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This study introduces a process based on Bayesian inference, enhancing the accuracy of random failure probability estimation, 

outlined in a detailed six-step procedure. This method focuses on comprehensive data analysis and precise probability 

estimations, proving particularly beneficial for limited datasets. Applied to brake disc random failure probability assessment, 

our approach's results were compared with those obtained through Maximum Likelihood Estimation (MLE) across various 

specimen sizes. This comparative analysis included both graphical and statistical evaluations. The experimental findings 

demonstrate that our Bayesian inference-based process effectively addresses the challenges posed by small datasets, 

significantly enhancing estimation accuracy. This methodology is especially advantageous in scenarios where data collection 

is difficult, providing reliability engineers with an essential framework for leveraging prior information to improve risk 

management in diverse industrial applications. 
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1. INTRODUCTION 
 

In light of the Fourth Industrial Revolution's progression, intensified competition among automotive and semiconductor 

manufacturers accentuates the imperative of augmenting component reliability. The mandate for reliability remains 

paramount, as an unforeseen failure might culminate in the loss of human lives (Chambel et al., 2023). The elucidation of 

failure mechanisms becomes indispensable, given the intrinsic association between product reliability, safety, and adherence 

to national standards. 

Historically, product lifetime tests often applied stresses and used the resulting data to estimate the shape parameter of 

the Weibull distribution that is commonly employed to assess the rates of various failures (Roesch, 2012; Sim et al., 2022). 

While tests focusing on failure modes, mechanisms, and factors impacting reliability are available, along with general 

accelerated test methods (Davila-Frias et al., 2020), traditional reliability test theorists commonly assume that statistical 

inference effectively estimates the probability of failure over time. Thus, the main emphasis is on wear-out failures. 

Existing studies mainly addressed reliability analysis of systems related to random failures in the reliability engineering 

field. For instance, A method was studied that short of destruction was detected in the large power system (Ryu and Chang, 

2005). The random failures have aroused from independent among components to estimate a phased mission system (Huang 

et al., 2019). Xing et al. (2019) studied a combinatorial reliability model for correlated systems, probabilistic competitions 

and random failure propagation time for dependent components. When Reed et al. (2019) cited Coolen and Coolen-Maturi, 

they said that the survival signature is similar to the system signature and fulfills the role of a quantitative model of the system 

reliability structure, which is entirely separated from the random failure times of the components. Recently, random failure 

thresholds have been studied. Xia et al. (2022) addressed random failure thresholds and competing failure model in micro-

electro-mechanical system. Wang et al. (2023) addressed an analytical expression of the remaining useful life (RUL) 

distribution of aero-engines based on the random-coefficient regression model considering the random failure threshold. 

In contrast, we have proposed a novel test and statistical methodology to investigate random failures, as delineated by 

Sim et al. (2022). Our approach employs a plot where the horizontal axis represents stress levels at which random failures 

occur, and the vertical axis depicts failure characteristics. This method deviates from traditional approaches that estimate 

failure probability based on time or cycles. Instead, it utilizes stress levels for estimation, thereby addressing the dynamic 

nature of environmental stresses. We applied statistical analysis to experimental data for estimating failure probabilities under 

varying environmental conditions. These tests, alongside the new statistical methods using Maximum Likelihood Estimation 

(MLE), identified hot judder as the predominant cause of random brake disc failures. Our statistical method enables the 
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estimation of random failure probabilities across a continuous range of stress levels. This is in contrast to conventional 

methods employing an exponential distribution, which are limited by assuming a constant failure rate. Therefore, our method, 

leveraging stress levels for estimations, reflects the probabilities of random failures more accurately in fluctuating 

environmental stress conditions. 

Sim et al. (2022) assumed sufficient test data was available to estimate the probabilities of random failure. In this reason, 

the probabilities of random failure were estimated by MLE. A limitation of frequency statistics, specifically when utilizing 

MLE, is the reduced accuracy of estimation due to the requirement for a larger data set (Wang et al., 2009). Therefore, 

practical issues such as insufficient testing equipment and the number of specimens need to be overcome for this study. 

To address these issues, we selected Bayesian inference to estimate probabilities of insufficient data. It is four main 

groups to apply Bayesian inference in the reliability engineering field. There are merging field and laboratory data to enhance 

the precision of model parameters, deriving reliability measurements, estimating the RUL, and encompass miscellaneous 

studies respectively. Detailed information is described in Section 2. 

The aim of this study is to develop a methodology for estimating the probability of random failure using Bayesian 

inference, especially in cases where the dataset is constrained due to limited test equipment or specimen count. Accordingly, 

the statistical analysis of random failure encompasses a six-step process designed to refine the accuracy of failure probability 

estimations. Posterior distributions are estimated using field data or prior information, thereby enabling precise parameter 

estimations for probability distributions. Trajectory models are formulated by generating random numbers based on these 

estimated probability distributions across various stress levels. 

Section 2 reviews related works. Section 3 introduces the Bayesian inference theory and an earlier estimation of random 

failure probabilities (Sim et al., 2022) and shows how to estimate these probabilities using Bayesian inference. Section 4 

describes the numerical experiments that support the proposed process. Section 5 contains the conclusions and plans for 

further work. 

 

2. LITERATURE REVIEW 

 

Research in reliability engineering utilizing Bayesian inference can be categorized into four main groups. The first group 

encompasses studies merging field and laboratory data, aiming to enhance the precision of model parameters. For instance, 

Wang et al. (2017) utilized real-world wind turbine gearbox data to accurately estimate reliability characteristics. Similarly, 

Kim et al. (2021) adopted an adaptive approach for pipeline corrosion assessment, leveraging both field and laboratory data 

to refine defect predictions. 

The second category is centered on deriving reliability measurements. Common cause failure rates were estimated by 

Nguyen and Gouno (2020) through causal inference in scenarios with missing data, linking the failure rates of system 

components to occurrences of both component and system failures. Cheng and Lu (2021) employed an adaptive Bayesian 

support vector regression model for structural reliability exploration. They combined regression with Monte Carlo simulation 

to assess the reliability of intricate structures with limited data, adaptively modifying the kernel parameter to counteract 

overfitting, thereby enhancing the reliability analysis's accuracy and efficiency. Mun et al. (2019) employed accelerated life 

tests (ALTs) to assess the reliability of one-shot devices, addressing the challenges posed by incomplete lifetime data. Using 

a Bayesian framework, the study introduced three distinct priors for the parameters of the Weibull distribution. Simulations 

were conducted using Gibbs sampling, and it was demonstrated that the convergence of Bayesian estimates improved as the 

specimen size increased. 

The focus of the third group lies in estimating the RUL. Di and Shaoping (2018) applied a Bayesian model averaging 

(BMA) method for monotonic degradation data reliability analysis using inverse Gaussian and Gamma processes. Their 

approach delineated the product degradation path and RUL based on a degradation dataset and was benchmarked against 

other techniques using both simulated and real mechanical bearing test data. Pang et al. (2021) estimated equipment RULs 

by integrating data from accelerated degradation tests and condition monitoring, presenting a model that considers both 

degradation trajectories and current equipment states. Their case study on a gearbox estimated its RUL by amalgamating data 

from accelerated tests and vibration signals from a condition monitoring system. In similar study, Davoudpour (2019) 

introduced a Bayesian network to assess the impact of maintenance strategies on the reliability and costs of wind turbines. 

The study underscored the significance of enhancing reliability to mitigate Operating and Maintenance (O&M) expenses. 

The fourth category includes a diverse range of studies. Leoni et al. (2021) investigated the impact of prior choice, a 

frequent source of uncertainty in Bayesian analyses. Shuto and Amemiya (2022) employed a sequential Bayesian inference 

method to estimate Weibull distribution parameters, commonly used for modeling failure rates and to assess system 

reliability. Their approach began with an initial hyperparameter optimization step to enhance estimation accuracy, with a case 

study centered on a turbine blade's reliability. 

Our work aligns with the first category, employing a Bayesian inference-based process for estimating random failure 

probabilities. 
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3. USE OF BAYESIAN INFERENCE TO ESTIMATE RANDOM FAILURE PROBABILITY 

 

3.1 Designing Test and MLE Method Used to Estimate Random Failure (Sim et al., 2022) 

 

To effectively employ Bayesian inference, test data are essential as this method relies on estimating parameters based on 

prior information. The subsequent sections detail a test and data analysis conducted using the MLE method. This approach 

is depicted in Figure 1, which illustrates the process of deriving random failure probabilities. 

 

 
 

Figure 1. The Procedure of Test and Data Analysis 

 

It is critical to recognize that stress predominantly influences the predominant failure modes. Specific tests are conducted 

to elucidate failure characteristics and their corresponding stress thresholds. In the graphical representation, stress levels are 

depicted on the horizontal axis, and failure characteristics on the vertical axis. A minimum of three stress measurements is 

mandated. Post-testing, both stress levels and failure characteristics are documented. Due to the extended test times leading 

to failures, failure stresses undergo extrapolation. 

Experimental outcomes align with a regression model, estimating the failure stress at each threshold. Subsequently, 

these values conform to a probability distribution, whose goodness-of-fit is ascertained numerically through dual 

methodologies. The Pearson correlation coefficient, derived from least-squares estimation (LSE), is used to assess the 

linearity between the midline and the data points on the probability plot. Nonetheless, this coefficient remains incalculable 

when the gradient of the exponential distribution remains undivergent. 

Incorporating MLE, the Anderson-Darling (A-D) test significantly emphasizes the distributional tails during the 

computation of the summed weighted squared distances between the fitted line and plotted points. The distribution with the 

minimal A-D statistic emerges as optimal. Generally, the MLE exhibits greater precision compared to the least-squares 

method. Subsequent plots of the probability distributions juxtapose the estimated stresses in line with the distributions. If data 

points align closely with the midline of a probability plot, the selected probability measure is deemed suitable. Finally, the 

failure probability at each stress level is determined by aligning the failure rate with the respective distribution. 
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3.2 Bayesian Inference 

 

Bayesian inference, as illustrated in Figure 2, utilizes prior information to estimate parameters. 

 

 
 

Figure 2. Estimation of Parameters When Employing Bayesian Inference 

 

In this context, the posterior distribution is defined as follows: 

 

𝑃(𝜃|𝑥) =
𝐿(𝑥|𝜃)𝜋(𝜃)

𝑚(𝑥)
 (1) 

 

where 𝐿(𝑥|𝜃), 𝜋(𝜃), and 𝑚(𝑥) are a likelihood function, a prior distribution, and a marginal distribution, respectively. 

Equation (1) shows the relationship between 𝜃 and the observed 𝑥 values. The marginal distribution 𝑚(𝑥) describes the 

distribution of 𝑥, which may be discrete or continuous: 

 

𝑚(𝑥) =

{
 

 ∑𝐿(𝑥|𝜃)𝜋(𝜃), if 𝑥 is discrete.
𝜃

∫𝐿(𝑥|𝜃)𝜋(𝜃)𝑑𝜃, if 𝑥 is continuous.

 (2) 

 

where 𝑚(𝑥) is a normalization constant independent of 𝜃. Thus, the joint distribution 𝑃(𝜃|𝑥) is: 

 

𝑃(𝜃|𝑥) ∝ 𝐿(𝑥|𝜃)𝜋(𝜃) (3) 

 

The posterior distribution is calculated using Equation (1); at this stage, the prior distribution is determined by the 

likelihood function (the sampling distribution) (Hamada et al., 2008). The use of conjugate priors facilitates the calculation 

of the posterior distribution. Table 1 lists several conjugate priors commonly used when deriving likelihood functions. 

Probability density functions are employed to define the values of these parameters using prior data. 

 

Table 1. Common Conjugate Priors (Hamada et al., 2008) 

 

Likelihood Function Conjugate Prior Posterior Distribution 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃) Βeta(𝛼, 𝛽) Βeta(𝛼 + 𝑛�̅�, 𝛽 + 𝑛(1 − �̅�)) 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) Γ(𝛼, 𝛽) Γ(𝛼 + 𝑛�̅�, 𝛽 + 𝑛) 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝜃) Γ(𝛼, 𝛽) Γ(𝛼 + 𝑛, 𝛽 + 𝑛�̅�) 

𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃) 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 + 𝑛�̅�) 

𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 

known 𝜇 

𝐼𝑛𝑣. Γ(𝛼, 𝛽) 𝐼𝑛𝑣. Γ (𝛼 +
𝑛

2
, 𝛽 +

𝑛(�̅� − 𝜇)2

2
) 

𝐼𝑛𝑣. 𝜒2(𝜈0, 𝜎0
2) 𝐼𝑛𝑣. 𝜒2 (𝜈0 + 𝑛,

𝜈0𝜎0
2

𝜈0 + 𝑛
+
𝑛(�̅� − 𝜇)2

2
) 

𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 

known 𝜎2 
𝑁𝑜𝑚𝑟𝑎𝑙(𝜇0, 𝜎0

2) 𝑁𝑜𝑟𝑚𝑎𝑙 (

𝜇0
𝜎0
2 +

𝑛�̅�
𝜎2

1
𝜎0
2 +

𝑛
𝜎2

,
1

1
𝜎0
2 +

𝑛
𝜎2

) 
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Conjugate priors facilitate the calculation of posterior distributions. However, their accuracy is not always guaranteed, 

as a posterior distribution might fail to adequately incorporate prior information. Table 2 provides a summary of the likelihood 

functions and conjugate priors commonly employed by reliability engineers. 

 

Table 2. Conjugate Priors for Reliability Engineering (Hamada et al., 2008) 

 

Likelihood Function Posterior Distribution 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜂) 𝜂~𝐼𝑛𝑣. Γ(𝛼, 𝛽) 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜂, 𝛽)  
𝜂~𝐼𝑛𝑣. Γ(𝛼𝜆, 𝜃𝜆), 𝛽~Γ(𝛼𝛽 , 𝜃𝛽) or 

𝜂~Γ(𝛼𝜆, 𝜃𝜆), 𝛽~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏) 𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), 𝜏~Γ(𝛼, 𝛽) 

 

The observed values, denoted as 𝐱 = (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛), include the 𝑖-th observed value, 𝑥𝑖. The probability density 

function features multiple parameters, i.e., 𝑓(𝑋 = 𝑥𝑖) for 𝑖 = 1, 2, 3,⋯ , 𝑛 where 𝑋 is a random variable corresponding to the 

observed value 𝑥𝑖. The probability density function parameters are 𝜓 and 𝜔. The hyperparameters of each parameter are 

(𝜓1, 𝜔1) and (𝜓2, 𝜔2); their prior distributions 𝜋1 and 𝜋2 are those of Equation (4). The parameters of interest are 𝜓 and 𝜔, 

and the important hyperparameters are 𝜓1, 𝜔1, 𝜓2, and 𝜔2; all are greater than zero. 

 

𝜓 ∼ 𝜋1(𝜓1, 𝜔1), 𝜔 ∼ 𝜋2(𝜓2, 𝜔2) (4) 

 

The posterior distributions of 𝜓 and 𝜔 are the product of the likelihood function and the prior distribution: 

 

𝑃(𝜓,𝜔; 𝒙) =
𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)

∫ ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜓𝑑𝜔
∞

0

∞

0

 (5) 

 

The marginal posterior distributions are derived from the joint posterior distribution 𝜋(∙) of each parameter when 

estimating 𝜓 and 𝜔. The marginal distribution of 𝜓 is: 

 

𝑃(𝜓; 𝒙) = ∫ 𝑃(𝜓,𝜔; 𝒙)𝑑𝜔 =
∞

0

∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜔
∞

0

∫ ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜓𝑑𝜔
∞

0

∞

0

 (6) 

 

and the marginal distribution of 𝜔 is: 

 

𝑃(𝜔; 𝒙) = ∫ 𝑃(𝜓,𝜔; 𝒙)𝑑𝜓 =
∞

0

∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓,𝜔; 𝒙)𝑑𝜓
∞

0

∫ ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜓𝑑𝜔
∞

0

∞

0

 (7) 

 

These parameters can be estimated by computing the values expected from the marginal posterior distributions, 

represented by �̂� and �̂�: 

 

�̂� =
∫ 𝜓∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜔𝑑𝜓

∞

0

∞

0

∫ ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜓𝑑𝜔
∞

0

∞

0

 (8) 

 

�̂� =
∫ 𝜔 ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜔𝑑𝜓

∞

0

∞

0

∫ ∫ 𝜋1(𝜓1, 𝜔1)𝜋2(𝜓2, 𝜔2)𝐿(𝜓, 𝜔; 𝒙)𝑑𝜓𝑑𝜔
∞

0

∞

0

 (9) 

 

Equations (8) and (9) can be utilized to estimate 𝜓 and 𝜔, but double integration is often mathematically difficult. A 

numerical method, specifically Markov chain Monte Carlo (MCMC) sampling, is essential in this context. MCMC sampling 

uses Monte Carlo integration and a probability distribution to estimate novel probability distributions via random sampling 

employing a Markov chain; the mathematical characteristics remain unknown (Gilks and Richardson, 1995; Gamerman and 

Lopes, 2006; van Ravenzaaij et al., 2018). The Metropolis-Hastings (M-H) and Gibbs sampling algorithms are commonly 
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used to generate Markov chains that estimate parameters via numerical analysis. The variance variable replaces point 

estimation; dimensional reduction via numerical integration is used to derive the marginal posterior distribution of the mean 

variable that affects the Bayesian inference. However, unbalanced sampling and variance heterogeneity may be apparent 

during comparisons with the estimated population means. To address this issue, Gibbs sampling does not generate 

approximations, instead suggesting methods of integration. A Gibbs approach was used to address high-dimensionality 

problems (Gelfand et al., 1990). Thus, an M-H algorithm primarily estimates single parameters; Gibbs sampling derives 

multiple parameters. During Gibbs sampling, a joint probability density function 𝑓(𝑥, 𝑦1, 𝑦2, 𝑦3 , . . . , 𝑦𝑛) is used to yield the 

mean and variance of the marginal probability density function. However, often, the multiple integrations of Equation (10) 

are difficult or impossible. Gibbs sampling then simulates the joint distribution and yields the desired marginal distributions: 

 

𝑓(𝑥) = ∫∫∫⋯∫𝑓(𝑥, 𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑛)𝑑𝑦1𝑑𝑦2𝑑𝑦3⋯𝑑𝑦𝑛 (10) 

 

Gibbs sampling generates a sequence of samples 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑛 that adhere to the probability density function 𝑓(𝑥). 
If enough samples are created, the statistics are relatively precise (Casella and George, 1992). Given two random variables 𝑋 

and 𝑌, Gibbs sampling generates the conditional distributions of 𝑓(𝑥) for 𝑋 using the known conditional distribution of 𝑓(𝑦) 
for 𝑌. This creates the following Gibbs sequence: 

 

𝑋 ′
0, 𝑌

′
0, 𝑋

′
1, 𝑌

′
1, 𝑋

′
2, 𝑌

′
2, ⋯ , 𝑋

′
𝑘 , 𝑌

′
𝑘 (11) 

 

To repeatedly iterate Equation (11), an initial value 𝑌0
′ = 𝑦0

′  is set. Following that, alternate values for 𝑌1, 𝑌2, ⋯ , 𝑌𝑛 are 

created as shown below: 

 

𝑋 ′
𝑗 ∼ 𝑓 (𝑥 |𝑌

′
𝑗 = 𝑦

′
𝑗
) 

𝑌′
𝑗+1 ∼ 𝑓(𝑦|𝑋

′
𝑗 = 𝑥 ′𝑗) 

(12) 

 

For a sufficiently large 𝑗, a Gibbs sequence also yields approximate samples of 𝑓(𝑥) (Casella and George, 1992); the mean, 

variance, and quantiles of 𝑓(𝑥) can then be estimated. 

 

3.3 Estimation of Random Failure Probability Based on Bayesian Inference 

 

The design of tests for random failures and the estimation of their statistical probabilities have previously been discussed. 

However, there are instances where field reliability tests may be constrained by the availability of equipment and specimen 

numbers. Consequently, real-world estimations can deviate significantly from actual probabilities, particularly when data on 

stress levels are sparse. Extreme values can introduce bias into the estimated results. This section, therefore, applies Bayesian 

inference to test results obtained at specific stress levels, leveraging prior information. The assumptions are: 

 

i. The analysis is confined to the target failure mode among various random failures. 

ii. Failure characteristics are consistent, indicating genuine randomness in failure. 

iii. The target item does not degrade over time. 

iv. Absence of failure implies no degradation due to applied stress. 

v. Probability distribution remains consistent across stress levels, implying that parameters shaping observed data 

distributions are statistically analogous. 

vi. Accurate prior information exists for each stress level. 

 

Below, the methodology for estimating the probability of random failure using Bayesian inference is outlined and 

illustrated in Figure 3. 

In Section 3.1, frequency statistics are utilized in scenarios lacking prior information about the target item, as depicted 

in Figure 3. Conversely, this section outlines how the probability of random failure can be estimated using Bayesian inference 

when prior information is available. At this juncture, the data is numerical and comprises observed failure characteristics at 

different stress levels. Figure 4 illustrates this procedure. 

 



Sim and Kim Bayesian Inference to Estimate Random Failure Probability 

 

1531 

 
 

Figure 3. The Process of Estimation of Random Failure Probability Using Bayesian Inference 

 

 
 

Figure 4. Procedure for Estimation of Random Failure Probability Using Bayesian Inference 
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The initial step in estimating random failure probability via Bayesian inference involves fitting the data to a probability 

distribution at each stress level. As outlined in Section 3.1, failure characteristics are determined for each stress level and 

then statistically fitted to a probability distribution. Should the failure modes remain consistent across all stress levels, the 

corresponding probability distributions will be identical. Consequently, the parameters of these probability distributions are 

statistically equivalent. 

In the second step, prior information is applied to the failure characteristics at each stress level. The shape of the prior 

probability distribution is influenced by the chosen parameter. Engineers may select an appropriate prior distribution by 

referencing Tables 1 and 2 or relying on their experience. Hyperparameters for each stress level are established based on prior 

test results under constant stress. Before setting the hyperparameters for prior distribution estimation at each constant stress 

level, available prior information must be considered. The mean and variance hyperparameters are selected to reflect the 

precision of this information. Consequently, prior distributions for each stress level are derived. 

The third step involves the calculation of the posterior distribution for each stress level using Bayes' theorem. The 

likelihood function, based on the observed failure data at that stress level, is combined with the prior distributions of the 

parameters. This combination is normalized to yield an updated parameter distribution, as depicted in Equation (3). This 

updated distribution then serves as the new prior for subsequent iterations of Bayesian inference. However, as indicated in 

Equation (5), most posterior distributions necessitate double integration and are not analytically solvable. To overcome this 

challenge, MCMC algorithms, such as Gibbs sampling, are employed, especially for multiparameter probability distributions. 

The mean of each parameter's posterior distribution can be estimated using Equations (8) and (9). 

In the final step, random numbers based on the parameters obtained from the posterior distribution are generated. This 

process is visually represented in Figure 5. 

 

 
 

Figure 5. Random Number Generation for the Posterior Distribution at Each Stress Level 

 

By generating a larger set of random numbers, the specimens increasingly approximate the probability density function 

of the estimated parameters, necessitating a sufficient quantity of these numbers. In the fifth step, random numbers generated 

for each stress level are organized in ascending order, and regression models are employed to estimate failure stresses at 

various threshold values. Optimization of each model's predictive power is achieved by minimizing the sum of squared errors 

(SSEs). Subsequently, failure characteristics at each stress level are extrapolated, allowing for the calculation of random 

failure probability using the derived probability distributions. Figure 6 depicts this fifth step. 

The subsequent steps mirror those described in Section 3.1, wherein the probability of random failure is estimated using 

Equation (13) after fitting the estimated stress values to a suitable probability density function. For instance, 𝐹(300) = 0.1 

indicates that at a stress level of 300 units, the probability of random failure is 10%, as determined by Equation (13). To 

clarify, 𝑆 represents the random variable, while 𝑠𝑝 denotes the stress level at which the probability of random failure is 𝑝. 

 

𝐹(𝑠𝑝) = 𝑃𝑟{𝑆 ≤ 𝑠𝑝} = 𝑝 (13) 
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Figure 6. Regression Models Based on the Generated Random Numbers for the Various Stress Levels (Sim et al., 2022) 

 

4. EXPERIMENTAL RESULTS 

 

In this study, we estimated the random failure probabilities of brake discs using the proposed two-phase process. Given the 

critical role of brakes in automobile safety, understanding brake disc failures is paramount. These failures can be categorized 

by their mechanisms. Kao and Richmond (2000) identified one such mechanism as fracture at high rotor speed, leading to 

cold judder, while another type is high-temperature fracture, resulting in hot judder, which is more prevalent (Abdelhamid, 

1997). Several methods have been developed to test for hot judder, including finite element analysis by Jung et al. (2011) 

and a simulation of the relationship between hot judder and heat transfer by Sim et al. (2013). Hot judder is classified as a 

random failure (Barber, 1969), whereas cold judder is a wear-out failure, testable through accelerated lifetime or degradation 

tests. 

Using a Bayesian approach, we estimated the probability of random failure, drawing on results from random failure 

tests as discussed in Section 3.1. This innovative approach was compared with the MLE method, particularly in scenarios 

with a limited number of specimens. The failure stresses estimated for 1% of all product units from these tests were analyzed 

and contrasted. The results, obtained using our novel Bayesian process, underscored the effectiveness of Bayesian inference, 

contingent upon the accuracy and informativeness of the priors and the number of specimens used. 

The Bayesian method, incorporating findings from the random failure tests in Sim et al. (2022), was utilized to estimate 

random failure probabilities. The estimated failure temperatures were aligned with a probability distribution using MLE, as 

shown in Figure 7. To fit the data to log-normal distributions, we employed both the probability plot and the Anderson-

Darling (A-D) statistic. 

 
Figure 7. Failure Plots and Anderson-Darling Statistics for the Estimated Stress 
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For each stress level, the probability of random failure was determined using the log-normal distribution, with data 

derived from Figure 6 and Table 3. 

 

Table 3. Random Failure Probability by Brake Disc Temperature 

 

Temperature (℃) 300 350 400 450 500 550 600 

Failure Probability (%) 0.16 2.27 11.80 32.08 57.09 77.67 90.20 

 

4.1 Experimental Conditions 

 

To facilitate a comparison between our innovative method and the MLE, we estimated the parameters of the log-normal 

distribution for each temperature stress level based on data from 18 specimens, as detailed in Table 4. The Anderson-Darling 

test was applied to each temperature stress level, and the results confirmed that the data conformed to log-normal distributions, 

consistent with the findings illustrated in Figure 7. Accordingly, Table 4 displays both the location and scale parameters of 

these distributions. 

 

Table 4. Estimated Log-normal Parameters Used to Derive the Stress Level 

 

Temperature (℃) Location Parameter (𝜇) Scale Parameter (𝜏) 

150 0.3412 8.5898 

200 0.4501 4.9361 

300 0.3568 7.8551 

400 0.3770 7.0359 

 

Random numbers for the estimations were generated by fitting the log-normal distribution parameters. Noise, denoted 

as 𝜀 ∼ |𝑁(0, 1)|, was added to each parameter to simulate real-world conditions. These adjusted parameters were then applied 

at every stress level, as outlined in Table 3. The generated random numbers served as the basis for subsequent estimations, 

with the details of the experimental approach presented in Table 5. 

 

Table 5. The Experimental Conditions 

 

Type 
Number of 

Specimens 

Prior 

Error 

Hyperpara

meter 

|
𝜎2

𝜇
| ×

100% 

Gibbs 

Sampling 

(Iteration/

Burn-in) 

Number of 

Random 

Numbers 

Iterations 

MLE 3,  

5,  

10,  

15 

+0%, 

+50%. 

+100%, 

+150%, 

+200%, 

+300% 

- - 1,000 200 

Bayesian  

Inference 

+5% 20,000/ 

10,000 

 

Considering the limitations of real-world testing, the number of specimens was set to 3, 5, 10, and 15 for different 

scenarios. Random numbers at each stress level were produced by fitting them to the log-normal distribution. Both the MLE 

and Bayesian inference methods were then employed multiple times to estimate probabilities under these conditions. 

 

4.2 Effects of Hyperparameters on The Results 

 

Based on data from 18 specimens, we estimated the temperature stress corresponding to a 1% random failure rate. The failure 

characteristics at this failure rate were extrapolated using an exponential model, which indicated a temperature of 331.88℃ 

as per the log-normal distribution parameters obtained through the MLE method. We compared the accuracy of estimations 

from both the MLE and our novel Bayesian inference method at this temperature stress level, considering specimen sizes of 

3, 5, 10, and 15. 
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(a) (b) 

  
(c) (d) 

 

Figure 8. RMSE Values According to Prior Error 

 

Employing data from 18 specimens, we estimated the temperature stress correlating to a 1% random failure rate. Failure 

characteristics extrapolated using an exponential model indicated a temperature of 331.88℃ for a 1% random failure, as 

determined by the log-normal distribution parameters via the MLE method. In this analysis, we evaluated the precision of 

estimations from both the MLE and our novel Bayesian inference method at this specific temperature. Specimen sizes of 3, 

5, 10, and 15 were considered in this comparison. 

Figure 8 illustrates the root mean square errors (RMSEs) in relation to prior information errors while maintaining a 

constant specimen count. The left side of the figure (in gray) represents MLE results across various data sizes, whereas the 

right side (in sky blue) shows Bayesian inference outcomes at a 5% hyperparameter ratio. The second graph from the left 

details the range of prior information errors, extending from 0 to 300%. Notably, as the error rate in prior information 

increased, particularly with a 5% hyperparameter ratio and lower specimen counts, the RMSE correspondingly rose. This 

increase in RMSE was more pronounced with fewer specimens, highlighting the significant impact of prior information 

errors. Such variability can be linked to the random sampling characteristic of Bayesian inference. Incorporating random 

numbers generated via the log-normal distribution, with added noise 𝜀 ∼ |𝑁(0, 1)|  to each parameter, enhanced the 

estimation accuracy for both methods, especially as the specimen count decreased. Remarkably, Bayesian inference 

demonstrated superior accuracy over MLE, even with a 300% error in prior information. 

When the RMSE was compared according to the hyperparameter ratio, it was observed that with a ratio of 5%, the 

RMSE tended to increase as the error of prior information increased. Therefore, it was concluded that when the prior 

information is not accurate, a benefit is derived from increasing the hyperparameter ratio to improve estimation accuracy. 

  In summary, the outcomes achieved using the proposed process demonstrated greater accuracy compared to those 

obtained via MLE. To enable a precise comparison of the experimental results, the ratios of RMSE for MLE and the proposed 

Bayesian inference-based process were evaluated, along with the RMSE values calculated at a 5% hyperparameter ratio of 

Bayesian inference. These comparisons are detailed in Table 6 and illustrated in Figure 9. 
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Table 6. Comparison of the RMSE Ratios Bayesian Inference to MLE 

 

The number of 

specimens (prior error) 

RMSE Ratios of 

Bayesian to MLE  

The number of 

specimens (prior error) 

RMSE Ratios of 

Bayesian to MLE  

n3(e0%) 0.6148 n10(e0) 0.5633 

n3(e50) 0.5814 n10(e50) 0.5569 

n3(e100) 0.6278 n10(e100) 0.5638 

n3(e150) 0.7065 n10(e150) 0.5559 

n3(e200) 0.8034 n10(e200) 0.5544 

n3(e300) 0.8770 n10(e300) 0.6104 

n5(e0) 0.6101 n15(e0) 0.5856 

n5(e50) 0.5325 n15(e50) 0.5457 

n5(e100) 0.5803 n15(e150) 0.5719 

n5(e150) 0.5845 n15(e150) 0.5462 

n5(e200) 0.6128 n15(e200) 0.5790 

n5(e300) 0.6721 n15(e300) 0.5967 

 

Table 6 presents a numerical validation of the results previously discussed. The table's first column lists the number of 

specimens alongside prior errors. The RMSE ratios for Bayesian inference, set at a 5% hyperparameter ratio, are compared 

to those of MLE in the second and fourth columns. A ratio of 1 indicates RMSE values equal to MLE's at a 5% hyperparameter 

ratio. Ratios exceeding 1 suggest a higher RMSE with Bayesian inference, illustrating instances where it surpasses MLE in 

terms of RMSE. 

Figure 9 illustrates the efficacy of the proposed method, as indicated by the data in Table 6. A clear trend emerges: the 

ratios decrease as the number of specimens increases, more so with fewer specimens and higher levels of prior error. This 

consistent trend of ratios below 1 underlines the superior performance of the proposed method, indicating that Bayesian 

inference is more effective for estimating random failure probabilities when specimen counts are lower. 

 

 
 

Figure 9. The RMSE Ratios Bayesian Inference to MLE 

 

5. CONCLUSION 

 

We introduced a method utilizing Bayesian inference, which effectively estimates the probability of random failures with 

limited data. Sim et al. (2022) presented a novel test design and statistical method for investigating such failures. Our findings 

suggest that random brake disc failures were primarily due to hot judder, as indicated by the tests conducted and the MLE 
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methods employed. The reliability of test data is crucial, particularly when it is compromised by inadequate equipment or a 

limited number of specimens. Our Bayesian-based approach provides a cost-effective alternative for estimating the 

probability of random failures, particularly in scenarios where data collection is challenging. 

In our evaluations, the Bayesian-based method surpassed the MLE in estimating the probability of unexpected brake 

disc failures, notably with datasets of equivalent size. Both graphical and statistical analyses were instrumental in highlighting 

factors influencing performance guiding the prioritization of tests under resource constraints. 

The incorporation of prior test information significantly enhanced the accuracy of our random failure predictions, 

effectively offsetting the limitations posed by sparse data. Nonetheless, the quality of this prior information is critical, 

emphasizing the importance of reliable historical data. 

Looking forward, we anticipate that the Bayesian-based process will facilitate more cost-effective estimation of random 

failure probabilities, especially in testing environments where data acquisition is a challenge. This method could be extended 

to statistical analyses of environmental tests that have not been conducted so far, assessing the failure probability of items 

under extreme conditions. 

Future research directions include exploring the empirical Bayes approach, which depends on specific parameter values. 

In more complex scenarios, a hierarchical Bayesian inference could be implemented to determine hyperparameters, 

potentially addressing the underestimation of standard error caused by random hyperparameter effects. Our next step involves 

conducting statistical analyses on environmental tests and evaluating failure probabilities under extreme conditions. 

Additionally, while our research used identical specimens, further exploration into the reuse of non-destructed specimens is 

warranted, as items that undergo random failures may not degrade. This would enable optimal test design for random failures. 

Finally, although our study focused on brake discs using Bayesian inference, future work will extend to other areas, such as 

electronics. 
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APPENDIX A – LIST OF NOTATIONS USED IN THIS PAPER  
 

𝑥 : Observed data 

𝜃 : A universal parameter applicable to all probability distributions. 

𝑃(𝜃|𝑥) : A posterior distribution 

𝐿(𝑥|𝜃) : A likelihood function 

𝜋(𝜃) : A prior distribution 

𝑚(𝑥) : A marginal distribution 

𝜓 : A specific parameter in a given posterior distribution 

𝜔 : A specific parameter in a given posterior distribution 

𝜋1  : A specific prior distribution 

𝜋2  : A specific prior distribution 

𝜓1  : A specific parameter in 𝜋1 

𝜔1  : A specific parameter in 𝜋1 

𝜓2  : A specific parameter in 𝜋2 

𝜔2  : A specific parameter in 𝜋2 

𝒙 : A vector includes 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛 

𝑃(𝜓; 𝒙) : The marginal posterior distributions of 𝜓 

𝑃(𝜔; 𝒙) : The marginal posterior distributions of 𝜔 

�̂� : The expected value from the marginal posterior distribution of 𝜓 

�̂� : The expected value from the marginal posterior distribution of 𝜔 

𝐹( ) : The probability distribution function characterizing the random failure of a specific item 

𝑠𝑝  : A specific stress level 

𝑝 : The failure probability at 𝑠𝑝 

 


