2g; i=1 A zg; — I P — Xi-1494; — I pa j=149aj =Y
d=1,...,D, t= 2 Lh—1
Z] =1 ]yr]_ry _Z] 1qr —yrk+yrk' r=1,...,s
J
/ljyr]—l”y —Zj=1qrj_ , r=1,...,s, t=2,...,h
pd +qd]>Afzd], d=1,...,D, j=1,....,n, t=1,...,h—1
pd +qd}>lt+1zd11 d=1’---1D; ,n, t:1, .,h_l
4 +q”_ltyr}, r=1,...,s, j=1,...,n, t=1,...,h
pr +qr1 > 90, r=1,...,s, n, t=1,...,h
pd’qd]ZO’ d=1,...,D, ]= ,n, t= ) ,h
byt .
pr .4y 20 r=1,..,s, j= n, t=1,..h
A =0, ji=1, t=1,....h
and foreach T, T = 2,...,h— 1, we must have
El = mingT
st Yl Ax<07xf, i=1,..,m
Afxfjso i=1,..,m, t=1.,ht+T,
1/1T zg; =2 1/1Tzd}1+9Tzd 1>O d=1,..,D
Zszdj+ mm ZATsz ZA]-T+1zdj max Zﬂ“ndjzdj>zd}+ max TId]de d=1,..,D,
77d} [-1115= TId]E[ 1,1]
Z, 1Azg;+  min Z] 1 ]nd]zdj Z}lzl/lf“zdj p1ax T A djz“é} >0,
Udj [-11] Udj [-11]
d=1,..,.D, t=1,..,h—1,t+T—-1,T,
A}yr1+ min ¥, Tr]fjflfj >ylk+ max nrkyrk, r=1,..,s,
ny.e[—1,1] e[ 1,1]
T Ayri+ min Y ni'jt)?szo, r=1,..,s, t nt+T
n 6[ 1,1]
A =0, r=1,....s, t=1,...,h
Or
El =mino”
st Yia A xl; < 67x, i=1,....m
Aff]_ i=1,..m, t=2,..,ht*T,
Jll}T Zg; L= 2T A zd}1+9TT1>O d—1 D (20)
T .
o1 75 — X} AjTHZdj_Fd pi _rd "pz' ?—1‘151 > 24 + Zgod = 1,...,D,
t t t t t
j= 1ljtZd]— j= 1A;+1Zd]'_rdz pé - ;'lzlqéj_rdz pé — Lj= lqd]>0 d—l D, t:].,...,h_l,
t+=T—-1,T
T
Ajy” Fry Pﬁl - nlqr] —yrk+yrk' r=1,..,s,
Z Jyrl_ry quj = ,S, t Ght#=T
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pd +qd1>ltzd1, d=1,...,D, j=1,...,n, t=1,,h—1
pd +qd] A 24 d=1,...,D, j=1,...,n, t=1,...,h—1
pY +q” > X9 r=1,..,s j=1..,n t=1,..h

pr +qr1 > A5, r=1,...,s, j=1,...,n, t=1,...,h
3,45 =0, d=1,....,D, j=1,...,n, t=1,...,h

Y >0 =1 =1 =1,....h
pr,qrj_ B r=1,...,s, j=1,...,n, t=1,...,

2 >0, j=1..n t=1..h

Also, for the last stage, we have

El = min@"
st Y7o AtfoSO i=1,...m t=1,...,h—1,
A"x{’]SH" X i=1,...,m
t t t
j= 1/11tza] Iy Pd —XP1 a4 = X Azl — I pE — X 1‘1«1] =0,
d=1,...,D, t—l ,h—2,
Z] 1Ah 1Zd] /1th112 eh lk ) d=1,...,D,
_ /l-y”—l”y - 1qu > r=1,...,s, t=1,....,h—1,
J 1’11113’r1_ry Pr - j=1qrj —%k"‘f’ﬁk: r=1..,s, (1)

pd +qd]>ltzd], j=1,...,n, d=1,...,D, t=1,...,h—1
pd +qd} >}.t+1zd1, j=1,...,n, d=1,...,D, t=1,,h—1
pr +qr] > A9, j=1...n r=1..s t=1..h-1

py +qr1_lt+1yr], j=1,...,n, r=1,...,s t=1,...,h—1
p',qi; =0, j=1...n, d=1,...,D, t=1,...,h—1
. =0, j=1..n r=1..s t=1,...,h—1
23>0, j=1...n, t=1,.h

4. NUMERICAL EXAMPLE

Two examples are provided in this part to demonstrate the applicability of the produced models. The first is a case study of
data from Iran's top 40 dairy supply chains, which Khalili-Damghani and Taghavi-Fard (2012) used.

The proposed robust models were written in LINGO 17.0 software and run on a Pentium V laptop with a Core i7, 2
GHz CPU and Windows 8.1 running on 8 GB of RAM.

4.1 Application of the RNDEA Model in a Dairy Supply Chain: a Three-Stage Example

Food industries with a continuous production process are typically more complex than other sectors due to issues such as
product perishability, a large number of completed goods, a wide range of manufacturing routes, specialized storage
equipment, common and by-products, and changeable recipes.

z),j=1..,4 z},j=1..4

x,,i=1.,4

L]

Yy

Figure 2. Three stage network
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Each dairy company is viewed as its own supply chain, with three-stage sub-processes linked in a chain of JIT methods,
prospective agility indicators, contingency agility indicators, and performance goals (Khalili-Damghani and Taghavi-Fard,
2012).

Khalili-Damghani and Taghavi-Fard (2012) gathered supply chain managers' opinions about the values of indicators in
various sectors of a specific supply chain and, used triangular fuzzy numbers to represent each criterion, and then used a
three-stage fuzzy DEA model for performance evaluation of dairy supply chains. (For a full discussion regarding these
examples, see Khalili-Damghani and Taghavi-Fard (2012)). They solved the problem and determined the lower and upper
bounds of its efficiency score. The findings of the models are displayed in Table 1's LB-TSFDEA and UP-TSFDEA columns,
respectively.

We use the conceptual model (Figure 2) and data used in that research and convert the fuzzy data to robust data for run

the models suggested in our research. For this, we Consider x; = G ‘)and“ (/=) )

First, a three-stage DEA is used to calculate the specific total eff|C|ency of DMUs The efficiency value is determined
using model (2) for this purpose and is shown in the second column of Table 1.

Table 1. Total efficiency values of the three-stage model with Bertsimas et al. technique

model (14) model (18)

20% | 10% 56 | M%) T5er T 100 | 20%
DMUL | 0300 | 0398 | 0.455 0511 | 0747 0861 0981
DMU2 | 0163 | 0202 | 0.227 0261 | 0496 0561  0.641
DMU3 | 0123 | 0157 | 0.178 0204 | 0349 0395 0452
DMU4 | 0180 | 0227 | 0.260 0296 | 0528 0605  0.686
DMU5 | 0329 | 0416 | 0475 0567 | 1.093 1252 1471
DMUG6 | 0264 | 0325 | 0.360 0412 | 0639 0706  0.804
DMU7 | 0169 | 0221 | 0.259 0301 | 0482 0553  0.641
DMU8 | 0335 | 0411 | 0.455 0527 | 0906 1026 1173
DMU9 | 0139 | 0181 | 0.206 0236 | 038 0446 0505
DMU10 | 0241 | 0312 | 0353 0397 | 0594 0690  0.779
DMU1l | 0174 | 0229 | 0271 0320 | 0761 0894 1028
DMU12 | 0234 | 0293 | 0.336 0382 | 0536 0640 0727
DMU13 | 0302 | 0383 | 0437 0500 | 0791 0892 1028
DMU14 | 0294 | 0357 | 0.394 0.444 | 0668 0741  0.854
DMU15 | 0306 | 0382 | 0.434 0.494 | 0750 0833  0.964
DMU16 | 0242 | 0313 | 0.360 0411 | 0686 0793  0.861
DMU17 | 0240 | 0292 | 0.326 0396 | 0615 0678  0.762
DMU18 | 0261 | 0292 | 0.389 0.436 | 0640 0741  0.840
DMU19 | 0301 | 0380 | 0.436 0507 | 0837 0968 1144
DMU20 | 0177 | 0232 | 0236 0296 | 0543 0622  0.702
DMU2L | 0268 | 035 | 0415 0467 | 0670 0767  0.883
DMU22 | 0184 | 0240 | 0.263 0286 | 0559 0650  0.712
DMU23 | 0224 | 0297 | 0338 0397 | 0625 0691  0.785
DMU24 | 0226 | 0201 | 0.322 0361 | 0575 0667  0.732
DMU25 | 0381 | 0482 | 0545 0638 | 1056 1218 1406
DMU26 | 0238 | 0309 | 0.356 0.405 | 0596 0674  0.760
DMU27 | 0269 | 0370 | 0432 0496 | 0758 0893 1032
DMU28 | 0301 | 0390 | 0.449 0523 | 0785 0883  0.990
DMU29 | 0326 | 0415 | 0.467 0531 | 0931  1.053 1223
DMU30 | 0172 | 0220 | 0.246 0277 | 0430 0496 0565
DMU3L | 0221 | 0282 | 0.324 0374 | 0643 0750  0.834
DMU32 | 0327 | 0324 | 0376 0420 | 0606 0670  0.785
DMU33 | 0299 | 0363 | 0.408 0456 | 0.687 0774  0.887
DMU34 | 0274 | 0339 | 0378 0417 | 0628 0705  0.793
DMU35 | 0447 | 0562 | 0630 0717 | 1049 1153 1339
DMU36 | 0269 | 0349 | 0.398 0452 | 0742 0844  0.966
DMU37 | 0243 | 0301 | 0.336 0395 | 0747 0855  0.963
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model (14) model (18)

20% | 10% 5% | M%) T5or T 100 | 20%

DMU38 | 0172 | 0217 | 0.244 0273 | 0459 0513 0560

DMU39 | 0202 | 0264 | 0.306 0355 | 0588 0674 0773

DMU40 | 0175 | 0231 | 0.270 0309 | 0481 0561 0611
Average | 0.2498 | 0.315125 | 0.35875 | 0.411175 | 0.66655 | 0.7597 | 0.86605

Max 0.447 | 0.562 0.63 0717 | 1.093 | 1.252 | 1471

Min 0.123 | 04157 | 0.78 0.204 | 0.349 | 0.395 | 0.452
Correlation | 0.97015 | 0.99059 | 0.99609 0.91739 | 0.90290 | 0.90298

Accompanying the model (14) and the model (18) are calculated and shown in columns 3 through 8 of the accompanying
table, assuming a deviation of 5, 10, and 20% of the nominal data values.

The total efficiency values presented in Table 1 are also plotted in the following diagram. As can be seen from the
efficiency values shown in Table 1 as well as in Figure 3, the robust efficiency scores obtained from model (14) give lower
bounds to the efficiency scores of the nominal three-stage model, and model (18) provide upper bounds for them. Therefore,
one can provide an efficiency interval for each DMU using the robust efficiency scores obtained from Model (14) and Model
(18). Furthermore, as shown in the last line of Table 1, the results obtained for the upper and lower bounds of the DMU's
efficiency score have a high correlation with the definite efficiency values of the DMUs, with the lower limit values being
more accurate. Furthermore, as the conservatism coefficient in the Bertsimas technique decreases, the accuracy of model
calculations increases, and the results of the proposed models converge to the efficiency values obtained from definitive data.
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Figure 3. Diagram of nominal and robust efficiency scores

The relative efficiency of sub-DMUs was calculated using (26) to (31) and (38) to (41). The results have been
represented in Table 7. It is notable that the experts’ order of preference was first, second, and third sub-DMU in our case.
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Table 2. Sub-DMUs efficiency values of the three-stage model with the Bertsimas et al. technique

Stage 1 Stage 2 Stage 3
R-kao Kao R-Dkao R-kao Kao R-Dkao R-kao Kao R-Dkao
DMU1 0.82097 0.95985  1.30272 | 0.94110 1.00000 1.56044 | 0.93075 1.00000 1.64860
DMU2 0.75670 0.84810 1.35227 | 0.91304 1.00000 1.96538 | 0.65013 0.75651 0.97762
DMU3 0.87769  1.00000 1.73087 | 0.94301 1.00000 1.68668 | 0.30760 0.37508 0.36528
DMU4 0.78833  0.99605 1.43794 | 0.90738 1.00000 2.35086 | 0.67378  1.00000 1.22337
DMU5 0.94544  1.00000 1.91883 | 0.52301 0.67389 1.26612 | 0.85822  1.00000 1.72163
DMUG6 0.65716  0.82042 1.23681 | 0.88451 1.00000 1.54794 | 0.94118 1.00000  1.49995
DMU7 0.55265 0.71797 1.07077 | 0.93333 1.00000 1.55556 | 0.40020 0.52545 0.56994
DMU8 0.93548 1.00000 1.75398 | 0.38429 0.58921 1.27091 | 0.92885 1.00000 1.85396
DMU9 0.58676 0.83656 1.56368 | 0.62636  0.81904 1.29992 | 0.58244 0.78618 0.72380
DMU10 0.74573 0.93072 1.38781 | 0.84970  1.00000 2.07097 | 0.92000 1.00000  0.89895
DMU11 0.93231  1.00000 2.57224 | 0.47970 0.59308 0.92505 | 0.44772 0.64411 0.79281
DMU12 0.59484 0.76305 1.26428 | 0.92079  1.00000 191111 | 0.69736  0.84811 0.70627
DMU13 0.94737 1.00000 1.66702 | 0.44211 0.64634 1.09607 | 0.90880  1.00000  1.09227
DMU14 0.70529 1.00000 2.15572 | 0.93548 1.00000 1.63587 | 0.79266 0.91577 0.64253
DMU15 0.61565 0.75888 1.17380 | 0.93346  1.00000 2.07815 | 0.72349 0.85017  0.69003
DMU16 0.82607 1.00000 1.62182 | 0.91639 1.00000 1.53852 | 0.67457 0.85514 0.97945
DMU17 0.95108 1.00000 1.61446 | 0.68696  0.88712  1.39135 | 0.57985 0.67471 0.56641
DMU18 0.47999 0.66364 1.12719 | 0.87936  1.00000 2.10998 | 0.70318 0.81162 0.95206
DMU19 0.71555 0.86087 1.16652 | 0.86387  1.00000 1.98218 | 0.90448 1.00000 1.55424
DMU20 0.74090 0.88516  1.30939 | 0.84474  1.00000 1.49963 | 0.67395 0.85460 1.20039
DMU21 0.77664 1.00000 1.76587 | 0.68860 0.95563  1.69301 | 0.77242 0.98094 1.69994
DMU22 0.74690 0.84810 1.32109 | 0.91304 1.00000 197129 | 0.82230 0.98030 1.42846
DMU23 0.87769  1.00000 1.73087 | 0.93464 1.00000 1.67484 | 0.67823 0.81684 0.67464
DMU24 0.78833  0.99605 1.45909 | 0.88884  1.00000 2.30497 | 0.79070  1.00000  1.26967
DMU25 0.94495 1.00000 1.88053 | 0.51240 0.68252  1.13298 | 0.92035 1.00000 2.20979
DMU26 0.65354 0.96985 1.66739 | 0.88451 1.00000 1.54794 | 0.86574 1.00000 1.41671
DMU27 0.58089 0.73605 1.13962 | 0.89583  1.00000 1.50000 | 0.67287 0.82044 0.87611
DMU28 0.93384 1.00000 1.72803 | 0.37180 0.52923 1.08616 | 0.82209  1.00000  1.14503
DMU29 0.82652 1.00000 1.99401 | 0.59994  0.74559 1.10607 | 0.90065 1.00000 1.25193
DMU30 0.72112 0.88644  1.30140 | 0.90411 1.00000 1.95604 | 0.83537 0.99540 0.96723
DMU31 0.92857 1.00000 1.72650 | 0.88886  1.00000 1.62188 | 0.56532 0.67508 0.72720
DMU32 0.58877 0.73488 1.33686 | 0.88888 0.99928 1.68889 | 0.85110 1.00000 0.82855
DMU33 0.89163 0.96147 1.52525 | 0.40603 0.48837 0.73303 | 0.92671 1.00000 1.33541
DMU34 0.77346  1.00000 2.15572 | 0.91398 1.00000 1.54727 | 0.82461 0.96820 0.63587
DMU35 0.74855 0.95087 1.87114 | 0.92007 1.00000 1.54131 | 0.91411 1.00000  1.13001
DMU36 0.84005 1.00000 1.62268 | 0.94872  1.00000 153852 | 0.77150 0.95505  1.03429
DMU37 0.92495 0.99642 153860 | 0.69053 0.89254  1.40342 | 0.65645 0.77332  0.88253
DMU38 0.44453  0.69807 1.18117 | 0.69053  1.00000 2.20992 | 0.44291 0.62794 0.67320
DMU39 0.71420 0.87640 1.20527 | 0.85415 1.00000 1.85540 | 0.68749 0.87639 1.06672
DMU40 0.73290 0.87809 1.28184 | 0.84207 1.00000 1.52724 | 0.68150 0.85269 0.97094

Average 0.76535 0.914349 1.546526 | 0.786153 0.912546 1.609572 | 0.742541 0.880501 1.072095

Min 0.44453  0.66364  1.07077 [ 0.3718  0.48837 0.73303 [ 0.3076  0.37508  0.36528
Max 0.95108 1 2.57224 | 0.94872 1 2.35086 | 0.94118 1 2.20979
Correlation | 0.877869 0.733266 [ 0.952559 0.773214 | 0.942328 0.67356

As shown in Table 2, the proposed models' findings provide appropriate constraints for the efficiency of each stage. The
results obtained show that the third step has a reduced efficiency. However, the lower bounds of the efficiency score obtained
have higher correlation and accuracy.
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4.2 Comparison of TSBRNDEA with TSFDEA

Khalili-Damghani and Taghavifard (2012) used a three-stage fuzzy DEA model (TSFDEA) to tackle this problem and
estimated the lower and upper bound values of efficiency scores. The table below displays the upper and lower bound values
generated by them, as well as the efficiency scores calculated by our proposed models.

Table 3. Comparison values of the TSBRNDEA model and FTSDEA model

Model (14) LB Model (14) Model (5) Model (18) uB Model (18)

20% TSFDEA 10% 10% TSFDEA 20%
DMU1 0.300 0.348 0.398 0.511 0.861 0.958 0.981
DMU2 0.163 0.240 0.202 0.261 0.561 0.723 0.641
DMU3 0.123 0.130 0.157 0.205 0.395 0.533 0.452
DMU4 0.180 0.220 0.227 0.296 0.605 0.785 0.686
DMU5 0.329 0.434 0.416 0.567 1.252 0.776 1.471
DMU6 0.264 0.321 0.325 0.412 0.706 0.906 0.804
DMU7 0.169 0.289 0.221 0.301 0.553 0.705 0.641
DMU8 0.335 0.466 0.411 0.527 1.026 0.576 1.173
DMU9 0.139 0.249 0.181 0.236 0.446 0.746 0.505
DMU10 0.241 0.282 0.312 0.397 0.690 0.807 0.779
DMU11 0.174 0.227 0.229 0.320 0.894 0.644 1.028
DMU12 0.234 0.328 0.293 0.382 0.640 0.965 0.727
DMU13 0.302 0.347 0.383 0.500 0.892 0.645 1.028
DMU14 0.294 0.353 0.357 0.444 0.741 0.932 0.854
DMU15 0.306 0.380 0.382 0.493 0.833 0.847 0.964
DMU16 0.242 0.364 0.313 0.411 0.793 0.887 0.861
DMU17 0.240 0.263 0.292 0.369 0.678 0.693 0.762
DMU18 0.261 0.362 0.292 0.436 0.741 0.677 0.840
DMU19 0.301 0.453 0.380 0.507 0.968 0.900 1.144
DMU20 0.177 0.235 0.232 0.296 0.622 0.671 0.702
DMU21 0.268 0.339 0.356 0.467 0.767 0.946 0.883
DMU22 0.184 0.274 0.240 0.286 0.650 0.810 0.712
DMU23 0.224 0.288 0.297 0.397 0.691 0.870 0.785
DMU24 0.226 0.308 0.291 0.361 0.667 0.920 0.732
DMU25 0.381 0.552 0.482 0.638 1.128 0.788 1.406
DMU26 0.238 0.307 0.309 0.405 0.674 0.868 0.760
DMU27 0.269 0.453 0.370 0.496 0.893 1.000 1.032
DMU28 0.301 0.453 0.390 0.523 0.883 0.576 0.990
DMU29 0.326 0.455 0.415 0.531 1.053 0.888 1.223
DMU30 0.172 0.192 0.220 0.277 0.496 0.718 0.565
DMU31 0.221 0.327 0.282 0.374 0.750 0.810 0.834
DMU32 0.327 0.347 0.324 0.420 0.670 0.969 0.785
DMU33 0.299 0.408 0.363 0.456 0.774 0.659 0.887
DMU34 0.274 0.335 0.339 0.417 0.705 0.892 0.793
DMU35 0.447 0.849 0.562 0.716 1.153 0.865 1.339
DMU36 0.269 0.399 0.349 0.452 0.844 0.914 0.966
DMU37 0.243 0.294 0.301 0.394 0.855 0.676 0.963
DMU38 0.172 0.213 0.317 0.272 0.513 0.614 0.560
DMU39 0.202 0.320 0.264 0.355 0.674 0.860 0.773
DMU40 0.175 0.244 0.231 0.309 0.561 0.804 0.611

Average 0.2498 0.3412 0.317625 0.410425 0.75745 0.795575 0.86605
Max 0.447 0.849 0.562 0.716 1.252 1 1471
Min 0.123 0.13 0.157 0.205 0.395 0.533 0.452

Correlation 0.969388 0.911342 0.969944 1 0.902426 0.293912 0.904376
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It can be seen from Table 3 that the efficiency interval of our proposed model with a 10% deviation from the nominal
data is more accurate than the TSFDEA maodel, and its efficiency interval with a 20% deviation is significantly accurate.
When the data in Table 3 are compared, it is clear that the suggested technique's findings, while having good accuracy, have
a larger correlation coefficient than the fuzzy method.

5. CONCLUSION

The efficiency of n-stage series systems was evaluated in this article by taking into account the structure and internal
processes, as well as under uncertain conditions, using the network data envelopment analysis model. Initially, models for
evaluating the efficiency of an n-stage network with deterministic data were presented. When only the upper and lower
bounds of the data are known, the output data and non-deterministic intermediate products are introduced. The Bertsimas and
Sim (2004) approach was then used, and robust optimization models for n-stage networks with non-deterministic outputs and
intermediate products were demonstrated. In an n-stage network model with non-deterministic outputs and intermediate
products, the models presented in this study calculate the upper and lower bounds of efficiency. The results show that the
proposed approach is effective for evaluating dairy companies' supply chain performance and internal activities in the face
of data uncertainty.

According to the performance evaluation analysis for these companies, the third stage is the most inefficient; therefore,
it is recommended that different companies pay more attention to the processes of performance goals in order to increase the
efficiency of their performance.

In addition, the results for the efficiency intervals of the decision-making units were compared to the results from Khalili
et al. (2012)'s three-stage network fuzzy envelope analysis model. It was obtained using the fuzzy method; additionally, the
proposed method yielded higher correlation coefficients. According to Table 1, we find that the bounds of the total efficiency
calculated by the proposed models almost maintain the ranking of the units, and on the other hand, the lower the deviation of
the data, the higher the accuracy of the obtained values. By reducing the amount of deviation in the data from 20% to 10%
and then 5% of the data-deterministic value, the average lower efficiency bound increases from 0.2498 to 0.315125 and then
0.358750, and the average upper-efficiency bound increases from 0.86605 to 0.7597. and then it decreases to 0.6655, while
the definitive efficiency value is 0.411175. Also, the correlation coefficient of the lower bounds increased from 0.97015 to
0.99059 and then 0.99609, and the correlation coefficient of the upper bounds increased from 0.90298 to 0.90290 and then
0.91739, which shows that the proposed model has better accuracy and performance for calculating the lower bound. Also,
paying attention to the results of Table 2 for calculating the upper and lower bounds of the efficiency of the intermediate
steps confirms the above results. The proposed models for calculating the lower bound have higher accuracy and correlation
coefficients than the models proposed for calculating the upper bound.

In Table 3, the results of the proposed models with the results of the TSFDEA model presented by Khalili et al, it can
be seen that the proposed model has comparable accuracy, although it has a higher correlation coefficient. Also has Especially
in the upper limit, the accuracy of the values of the proposed model is higher, and it also has a higher correlation coefficient.

In this paper, a novel approach to evaluating the performance of envelopment analysis of network data with non-
deterministic data is presented. The models presented here are for series multiphase systems with non-deterministic outputs
and intermediate products. This method is applicable to all types of network systems, including parallel network systems with
performance evaluation indicators such as undesirable inputs and outputs used in contracts and new models. Because most
industries' data contains uncertainty, the model presented in this article can be applied to a variety of industries.
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