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This research navigates the application of simulation meta-modeling in understanding and controlling assembly line 

dynamics. Aimed at unveiling the relationship between input factors and output parameters in a production system, a precise 

meta-model was devised based on real system data and simulation statistics. The meta-model predicts parameteR-values 

within a verified validity range, simplifying complex variable relationships for enhanced decision-making in intricate 

systems. The accuracy of the model was notable within the tested range of CONWIP cards from 1 to 25, showcasing reliable 

output approximation. This study highlights the classical approach to simulation meta-modeling as cumbersome, propelling 

the quest for further simplification in analyzing complex production systems. The utilization of simulation meta-modeling 

emerged as a pivotal tool for validating complex simulation models and swiftly testing system sensitivity to input factor 

alterations. Noteworthy findings include the identification of an optimal number of CONWIP cards for maximizing 

throughput without excessive increases in Work-In-Progress or throughput time. The research also underscores the potential 

of 5th-degree polynomial models in approximating production performance and throughput time accurately, offering robust 

tools for informed decision-making. This venture marks a significant stride towards a more streamlined, accurate, and 

efficient analysis of complex production systems, showcasing the promising applicability of simulation meta-modeling in 

industrial engineering and production management. 
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1. INTRODUCTION 
 

Changes in customer behavior necessitate a quick response from the manufacturer, which can be ensured by selecting an 

appropriate production management system and an effective management strategy. Traditionally, the MRP management 

system was utilized in production, capable of scheduling both production and ordering activities within the relevant planning 

horizon. A drawback of MRP management was that any change in or around the production system required re-planning after 

the plan was created. MRP operates with high inventories of work-in-progress (WIP), and its planning method is referred to 

as push. Several production management concepts have addressed the issues of the MRP system. Among the most well-

known are Load Oriented Control (LOC), bottleneck control (Drum Buffer Rope DBR), Kanban control and CONWIP control 

(Constant Work in Progress Inventory CONWIP). In contrast to MRP control, Kanban and CONWIP systems operate in a 

pull manner, and the DBR system is a mixed pull-push control system. Each of the above control concepts has its own 

advantages and disadvantages and is particularly suited for a certain type of production environment. 

Given the array of production management systems discussed, it becomes imperative to delve into methods that aid in 

understanding, evaluating, and comparing these systems to guide manufacturers in making informed decisions tailored to 

their specific operational context. Among the methodologies employed for this purpose, simulation stands out as a powerful 

tool, offering a visual and computational platform to replicate and study the dynamics of production environments under 

varying conditions (Romero et al., 2021). 

The evolution of production systems has witnessed significant acceleration due to the emergence and maturation of 

numerous advanced technologies. Among these, computer simulation has undergone a transformation facilitated by personal 

computing technologies, transitioning from large computing centers to designers' desks, thus becoming accessible to a broader 
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audience. Modern simulation systems employ rapid computing algorithms and professional graphic animation systems with 

virtual reality (Krajcovic et al., 2021; Krajcovic et al., 2022) alongside a variety of complex and demanding statistical 

methods (Pekarcikova et al., 2023). These features are further enhanced with robust support for statistical data processing 

and evaluation, with some advanced simulation systems enabling the simulation of complex systems behavior through multi-

agent approaches. 

The trajectory of production systems development was initially influenced by information and communication 

technologies, enabling swift automation of production processes and, later, the automation of product design processes. The 

early '90s saw the initial attempts to integrate the entire value creation chain, known as computer-integrated manufacturing 

systems (CIM) (Cechura et al., 2012). 

The digital twin technology emerged as a significant player, referred to as the symbiotic simulation system (S3) by 

certain authors (Raska et al., 2021), (Staczek et al., 2021). This technology, pivotal in the design and testing of production 

systems, entails a symbiotic system comprising a physical system and its analogous simulation system. The operational S3 

generates output data, facilitating advanced analysis and decision-making by comparing data between the S3 and the physical 

system, followed by the application of machine learning methods and optimization algorithms. 

Germany's announcement of its Industry 4.0 program in 2011 marked a new era in the industrial revolution (Basl et al., 

2017). The driving force behind this revolution is cyber-physical systems (Malaga et al., 2020). The decisive technologies of 

this new industrial era include the Internet of Things connected with massive sensory systems utilization, artificial 

intelligence, and cloud computing solutions. The advent of sensors, instant data collection, and intelligent data processing 

enabled by high-speed internet has facilitated "virtualization" in manufacturing (Broum et al., 2020; Hnilica et al., 2013). 

This technological transition has allowed machines, devices, and even products to attain a higher level of autonomy in the 

production process (Kliment et al., 2021). 

The advancements in the production environment necessitated novel approaches for the dynamic analysis of production 

systems. The demand for efficient, cost-effective methods led to the rising utilization of simulation meta-modeling, a method 

aimed at simplifying the input-output behavior of complex simulation models by approximating it with a more straightforward 

mathematical model or a meta-model (Soares de Amaral et al., 2022). This method offers a deterministic output and is 

computationally less demanding, thus serving as a powerful tool for analyzing dynamic systems. 

Analyzing real systems can be demanding and often expensive. In certain cases, such analysis is not feasible either 

because the system in question does not yet exist (conceptual system) or it could result in the destruction of the system being 

analyzed (Pekarcikova et al., 2021). Simulation simplifies the analysis process, making it significantly more cost-effective, 

albeit it remains a complex and not-so-cheap method when a highly accurate and valid model is required, especially if the 

system being modeled is complex (computational complexity) (Buckova et al., 2019). 

Simulation does not directly explain the behavior of the observed system. When interpreting simulation outputs, analysts 

require not only a strong theoretical foundation but also practical experience with simulation experimentation (Pekarcikova 

et al., 2014). Despite the detailed theory of planning experiments, most analysts resort to the trial-and-error method in 

practice. 

The outputs generated by the simulation are valid for the given input conditions. To verify other factor values, analysts 

must simulate again, thereby necessitating simpler solutions for analyses that can approximate the simulation model outputs. 

Simulation meta-modeling emerges as such a solution, approximating the input-output behavior of the simulation model and, 

by extension, the real (conceptual) system. Utilizing meta-models presents three primary advantages: they have a clearly 

explicit form, provide a deterministic output, and are computationally undemanding (Cen et al., 2022). 

Previously, it was believed that to analyze the dynamics of a mobile robot's operation in a production system at speed 

"v" and predict the alterations in production conditions when the speed of the mobile robot is marginally increased to "v + 

∆v", a new simulation was essential. However, current techniques allow for the estimation of the system's future development 

based on the ongoing experiment (Ojstersek et al., 2021). 

Computer simulation, as a method for dynamic systems analysis, offers analysts a broad scope for creating complex 

models capable of representing the desired properties of the simulated system. During the simulation, analysts gather 

extensive statistical data and estimate the values of the system's output parameters based on this data (Lazreg et al., 2023) 

and Oh (2023). Should data providing more detailed insights into system behavior be available, it's apparent that analysts 

would leverage methods allowing further analysis of the obtained data. Simulation meta-modeling serves as such a method, 

enabling the interpolation of system behavior within defined boundaries from simulation outputs and, conversely, the 

extrapolation of possible future development trajectories using suitable methods (Barton, 2020). 

The simulation's objective is to answer the question of what the model system outputs will be if the combination of 

influential input factors and their levels is known. Therefore, the simulation operates like a black box, representing the 

dependencies existing between the input factors and the output parameters of the modeled system (Wozniak et al., 2017). 

Complex processes are often depicted through extensive models providing a good approximation of reality. Nonetheless, 

decision support, exploratory analysis, and fast adaptive computing frequently necessitate a simpler description of facts. 
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Despite being a demanding method, simulation requires an extended duration and high qualification. Consequently, for quick 

decision-making needs, meta-models and simulation meta-modeling are employed, representing approximations of outputs 

by suitable mathematical models. In this context, modeling refers to the identification of regression dependencies (models) 

in the simulation output data and testing the resulting mathematical model's tightness with the simulation data using the 

correlation coefficient or the coefficient of determination. As the obtained regression model approximates another model (our 

simulation model), we are dealing with a model of another model, commonly known as a meta-model. 

The primary aim of this research was to unravel the relationship between input factors and output parameters within a 

production system and encapsulate this relationship through an apt meta-model. This venture was geared towards devising 

and validating a suitable meta-model based on real system data, considering the resulting simulation statistics of the modeled 

system along with the values of its input factors. The envisioned meta-model is intended for predicting the observed 

parameteR-values within the verified validity interval of the proposed meta-model. This methodology aids in representing 

complex variable relationships in an understandable format, thereby bolstering the decision-making process in intricate 

systems. Additionally, it's vital to note that a relatively straightforward and low-complexity simulation model was employed 

in this research. This model might not necessarily extend the results to more complex models containing more elements, 

resources, entities, varied and complex probability distributions, transfers, special causes of variation, and so on. Nonetheless, 

despite these generalization hurdles, the research unearthed insightful results and showcased a promising approach to 

navigating complex system dynamics. This is indicative of the potential efficacy and applicability of the proposed meta-

model, even within a limited scope. The study unveiled a range of utilization rates across different stations, hinting at room 

for optimization to balance the workload across the assembly line. A significant finding was the identification of an optimal 

number of CONWIP cards, around 7, for maximizing throughput without unnecessary increases in Work-In-Progress (WIP) 

or throughput time. Furthermore, the research validated the use of 5th-degree polynomial models, which exhibited high 

fidelity in approximating both the production performance and the throughput time, serving as robust tools for decision-

making within their valid range. 

 

2. RELATED WORKS 
 

Meta-modeling has evolved significantly since its inception in the 1970s, transitioning from simple regression and Design of 

Experiments (DoE) methods to more sophisticated techniques leveraging Artificial Neural Networks (ANNs). This evolution 

has been primarily driven by the need to reduce the time and computational resources required for simulations, as initially 

proposed by Blanning (1974). The popularization of meta-modeling was mainly due to the works of Kleijnen (1975) and 

Barton (1992). The progress in the development of production systems and the related development of simulation systems 

and simulation meta-modeling is illustrated in Figure 1. 

In Figure 1, the x-axis represents the time frame of development, while the y-axis corresponds to sophistication, 

complexity, and application in the industry. The right part of the figure illustrates the type of production system, whereas the 

left side depicts software and marks the area where meta-modeling finds its application. The centered, bounded section of the 

image describes the specific applications and software that were utilized during that period. The field of meta-modeling is 

vast, with various approaches, notably regression methods and response surface methods. The discourse on meta-modeling 

in simulation has been thoroughly expounded in recent works such as those by Soares de Amaral et al. (2022) and 

Abolghasemian et al. (2022). An extensive review of meta-modeling methods in simulation is provided by Khatouri et al. 

(2022), while the modern methodologies are well delineated in the guide by Carvalho et al. (2021). 

The pioneering algorithm by Persson et al. (2010), which leverages a meta-model to enhance performance—dubbed 

Meta-model Enhanced Local Search (MMELS)—marks a milestone in optimization algorithms. Despite its roots in 

simulation optimization, its applicability extends to any optimization variant where a computationally intensive function 

evaluation can be approximated by a simpler function shape estimate. The MMELS algorithm, grounded on the "steepest 

ascent" concept of the Hill Climbing algorithm, orchestrates a series of local evaluations to unearth a better solution. 

Simultaneously, Bork et al. (2018) introduced a new framework for simulating multi-stage industrial processes using 

meta-modeling building blocks, as demonstrated via ADOxx. Villarreal-Marroquin et al. (2013) also introduced a method 

for optimization through simulation using meta-modeling and evaluated its effectiveness in a real-world automotive 

manufacturing scenario. Furthermore, the framework by Stavropoulos et al. (2023) for meta-modeling manufacturing 

processes and automation workflows, inclusive of human-in-the-loop process optimization, aligns with the creation and 

operation of digital twins. 

In a significant study (Chen et al., 2021), a meta-model-based two-stage simulation optimization was proposed for 

Automated Guided Vehicle (AGV) systems to identify optimal settings at both design and operational levels, Utilizing data 

collected from a real production environment, showcasing the pragmatic utility of meta-modeling in real-world 

manufacturing scenarios (Dong et al., 2022). Authors (Parsonage et al., 2023) deal with multi-fidelity meta-modeling and 
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model management framework designed to efficiently incorporate increased levels of simulation fidelity from multiple 

competing sources into early-stage multidisciplinary design optimization scenarios. 

 

 
 

Figure 1. Development of simulation and simulation meta-modeling 

 

Recent years have seen a surge in the adoption of Artificial Neural Networks (ANN) in meta-modeling, overtaking 

traditional techniques that demand fewer assumptions and precise information about the modeled system. The seminal works 

by Pierreval (1992a; 1992b) laid the foundation for the development of ANN meta-models, a trajectory later advanced by 

Chen et al. (2002), who combined an ANN meta-model with a stochastic local search approach based on Simulated Annealing 

(SA) to optimize manufacturing systems. In similar pursuits, Altiparmak et al. (2002) employed an ANN meta-model 

alongside simulated annealing to optimize bin capacity in a theoretical 15-station asynchronous assembly system. 

A deep-learning-based meta-modeling workflow has also been proposed to forecast the cooling and heating loads of 

buildings at individual and district levels in the early design stage, highlighting the versatility and broad application spectrum 

of meta-modeling techniques (Zhou et al., 2022). 

Historically, the focus has largely been on Utilizing regression and response surface methodologies for meta-modeling, 

as seen in the notable work by Persson et al. (2010) on the Meta-model Enhanced Local Search algorithm and the multi-stage 

industrial process simulation framework by Bork et al. (2018). However, traditional methodologies have often been 

cumbersome and intricate, necessitating consistent adjustments and verifications for the meta-models with every change in 

the investigated system. 

Our study advances beyond these conventional methodologies by substantiating the efficacy of simulation meta-

modeling in approximating system parameter values from known input factors. We discerned that the use of 3rd or 4th-degree 

polynomials achieves a good accuracy level in reflecting genuine relationships between input factors and output parameters. 

Nevertheless, the inherent intricacy and time-demanding nature of conventional simulation meta-modeling methodologies 

pose substantial challenges. This exploration unveils two notable advancements: the automation of simulation meta-model 

generation and application via numerical solutions for regression coefficient estimations. Particularly, the latter development 

facilitates smooth incorporation into a management system, thereby accelerating the meta-modeling process and diminishing 

the necessary time and effort. These progressions unveil a hopeful pathway for overcoming the constraints intrinsic to 
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traditional simulation meta-modeling methodologies, potentially diminishing the time and effort entailed in the meta-

modeling process.  
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3. THE PROPOSED FRAMEWORK 
 

Meta-models are frequently employed to probe the behavior of systems, with the foundational data for meta-model creation 

supplied by computer simulation responses. (Box et al., 1987) delineate the distinction between a meta-model and a 

simulation model: a simulation model embodies a causal (or mechanistic) framework, while a meta-model represents an 

empirical paradigm. The ambition of meta-modeling is to unearth simplistic correlations between the output data of the 

simulation model (model parameters) and its input variables. Hence, simulation meta-models elucidate the fundamental input-

output correlations of the system via straightforward mathematical functions, primarily regression models, enabling the 

prediction of output Y for a given vector of inputs X. Figure 2 illustrates the basic tenet of simulation meta-modeling. 

 

 
 

Figure 2. Principle of simulation meta-modeling 

 

Figure 2 showcases how meta-modeling substitutes a complex production system with a simplified simulation model, 

retaining only the crucial attributes of the real system. If further simplification proves beneficial, a new model, a meta-model, 

emerges from the simulation model. A simulation meta-model is a mathematical (regression) model derived from analyzing 

the simulation model data. This meta-model unveils the essential nature of the system's input-output relationships via simple 

mathematical functions (1): 

 

𝑌 =  𝑓(𝑋) (1) 

 

3.1 Types of Meta-models 

 

Predominantly, meta-modeling techniques anchor on the parametric polynomial approximation of the outputs. A spectrum of 

techniques has been proposed for meta-model construction: 

• Linear polynomial approximations (Kleijnen et al., 2000); Cheng (1999); (Cheng et al., 1999) are straightforward 

to implement, earning favor among simulation researchers. However, the efficacy of linear regression using 

polynomials is hampered by the inadequacy of low-degree polynomials to adequately approximate simulation data 

values and the tendency of high-degree polynomials to "fluctuate" the curve of approximated values amid given 
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data, particularly in the boundary region. In cases where polynomials deliver a subpar fit, typically when the output 

exhibits a flat region, alternative meta-model varieties are warranted. 

• Nonlinear techniques offer a more versatile and intuitive avenue but entail greater complexity. These 

methodologies encompass non-linear regression – (Santos et al., 2007); Kriging models – (Kleijnen et al.,2005); 

(Allen et al., 2003); and neural networks – (Juzon et al., 2023). Regression of nonlinear functions demands a 

comprehensive and adaptable repertoire of possible curves alongside meticulous selection of well-suited 

approximating starting values. 

Other mechanisms include: 

• Rational meta-models (Hendrickx et al., 2005), 

• Radial bases of functions (Jin et al., 2000), 

• Bayesian approaches Chick (2004). 

Alternative modeling approaches (various models) discussed in recent literature include Taguchi models, generalized 

linear models, spline-based methods (tensor product, reciprocal splines, MARS, etc.), kernel smoothing, spatial correlation 

models, approximations from the realm of periodic waveforms (Fourier and sinusoid), and neural networks. 

In addressing the subsequent case study, linear regression models of the following type were employed: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+. . . +𝛽𝑘𝑥𝑖𝑛 + 𝜀𝑖 , (2) 

 

With a linear regression function: 

 

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+. . . +𝛽𝑛𝑥𝑖𝑛, (3) 

 

Here:  

β0,β1,...,βn are the model parameters (regression coefficients), 

xij -- the ith value (i = 1, 2, ... n) of the explanatory variable Xj (j = 1, 2, ... n), 

εi – vector of random numbers (the summary result of the action of not specifically specified and accidental influences; 

the corresponding error which has zero expected value). 

The pertinent types of regression models utilized in meta-model creation were thoroughly examined by the authors 

(Gregor et al., 2021). This manuscript encapsulates the basic forms of all meta-model types, with a primary focus on 

polynomial models and the application of ANN meta-models. 

 

3.2 Procedure for Creating Simulation Meta-models 

 

The meta-modeling venture mandates an initial definition of fundamental properties, followed by an articulation of the 

questions to be addressed during the creation of a specific meta-model. Post identification of basic properties and critical 

questions, the creation of the meta-model commences. Figure 3 delineates the generic process of simulation meta-model 

creation. 

To elaborate on the generic process depicted in Figure 3, we provide an in-depth explanation of each step involved in 

the creation of a meta-model: 

1. Defining the Research Problem and Objectives - The cornerstone of any research endeavor is a well-defined 

problem statement and research objectives. At this juncture, the focus is on providing a rigorous formulation of 

the research question, outlining the scope of the study, and setting specific, measurable, achievable, relevant, and 

time-bound (SMART) objectives. This step sets the direction and context for the entire research project. 

2. Selection of Influential Factors and Determination of Their Levels - In this stage, critical variables or factors that 

significantly influence the system under study are identified through literature reviews, expert consultations, and 

preliminary analyses. Subsequently, the levels at which these factors will be studied are determined, either based 

on existing research or through experimental pilot runs. 

3. Design of Experiments - The experimental design phase involves constructing a detailed plan for how the 

simulation experiments will be conducted. This includes specifying the combination of levels for each influential 

factor, the number of runs, randomization methods, and the criteria for data collection and analysis. Experimental 

design techniques like factorial design, response surface methodology, or Taguchi methods may be employed. 

4. Design, Verification, and Validation of Simulation Model - A simulation model that mimics the real-world system 

is constructed. Verification is conducted to ensure that the model's internal logic and algorithms are error-free and 

aligned with the conceptual model. Validation is performed using real-world data to ensure that the model 

faithfully represents the actual system dynamics. 
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5. Pilot Simulation Runs - Before full-scale experiments are launched, pilot simulation runs are conducted. These 

preliminary runs serve multiple purposes: they test the functionality of the simulation model, offer an opportunity 

to calibrate model parameters and help researchers become familiar with the model’s behavior and output metrics. 

6. Conduction of Simulation Experiments - The full-scale simulation experiments are conducted as per the 

experimental design. During this phase, meticulous data collection is essential, and any anomalies or unexpected 

outcomes are carefully noted for later investigation. 

7. Processing of Simulation Statistics - Post-experiment, the raw data are subjected to statistical analyses to draw 

meaningful inferences. Statistical methods, including but not limited to descriptive statistics, inferential tests, and 

confidence interval calculations, are used to interpret the data. 

8. Choosing the Type of Dependencies for Creation of Meta-models - Based on the processed statistics, researchers 

decide on the mathematical forms or dependencies that best represent the system's behavior. This could range from 

simple linear relationships to complex non-linear models or machine learning algorithms. 

9. Visualization of Selected Dependencies - Graphical methods, such as scatter plots, line graphs, or heat maps, are 

employed to visually represent the selected dependencies. This aids in providing an intuitive understanding of the 

system dynamics and validates the appropriateness of the selected meta-models. 

10. Finding Appropriate Fitting Models - A range of candidate models is fitted to the data, and their goodness-of-fit 

is evaluated using criteria like the coefficient of determination (R-squared), Akaike Information Criterion (AIC), 

or Bayesian Information Criterion (BIC). The model that offers the best fit is selected as the meta-model. 

11. Validation of Meta-models - The robustness and generalizability of the chosen meta-models are rigorously tested 

by applying them to a reserved or new dataset. The accuracy of the model’s predictions is assessed, and any 

limitations are duly noted. 

12. Use of Meta-models for Predictions - Finally, the validated meta-models are employed for making predictions or 

simulations under different scenarios. This could range from real-time decision-making to long-term strategic 

planning, thereby demonstrating the practical utility of the research. 

 
 

Figure 3. General process of creating a meta-model 
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4. A CASE STUDY FOCUSED ON PRODUCTION MANAGEMENT 
 

The following section presents research results derived from real data. Each step described above is indicated with the chapter 

number and the number to which it corresponds. 

 

4.1 - The subject of the investigation was the influence of the utilized production control system on selected output parameters 

of the assembly system, focusing on a line producing automotive products. The goal of the research was to develop suitable 

meta-models usable for production management with the support of simulation meta-modeling. 

4.2 - Figure 4 shows the investigated assembly system with six assembly workplaces. 

 

 
 

Figure 4. Assembly line layout with CONWIP control 

 

Figure 5 illustrates an intermediate storage buffer in front of each workplace, along with a schematic representation of 

the assembly line demonstrating the principle of circulation of CONWIP cards and the implementation of CONWIP 

management in the simulation model. The simulation experiments were carried out in the advanced Simio simulation system. 

During the creation of the simulation model, special constructions of the Simio simulation system were utilized, enabling the 

generation of the required number of CONWIP cards (CWC) at the start of the simulation, placing them in front of the first 

assembly station, and then allowing the generation of a new entity at the entrance to the line only if the finished product exits 

the line. This solution ensures that only a pre-defined number of CONWIP cards will circulate in the circuit, through which 

it is possible to regulate the progress of production. During initialization, there is a stock of entities in front of Server1 equal 

to the number of CONWIP cards in the circuit. Whenever one entity leaves the system, a signal is sent from the Sink output 

module to generate the arrival of another entity in the Source. 

 

 
(a) 

 
(b) 

 

Figure 5. Schematic representation of the assembly line (a) principle of circulation of CONWIP cards; (b) principle of 

implementation of CONWIP management in the simulation model 

 

Incorporating the CONWIP system in the assembly line has already laid a foundation for controlled production flow. 

However, precise determination of the number of CONWIP cards through meta-modeling further refines the production 

management process. This determination, empowered by simulation meta-modeling, aids in tailoring the CONWIP system 

to the unique operational dynamics of the assembly line, thereby promoting a more synchronized and efficient production 
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flow. The utilization of meta-models, as developed in the case study, provides a structured approach to analyzing the interplay 

between the production control system and the assembly system's output parameters. This structured analysis is pivotal in 

making informed decisions regarding the optimal number of CONWIP cards to be deployed, which in turn significantly 

impacts the pace and smoothness of the production process. By employing simulation meta-modeling, the study enables a 

thorough examination of how varying the number of CONWIP cards affects the assembly line's performance. This 

examination is not only grounded in real data but also allows for a more nuanced understanding of the system’s behavior 

under different configurations of CONWIP cards. The insights derived from this examination are instrumental in fine-tuning 

the CONWIP system to better match the production line's operational characteristics, leading to improved throughput, 

reduced wait times, and overall enhanced operational efficiency. Moreover, the simulation meta-modeling facilitates a data-

driven approach to managing the intermediate storage buffer efficiently, ensuring that the assembly stations are consistently 

supplied with work items while averting overproduction. This data-driven approach is crucial in achieving a balanced and 

well-regulated production flow, which is a central objective of the case study focused on production management. 

4.3-4.7 - By analyzing the assembly line, operating times at individual assembly stations were determined. A triangular 

distribution was chosen as the most suitable for their generation in the simulation. Operating times at the assembly stations 

and selected assembly line simulation results using the current production management system are listed in Table 1. A period 

of 12.000 min was simulated (5 weeks of operation). The start-up period of the simulation was 50 min. Ten independent 

replications were simulated in each experiment.  

 

Table 1. Operation times at individual assembly stations and selected simulation results 

 

Station 
Minimum 

(min.) 
Mode (min.) 

Maximum 

(min.) 

Average 

queue length 

(pcs) 

Waiting time 

in magazine 

(min.) 

Utilization 

(%) 

S1 1.80 1.96 2.11 11.26 22.28 95.64 

S2 1.88 2.15 2.27 78.77 161.22 99.94 

S3 1.90 2.13 2.24 0.25 0.53 99.48 

S4 1.87 2.19 2.28 17.75 37.22 99.89 

S5 1.92 2.11 2.25 0.11 0.24 98.89 

S6 1.94 2.13 2.34 29.10 61.60 99.87 

 

During the simulation of the assembly line with the current management system, the value of the mean time between 

the arrivals of entities was Time Between Arrivals (TBA) = EXPO(2.01) and the following results were obtained: production 

output = 5612 pcs., average throughput time = 288.72 min., work-in-progress after the end of the simulation = 143.36 pcs. 

The responses of the production system to a change in the number of CONWIP cards were investigated. Table 3 shows the 

number of CONWIP cards with which the simulation experiments were carried out. The number of CONWIP cards used in 

simulation experiments are as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, and 25. 

Upon completion of the initialization and configuration of the simulation model, steps were taken to verify and validate 

it. Verification of the model was carried out by comparing the results of the simulation with theoretical assumptions and 

ensuring that the model was correctly implemented without any errors in the code or logic of the model. This process included 

checking the distributions of operation times and comparing statistical results, such as average queue lengths, waiting times, 

and station utilization, with assumptions. Validation of the model was carried out by comparing the simulation results with 

real data obtained from the operation of the assembly line. Historical data on operation times, queue lengths, waiting times, 

and station utilization were collected and compared with simulation results. A statistical analysis was also performed to 

determine whether the differences between the simulated and real data were statistically significant. The results showed that 

the simulation model is accurate enough to be used for evaluating various production management scenarios and optimizing 

the operation of the assembly line. 

The response of the system to the change in the number of CONWIP cards was the output parameters of the production 

system, is summarized in Table 2. 

 

Table 2. Simulation results 

 

No. of CWC 1 2 3 4 5 6 7 

Throughput (pcs) 951 1901 2849 3791 4716 5490 5537 

WIP (pcs) 1 2 3 4 5 6 7 

Average 12.62 12.62 12.63 12.66 12.72 13.11 15.16 
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Throughput 

time (min.) 

Maximum 13.29 14.54 16.73 19.11 21.03 23.52 25.51 

Minimum 11.91 11.78 11.85 11.8 11.88 12.31 12.45 

No. of CWC 8 9 10 12 15 20 25 

Throughput (pcs) 5537 5537 5537 5537 5537 5537 5537 

WIP (pcs) 8 9 10 12 15 20 25 

Throughput 

time (min.) 

Average 17.32 19.49 21.65 25.98 32.46 43.27 54.06 

Maximum 27.79 29.88 32.24 36.7 43 54.21 65.02 

Minimum 12.45 12.45 12.45 12.45 12.45 12.45 12.45 

 

4.8 - Based on the results obtained from the simulation experiments, different types of regression models were designed and 

tested. The same set of mathematical models was considered for all investigated input-output dependencies. The considered 

shapes are shown in Table 3. 

 

Table 3. Design of mathematical function shapes 

 

Model type Model equation 

Logarithmic 𝑦 = 𝑎 + 𝑏 𝑙𝑛( 𝑥) 

Powerful 𝑦 = 𝑎𝑥𝑏 

Exponential 𝑦 = 𝑎𝑒𝑏⋅𝑥 

Linear 𝑦 = 𝑎 + 𝑏𝑥 

Polynomial 2. degree 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

Polynomial 3. degree 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 

Polynomial 4. degree 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4 

Polynomial 5. degree 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4 + 𝑓𝑥5 

 

Where: x is the number of CONWIP cards 

 

4.9 - Figure 6 shows the dependence of production performance on the number of CONWIP cards. The dependence curve of 

the number of CONWIP cards and production performance actually represents the course of the well-known WIPAC curve 

(Work In Progress Again Capacity). 

 

 
 

Figure 6. Dependence of production performance on the number of CONWIP cards 

 

Table 4 shows the results of the regression analysis (meta-models) of the dependence of the number of CONWIP cards 

and production performance. In addition to simple types of linear models, more complex polynomial models were also 

verified, which more accurately approximated the simulation data. 
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Table 4. Results of regression analysis - number of CONWIP cards and production performance 

 

Model Regression function R 

Linear 𝑦 = 145.77𝑥 + 3248.6 0.4145 

Powerful 𝑦 = 1539 𝑥0.5236 0.7644 

Logarithmic 𝑦 = 1585.5 𝑙𝑛(𝑥) + 1568.6 0.8047 

Polynomial II. 𝑦 = −20.137𝑥2 + 647.33𝑥 + 1257.6 0.8226 

Polynomial III. 𝑦 = 1.9455𝑥3 − 93.011𝑥2 + 1347.5𝑥 − 246.33 0.9656 

Polynomial IV. 𝑦 = −0.1187𝑥4 + 7.9621𝑥3 − 190.06𝑥2 + 1893𝑥 − 1018.4 0.9846 

Polynomial V. 
𝑦 = −0.0072𝑥5 + 0.3314𝑥4 − 1.949𝑥3 − 97.706𝑥2 + 1551.8𝑥

− 669.68 
0.9864 

 

Table 5. shows the results of the regression analysis of the correlation of the number of CONWIP cards and the 

throughput time. 

 

Table 5. Results of regression analysis - number of CONWIP cards and throughput time 

 

Model Regression function R 

Logarithmic 𝑦 = 11.608 𝑙𝑛(𝑥) − 0.1427 0.6311 

Powerful 𝑦 = 7.8006 𝑥0.4757 0.7285 

Linear 𝑦 = 1.8299𝑥 + 5.2396 0.9558 

Polynomial II. 𝑦 = 0.0457𝑥2 + 0.6909𝑥 + 9.7607 0.9866 

Polynomial III. 𝑦 = −0.0044𝑥3 + 0.2116𝑥2 − 0.9031𝑥 + 13.185 0.9974 

Polynomial IV. 𝑦 = 0.0003𝑥4 − 0.018𝑥3 + 0.4312𝑥2 − 2.1372𝑥 + 14.932 0.9988 

Polynomial V. 
𝑦 = 2𝐸 − 05𝑥5 − 0.0008𝑥4 + 0.0047𝑥3 + 0.2189𝑥2 − 1.3529𝑥

+ 14.13 
0.999 

 

Figure 7 shows the dependence of the number of CONWIP cards and the throughput time. 

 

 
 

Figure 7. Dependence of throughput times on the number of used CONWIP cards 

 

The development of continuous throughput times depending on the number of used CONWIP cards is interesting. 

Figure 8 shows the development of the throughput time (average, maximum, minimum) depending on the number of 

CONWIP cards. Figure 9 shows the dependence of the number of CONWIP cards and the level of work in progress (WIP).  

Figure 9 unveils the relationship between the number of CONWIP cards used in the production system and the resulting 

level of Work in Progress (WIP). The relationship demonstrates a distinctly linear character where the linear regression model 

yielded a perfect fit with an R-value of 1.0. 
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Figure 8. Dependence of continuous throughput times on the 

number of CONWIP cards 

Figure 9. Dependence of WIP on the number of CONWIP 

cards 

 

4.10 - In Table 4, the results of regression analysis for understanding the relationship between the number of CONWIP 

cards and production performance are presented. Multiple types of regression models were examined, including simple linear 

models and more complex polynomial models. The aim was to find the mathematical equation that best approximates the 

simulation data. To evaluate the accuracy of these models, the coefficient of determination, denoted as R, was used. 

The linear model shows a relatively poor fit to the simulation data with an R-value of 0.4145. A powerful model offers 

a significantly better fit with an R-value of 0.7644. The logarithmic model slightly outperforms the power model with an R-

value of 0.8047. However, polynomial models show the most promise in approximating the simulation outputs. A 2nd-degree 

polynomial model has an R-value of 0.8226. A 3rd-degree polynomial model shows a substantially better fit with an R-value 

of 0.9656. Higher-degree polynomials, specifically the 4th and 5th degrees, further improve the approximation with R-values 

of 0.9846 and 0.9864, respectively. Based on these results, the best-fitting model is a 5th-degree polynomial with an R-value 

of 0.9864. While Table 4 aimed to elucidate the relationship between the number of CONWIP cards and production 

performance, Table 5 shifts the focus to exploring the correlation between the number of CONWIP cards and throughput 

time. This pivot in the dependent variable from production performance to throughput time marks a significant difference 

between the two tables. 

Moreover, the mathematical models used to approximate these relationships yield different coefficients and R-values, 

reflecting the distinct nature of the dependencies being investigated. For example, the 5th-degree polynomial in Table 4 

exhibits an R-value of 0.9864, indicating a very strong fit for modeling production performance. On the other hand, the same 

model in Table 5 reaches an even higher R-value of 0.999, signaling an exceptionally strong fit for throughput time. These 

differences in R-values highlight the distinct influences that the number of CONWIP cards has on production performance 

and throughput time, respectively. This is further illustrated by Figure 10 for Table 4 and Figure 14 for Table 5, which visually 

represent these relationships. 

Figure 10 shows the course of the production performance (obtained from the simulation) and the courses of the adapting 

polynomials. 

 
 

Figure 10. Production performance and substitute meta-models 

 

The analysis showed that the best substitute for the production performance curve is a V-degree polynomial expressed 

by the equation: 
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𝑦 = −0.0072𝑥5 + 0.3314𝑥4 − 1.949𝑥3 − 97.706𝑥2 + 1551.8𝑥 − 669.68 (4) 

 

It is clear from Table 5 that already the 3rd degree polynomial sufficiently approximates the simulation outputs of 

production performance (see also Figure 11). 

 

 
 

Figure 11. Substitute meta-model – 3rd degree polynomial for production performance 

 

For illustration, the closeness of fitting the curve of the production performance by a substitute polynomial of the 4th 

degree (Figure 12) respectively polynomials of the 5th degree (Figure 13) are shown. 

 

 
 

Figure 12. Substitute meta-model – 4th degree polynomial for production performance 

 

 
 

Figure 13. Substitute meta-model – 5th degree polynomial for production performance 
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Figure 14. shows the progress of the throughput time (obtained from the simulation) and the progress of the adapting 

polynomials. 

 

 
 

Figure 14. Substitute meta-models for the ongoing production period 

 

As can be seen from Figure 15, the 3rd-degree polynomial sufficiently approximates the simulation outputs of the 

continuous throughput time. 

 

 
 

Figure 15. Substitute meta-model – 3rd degree polynomial for continuous time 

 

Approximation of the WIP curve by a linear model is shown in Figure 16. 

 

 
 

Figure 16. Substitute meta-model – linear model for WIP 

 

4.11 - In this section, the procedure for verifying the validity of the model for the dependence of the number of CONWIP 

cards and the continuous throughput time is presented. As it was shown above, with the help of the defined meta-model, it is 
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possible to determine the throughput time for a given number of CONWIP cards very quickly, even without the use of 

simulation. The found meta-model for the continuous throughput time has the form: 

 

𝑦 = −0.0044𝑥3 + 0.2116𝑥2 − 0.9031𝑥 + 13.185 (5) 

 

By calculating from the meta-model, we determine the value of the ongoing throughput time, for example, for the 

number of CONWIP cards x = 15. By substituting into the meta-model and calculating, we obtain the value of the ongoing 

throughput time y = 32.40 min. Comparing this throughput time value with the value obtained from the simulation experiment 

(32.46 min.), the difference between these values is very small (0.06 min., which is about 0.18%). If we use different points 

during the recalculation than were used when creating the meta-model, we can perform a verification of the given meta-

model. Table 6 shows the results of the comparison of the continuous throughput time achieved with the help of the simulation 

and with the help of the meta-model. From the achieved results, it is possible to see a very good reporting ability of the 

proposed meta-model. 

Table 6. Comparison of simulation results and mathematical model 

 

Throughput 

time (min.) 

No. of CWC 

11 13 14 16 19 22 24 

Simulation 23.820 28.140 30.300 34.620 41.110 47.580 51.90 

Meta-model 22.998 27.538 29.942 34.883 42.234 48.880 52.567 

Error 0.822 0.602 0.358 -0.263 -1.124 -1.300 -0.667 

Error 

variance 
0.113 0.060 0.021 0.011 0.211 0.282 0.074 

Standard 

deviation 
0.336 0.246 0.146 0.107 0.459 0.531 0.272 

 

Figure 17. part (a) shows a comparison of the results for the continuous throughput time obtained from the simulation 

and the values obtained by calculation using the meta-model. The validity of the designed meta-model can be verified for R-

values that are outside the limits for which the meta-model was created. With the help of the meta-model, we will determine 

the value of the continuous throughput time for the number of CONWIP cards equal to 30, which is equal to 57.73 min., 

while its value from the simulation is 64.84 min. Analogously, we will determine the continuous throughput time for 40 

CONWIP cards, which has a value of 34.02 min, and the result from the simulation is 86.38 min. A comparison of the values 

of the continuous throughput time obtained by calculation from the meta-model with the results of the simulation already 

shows significant differences. Figure 17 part (b) shows the comparison of the throughput time values obtained from the 

simulation and from the meta-model. 

 

  
(a) (b) 

 

Figure 17. Comparison of (a) the results of the simulation and the meta-model for the throughput time (b) continuous 

throughput times obtained from the simulation and from the meta-model 

 

Figure 18. shows the differences of the ongoing throughput times between the simulation and the meta-model and their 

dispersion. 
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Figure 18. Differences of throughput times and their dispersion 

 

Examining the development of production lead times clearly indicates the inability of the meta-model to correctly 

approximate lead time values outside the validity limits. Figure 19 shows the differences in the values of the throughput times 

from the simulation and from the meta-model in minutes and percentages.  

Figure 17 part (b) serves as a critical platform for validating the meta-model by directly comparing the throughput times 

obtained from both the simulation and the meta-model. The figure likely presents these throughput times against the number 

of CONWIP cards, with separate markers or lines representing the two methods. The closeness of these markers or lines 

signifies the meta-model's accuracy and its robustness as a planning tool within known parameters. On the other hand, Figure 

19 part (a) shifts the focus from direct comparison to error analysis by plotting the differences in throughput times against 

the number of CONWIP cards. This approach magnifies the meta-model's deviations from the simulation results, offering 

insights into its limitations. 

While Figure 17 part (b) establishes the general accuracy of the meta-model, Figure 19 part (a) identifies the boundaries 

of this accuracy. It shows where the model might fail to be a reliable estimator, especially when extended beyond its initial 

data range. Therefore, Figure 17 part (b) is instrumental for operational planning within known conditions, whereas Figure 

19 part (a) serves as a cautionary guide that alerts decision-makers to the specific conditions under which the meta-model 

may lose its reliability. In Figure 19 part (b), the values of the differences of the continuous throughput times are expressed 

as a percentage of the values of the continuous throughput times obtained by simulation. 

 

  
(a) (b) 

 

Figure 19. Differences in the throughput times of production simulation - meta-model (a) in minutes; (b) in percentages 

 

The study reveals a range of utilization rates across different stations, with the highest being 99.94% and the lowest at 

95.64%. This suggests that there may be room for optimization to balance the workload across the assembly line. In terms of 

throughput, the data show that it increases significantly up to the usage of 7 CONWIP cards, after which it stabilizes at 5537 

pieces. This implies that there may be diminishing returns in throughput beyond this point. Interestingly, the Work-In-

Progress (WIP) levels have a perfect linear relationship with the number of CONWIP cards, indicated by an R-value of 1.0, 

which suggests a predictable production environment under the current settings. The average throughput time starts at 12.62 
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minutes with one CONWIP card and increases to 54.06 minutes when 25 cards are used. This trend indicates that while 

throughput may increase, the lead time for production also goes up, requiring a balanced approach to optimizing both. 

Moreover, the 5th-degree polynomial models offer the highest fidelity in approximating both the production 

performance and the throughput time, with R-values of 0.9864 and 0.999, respectively. These models can serve as robust 

tools for decision-making within their valid range. However, caution should be exercised when extending these models 

beyond their initial data range. This is evidenced by the significant deviations in throughput times for 30 and 40 CONWIP 

cards compared to the simulation results. Given the high fidelity of the 5th-degree polynomial model for throughput time, it 

is possible to quickly determine the expected throughput time for a given number of CONWIP cards without requiring a full 

simulation as long as the number of cards falls within the model's valid range. In conclusion, the optimal number of CONWIP 

cards seems to be around 7 for maximizing throughput without unnecessary increases in WIP or throughput time. However, 

for specific scenarios requiring finer control over lead times or utilization rates, the high-fidelity polynomial models can be 

invaluable tools for decision-making. 

 

5. DISCUSSION AND CONCLUSION 
 

Based on the research, the following conclusions can be drawn. Simulation meta-modeling is a proven method for the 

approximate estimation of the value of monitored system parameters when the values of its input factors are known. Within 

its validity limits, such as in our case, the range of tested numbers of CONWIP cards from 1 to 25, the created simulation 

meta-model provides a reliable approximation of the output parameters. However, beyond these limits, the differences in 

results become significant, rendering the model ineffective for estimating parameteR-values. The research validates the use 

of polynomials of the 3rd or 4th degree as adjustment curves, demonstrating their sufficiency in representing real 

dependencies between input factors and output parameters of the system. Employing suitable statistical software in the manual 

method of crafting simulation meta-models is advantageous for determining the adaptation curve. 

The traditional approach to simulation meta-modeling is deemed to be relatively intricate and time-consuming. Any 

alteration in the system conditions necessitates the amendment and validation of the obtained meta-models. The predicament 

is addressable through two strategies: initially, by automating the entire process of creating and Utilizing the simulation meta-

model, where regression coefficient estimates are solved numerically; more effectively, by employing artificial neural 

networks (ANNs) which can autonomously ascertain the suitable type of meta-model, aiding in the requisite estimations. This 

solution has the potential to integrate directly with the management system, epitomizing a leap toward automating and 

optimizing processes in industrial engineering. 

Historically, analytical methods via mathematical models were the norm for modeling and scrutinizing complicated 

systems. These models encapsulated the system's structure, logical connections, and quantitative associations among its 

elements. Analysts, by varying the values of relevant factors, monitored the model's reaction to optimize the observed system. 

Yet, the majority of real-world systems are complex, rendering analytical models less effective for studying their dynamics. 

The advent of computer simulation, particularly post the fourth industrial revolution, marked a significant stride, showcasing 

its aptitude in examining the dynamic behavior of production systems amidst escalating system complexity. 

Today, computer simulation is a conventional approach employed in complex production system analysis. Despite being 

resource-intensive and necessitating expert knowledge, its relevance remains undiminished. Formerly, endeavors were made 

to supplant experts with expert systems; contemporary advanced simulation systems often encapsulate selected expert 

knowledge, yet the method remains demanding. A viable avenue to mitigate the analysis complexity is the deployment of 

approximations or substitute models that can adequately replace intricate simulation models of production systems. 

The quest for further simplification ushered in the use of simulation meta-modeling, investigating the relationships 

among the production system, its simulation model, and the meta-model. The essence of experimentation in meta-modeling 

is the validation of such models, assessing their representational accuracy of the real production system. Effective meta-

model experimentation necessitates a preceding Design of Experiments (DoE) to ascertain the required output accuracy, the 

types of meta-models in alignment with their attributes, and other experimentation conditions. 

Historically, simple meta-models were deployed for validating complex simulation models, often facilitating swift 

sensitivity testing of the production system's output parameters against input factor variations. Meta-models are also 

recognized as building blocks of complex models, where simulation models and meta-models amalgamate into hybrid 

solutions, propelling the efficiency of experimentation forward. 

Although a well-structured theory of simulation meta-modeling exists, its substantial application in supporting 

production management within discrete production systems is yet to be realized, chiefly due to the manual complexity 

encompassing the entire process. The resolution lies in automating the entire simulation meta-modeling process. 

The evolution of dynamic analysis methods for production systems is intrinsically tied to the advancement of modern 

computing power. This growth, bolstered by the swift progression of artificial intelligence methods, especially deep learning 

via ANN, has repositioned ANNs as novel tools for optimizing production systems. The maturation of ANN theory has 
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segued into the era of practical applications of artificial intelligence, which has now permeated the production system analysis 

domain, becoming a part of the optimization methodology. Enhancing the efficiency of the meta-modeling process is 

achievable through the deployment of artificial neural networks in determining meta-model parameters. This paradigm shift 

towards ANNs offering a more streamlined, automated, and efficient solution for analyzing complex production systems. 

The uniqueness and the necessity of this method stem from its ability to simplify and accelerate the analysis process, providing 

a more accessible and accurate means of understanding and optimizing production systems, thus marking a significant 

contribution to the field. 
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