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This paper proposes a novel decentralized approach for multi-stage job-shop scheduling. The method divides the larger job-

shop scheduling problem into several smaller problems, which various agents solve. The collaboration among these agents 

ensures the exploration of globally superior solutions while allowing enhanced local exploration. Based on an extensive 

investigation, the current work shows that the proposed approach outperforms the centralized approach, especially for 

problems with increasing problem size, in a faster manner. Since the proposed approach is based on decentralized information 

processing, it is easily adaptable to next-generation cyber-physical manufacturing systems. 
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1. INTRODUCTION 
 

Globally, manufacturing industries are witnessing the fourth industrial revolution, Industry 4.0. While the third industrial 

revolution (Industry 3.0) used electronics and information technology to automate production, Industry 4.0 aims to transform 

conventional manufacturing systems into cyber-physical manufacturing systems by introducing machine intelligence and the 

Internet of Things (Rossit et al., 2019). Smart machines, smart jobs, smart processes and decentralized information processing 

and communication between various smart entities are typical characteristics that one may expect in such cyber-physical 

manufacturing systems (Yang et al., 2019). If utilized correctly, these characteristics can bring unprecedented leanness to 

industrial operations. Conventional shop floor planning approaches are inherently not designed for systems with such 

characteristics; hence, they may not work well for systems with these characteristics. Hence, the shop floor planning 

approaches must evolve to meet the requirements of the next-generation manufacturing systems (Li et al., 2022).  

Scheduling is an essential shop floor planning aspect that helps in the effective utilization of limited resources while 

meeting customer demand. Manufacturing systems with newer capabilities of smart and connected systems require 

fundamental changes in addressing the scheduling problem. Multi-agent systems (MAS) provide one alternative: they possess 

characteristics like autonomous decision-making by individual agents and interaction between agents, which matches well 

with the characteristics of cyber-physical systems. Rossit et al. (2019) suggest that revisiting scheduling problems for cyber-

physical systems (CPS) or Industry 4.0 is essential. Their review concluded that the real-time availability of the information 

significantly impacts scheduling and that scheduling of the future is a decentralized decision process. Parente et al. (2020) 

highlighted the need for evolving the production scheduling approaches in the context of Industry 4.0 to address elevated 

production flexibility and complexity requirements. 

Similarly, Rossit and Tohmé (2022) highlighted the difficulty of using centralized scheduling approaches to deal with 

real-time data and arrive at a dynamic schedule for Industry 4.0. It is highlighted that due to the problem's complexity, 

simplifications are usually done in modeling, which may result in inferior performance. The authors highlighted that an agent-

based approach could overcome this by allowing detailed modeling. Based on the above brief background, the literature on 

decentralized scheduling on multi-agent systems is further explored in the next section. It was identified that there are still 

various unanswered issues about a decentralized approach. The following section highlights some of the gaps in the literature. 

Consequently, we propose a novel multi-agent-based decentralized production scheduling approach in this paper. The 

proposed decentralized approach reduces overall problem complexity by dividing a problem into smaller problem segments, 
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each of which can be solved independently by a separate decision-making entity. A major research challenge is to highlight 

the trade-offs between the need for a global view of the decentralized approach and the need for proper exploration of 

problems due to the complexity of the centralized approach. A detailed numerical investigation is done in this paper to address 

this issue. Based on the extensive investigation, the current work shows that the proposed approach outperforms the 

centralized approach, especially for problems with increasing problem size, in a faster manner. 

The rest of the paper is structured as follows. Section 2 examines related work on agent-based decentralized scheduling. 

Section 3 describes the proposed approach and explains how the proposed decentralized approach works. Section 4 presents 

a comprehensive numerical investigation to test the performance of the proposed approach and identify various internal and 

external parameters that influence its performance. Section 5 concludes the work while pointing the way forward.  

 

2. RELATED WORKS 
 

This section reviews some recent work on agent-based decentralized scheduling aspects. Decomposition, negotiation, and 

communication are common in agent-based scheduling systems. Toptal and Sabuncuoglu (2010) classified agent-based 

distributed scheduling techniques based on communication mechanisms and information flow structure. Decomposition and 

negotiation-based classification is done by Parente et al. (2020). Most agent-based production scheduling techniques are 

developed in literature considering dynamic shop floor environments. Several methods involve flexible manufacturing shop 

floors with multiple resources for a given task. Agents then negotiate to find the best resources. In Nie et al. (2021) dynamic 

scheduling strategy, machine agents bid to automated storage and retrieval system agents. All possible solutions are sent to 

the digital twin agent by this agent. The digital twin agent optimizes the schedule based on multi-objective decision criteria 

and feasibility during the counting window. He et al. (2014) suggest agent-based dynamic scheduling for make-to-order 

manufacturing systems. In case of a change in demand or product type, job, system, and resource agents, discover updated 

schedules: production cost and lead time drive resource agents' bids. The system agent makes the schedule based on the best 

possible bid using heuristics or metaheuristics. 

Li et al. (2014) developed an agent-based scheduling approach for a uniform, flexible job shop with machines of 

different speeds. Sorting machines by speed and sorting jobs using the dispatching rule is done. Agents set a specified job at 

the end of each machine and assign it to the machine with the fastest completion time. In Liu et al. (2022), resource agents 

auction jobs while consumer agents compete to reduce tardiness. After receiving information from resource agents, consumer 

agents bid on processing time slots and pricing. The resource agent then maximizes profit by solving the winner determination 

problem using simulated annealing. Resource agents assign resources for tasks. 

Similarly, Weiss-Cohen et al. (2017) also used a negotiation approach for their multi-agent-based scheduling for a 

flexible shop floor. Authors have also examined the efficacy of using agent-based systems for single-machine scheduling 

problems. For example, Kaplanoǧlu (2014) proposes a collaborative multi-agent-based optimization technique for single-

machine scheduling with sequence-dependent setup time and maintenance constraints. Authors could show that even for a 

single-machine scheduling problem, a multi-agent system with its distributed mechanism reduces the computation load of 

central optimization and responds faster to dynamic events. 

Agent-based, decentralized scheduling is also used in literature for assembly lines and flow shops. Vatankhah Barenji 

and Hashemipour (2019) devised a multi-agent distributed approach for production scheduling, yielding enhanced uptime 

and productivity. Maoudj et al. (2019) made a distributed multi-agent system (DMAS) for scheduling and controlling Robotic 

Flexible Assembly Cells (RFAC). It solves the problem of scheduling product operations, which involves allocating assembly 

cells; three different kinds of agents are suggested. The execution of the intended sequence on the robot is handled by a 

remote agent (RA). Local agents (LA) work together to divide tasks and follow the dispatching rules. The Supervisory Agent 

(SA) prioritizes operations. 

Shi et al. (2021) suggest a multi-agent-based dynamic scheduling optimization of a hybrid flow shop. It has a scheduling 

agent, a machine agent, a dispatching agent, and an inspection agent. The job of the dispatching agent is to find out what jobs 

are planned and put them in order of importance based on their process data. The job of the machine agent is to keep track of 

how the machine works in real time. The job of the inspection agent is to get the processing quality inspection data for the 

jobs in an inspection buffer. Wang et al. (2018) talk about the same kind of role for a scheduling agent when they talk about 

how to make sure that precast construction components are delivered on time. The scheduling agent uses a genetic algorithm 

(GA) to reduce lateness and make the best schedule in a flow shop setting. Resource agents and the job management agent 

assign resources to tasks using the contract net protocol. This assignment reduces the amount of time that schedule execution 

has to wait. 

Wang et al. (2022) scheduled jobs on a parallel workstation system using a digital twin-based multi-agent system. On 

the conveyor, the task management agent gets information about the parts arriving at the target workstation. It sends the 

information to all the gantry crane agents that are currently available so they can wait for their turn to move. With particle 

swarm optimization, the task management agent assigns tasks to parts on the conveyor. This assignment is done for all the 



Chorghe et al. A Novel Decentralized Approach for Production Scheduling 

f 

1367 

parts that are on the conveyor. Through experiments, the authors showed that the average use rate of all workstations is up 

by 17.39% and that the standard deviation is down by 83.31% compared to traditional methods. In Saeidlou et al. (2019), 

ontology-based knowledge management is used with a multi-agent system. The problem consists of jobs with multiple 

operations to be processed by multiple manufacturers. The parts of their agent system are job, operation pair, and 

manufacturer agents. The people in charge of a job agree on which manufacturer should do the scheduling. Agents for 

operation pairs make up operation pairs at the manufacturer. Operation pairs are two operations that are done right after each 

other. Manufacturer agent sequences and re-sequences these pairs. Ontology is used to avoid any constraint violation.  

Instead of focusing only on jobs and resources in the agent-based scheduling system, many approaches also use agents 

of various extended elements of the factory, which work in a heterarchical and decentralized manner. For example, Cupek et 

al. (2016) present an agent-based approach to scheduling a short production series. The agent system comprises a client, 

supervisory, order, and workplace agent. Klein et al. (2018) also deploy an agent-based approach to generate a scheduling-

support system. These agents represent the production units, storage centers, transportation means, and production orders. 

These agents interact through auction-based negotiation. 

Another research category on agent-based scheduling focuses on learning-based approaches (Rossit and Tohmé, 2018; 

Ma et al., 2022; Yan et al., 2022). In general, scheduling agents learn from past knowledge in such approaches and act 

accordingly in case of any dynamic events.  

Some agent-based scheduling research also focuses on developing a framework or Cyber-Physical Production Systems 

architecture for scheduling. For example, Sun et al. (2022) focus on designing intelligent manufacturing systems by 

integrating various information systems. Similarly, in Seitz et al. (2021), a platform-independent multi-agent system 

addresses two Industry 4.0 scenarios: order-controlled production and adaptable factory. Order control production relates to 

the flexibility of the production network within and across production facilities to produce new products.  

The aforementioned concentrated literature study on agent-based decentralized scheduling shows that the techniques 

mainly focus on bidding and negotiation-based systems. Each agent contributes their information to the bid. Some of the 

agents analyze bids by one or more criteria. Such bidding-based systems have shown themselves efficiently determining the 

best course of action when faced with various possibilities in a flexible production environment. The literature clarifies how 

well-suited these methods are for dynamic situations with disturbances like changes in demand, lead times and equipment 

problems. Several of the existing methods ignore operational dependencies. Problem decomposition becomes very 

challenging due to the interdependencies of processes and the decision factors for various agents. For their network to provide 

the requisite solution quality in a fair amount of time, decomposition needs proper decision-making entities and segregating 

decision variables among them. Such decentralized scheduling methods based on decomposition are scarce in the literature. 

Although decomposition aids in more effective local-level exploration, adopting such agent-based methodologies still needs 

thorough study to provide adequate quality for overall decision-making. Based on the above description, the current paper 

aims to create a decentralized agent-based scheduling approach concentrating on decomposing scheduling problems into 

smaller problems. The problem of multi-stage multi-machine system is decomposed into small problems for job type agents, 

machine agents and inter-stage agents in this paper. Each agent has its localized objective, and through communication among 

these agents, the approach achieves a solution for the entire problem. The decomposition and communication used in the 

paper is the key to addressing the challenge of interdependencies of processes and decision factors. In addition, the paper 

examines the method's efficacy and discovers a few intriguing insights via thorough assessment. 

 

3. DECENTRALIZED APPROACH 
 

The system considered in this work is a multi-stage, multi-machine shop floor. There are different job types, and each job 

type has several jobs. Each job is processed by one machine at each stage. The job type, quantity of jobs, and Due Date (DD) 

are all specified in the customer order. 

Due to the dynamic nature of the next-generation production system, planning horizons are shorter. When planning for 

the next horizon, we assume tasks from the previous horizon do not occupy machines. Conventional approaches to production 

scheduling are typically centralized because a single computational entity is responsible for making allocation decisions. The 

computational involvedness of any scheduling problem grows exponentially with the number of jobs, machines, and stages 

in any production system, reducing the responsiveness of such decision-making systems. It precludes any possibility of 

dynamic scheduling, thereby restricting the achievement of possible leanness, which further leads to a fundamental rethinking 

of the approach to scheduling problem. In this paper, we design a novel agent-based decentralized approach for production 

scheduling. Figure 1 explains the working of the developed decentralized production scheduling approach. The basis of the 

approach is that a more complex production scheduling problem is decomposed into multiple smaller and relatively more 

straightforward problems for different agents, and through communication among these agents, a solution to the original 

complex problems is obtained. Decomposition helps in better local-level modeling and exploration, while communication 

strategies among agents are uniquely designed to ensure getting a solution closer to the centralized approach. In the present 
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multi-agent systems, there are three agents, viz., job type agents, machine agents, and inter-stage agents, which make local-

level decisions and communicate with each other to reach the final shop floor-level decision. 

 

 
 

Figure 1. Graphical representation of decentralized approach for flow of decision-making 
 

The following subsections explain the details of each of these agents and their work. Further, these subsections are 

marked in Figure 1 to explain the flow of information through the shop floor.  

 

3.1.  Job type Agent 

 

A job type agent is a digital entity of a specific job type. In this paper, each job type agent is responsible for making local-

level decisions about their respective batch sizes. It determines the batch size to minimize average flow time (AFT). To 

minimize AFT, a job-type agent requests the information for the processing time and Sequence Dependent Setup Time 

(SDST) from relevant machine agents in the route of the job. This information is used to calculate the AFT of a particular job 

type on a given machine for considered batch size. Job type agents evaluate a discrete number of batch sizes to optimize AFT. 

The detailed working of a job-type agent is described below. 

The job type agent evaluates multiple batch sizes for their objective function value, i.e., AFT and prepares a list of batch 

sizes in ascending order of their AFT. Job type agent follows an algorithm to calculate the value of AFT and prioritize batch 

sizes in the list to be forwarded. Table 1 describes notations, followed by the steps of the algorithm. 

 

Table 1. Notations for the algorithm of job type agent 

 

BPTi  Batch processing time for the iteration 

WTi  Waiting time for a batch of jobs in a queue for the iteration 

ST  Average setup time for a machine for a job type 

The average setup time for the jth job type is calculated as 

𝑆𝑇𝑗 =
∑ 𝑆𝐷𝑆𝑇𝑖𝑗

𝑖=𝑛
𝑖=1

𝑛
 𝑖 ≠ 𝑗  

Where SDSTij is sequence-dependent setup time from ith job type to jth job type for n job types 

JPT  Processing time for a machine to complete a job from job type 

FTi  Time that a batch of jobs spends in a system for ith iteration (Flow time) 

BSi  Batch size of arriving batch on a machine for a job type for ith iteration 

AFT  Average Flow Time 

n  number of iterations 
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Step 1: Calculation the batch processing time for ith iteration 

 

𝐵𝑃𝑇𝑖 = 𝑆𝑇 + 𝐵𝑆𝑖 ∗ 𝐽𝑃𝑇 (1) 

 

i=1, 2,..,n; where i is the batch number arriving on a machine of the same job type 

 

Step 2: Calculation the waiting time for ith iteration 

 

𝑊𝑇𝑖 = ∑ 𝐵𝑃𝑇𝑘

𝑘=𝑖−1

𝑘=1

 (2) 

 

k=1, 2…i-1; where k is the batch number arriving on a machine of the same job type 

 

Step 3: Calculation the flow time for ith iteration 

 

𝐹𝑇𝑖 = 𝑊𝑇𝑖 + 𝐵𝑃𝑇𝑖  (3) 

 

𝑖 = 𝑖 + 1  

 

Step 4: Repeat steps 1 to 3 until all batches are considered; otherwise, go to step 5 

Step 5: Calculation of average flow time 

 

𝐴𝐹𝑇 =
∑ 𝐹𝑇𝑖

𝑛
𝑖=1

𝑛
 (4) 

 

The following example explains the algorithm. A job type has a demand of 20 jobs. For a batch size of 4, five batches would 

have arrived on the shop floor. For the average setup time of 7 and job processing time of 2, the batch processing time is 15. 

The first batch's waiting time is 0, and the flow time is 15. The flow time for succeeding batches are 15, 30, 45, 60 and 

75, and the average flow time is 4. The parameter percentage of job type agent forwarding (PJTAF) determines the number 

of batch sizes forwarded by the job type agent. For example, when a job type agent evaluates 10 batch sizes, the PJTAF of 

40 would result in 4 batch sizes being forwarded to the machine agent. The number of batch sizes to be forwarded is 

communicated to the machine agent as a list. 

 

3.2. Machine Agent 

 

The machine agent enables a machine by solving a single machine scheduling problem and communicating with the job type 

agent and inter-stage agent to get the necessary information. Machine agents generate preferred sequences of batches received 

from job type agents for different job types based on the objective values of Fraction delivered on time (FDOT), where due 

dates for batches are calculated using the total work content method (Baker, 1984). In the Total Work Content (TWC) method, 

the complete available time between the ready time and due date is divided among operations based on the weights of the 

machine's processing time on which the operation would be performed. The machine agent decides the processing sequence 

for batches with their completion times and forwards it to the inter-stage agent. The machine agent is responsible for 

evaluating multiple sequences and selecting the sequence to be forwarded to the inter-stage agent. The machine agent receives 

input from multiple job-type agents and facilitates the sequence forwarding to the inter-stage agent. The working of a machine 

agent is described below. 

Job types arriving on the machine form multiple batch size combinations. For example, if two job types are arriving on 

a machine and the preferences of batch sizes given by the Job Type Agent are [4, 8] and [4, 20] for job types J1 and J2, 

respectively, the total possible batch size combinations would be as shown in table 2.  

Within each batch combination, multiple sequences are possible. For example, in combination with number 4 from 

Table 2, the possible sequences representing job type numbers are [1 1 1 2], [1 2 1 1], [1 1 2 1] and [2 1 1 1]. The machine 

agent follows an algorithm to decide the sequence of batches to be forwarded by calculating the value of the objective function 

for the corresponding sequence. Table 3 Describes notations, followed by the steps of the algorithm. 
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Table 2. Batch combinations 

 

Combination no. Batch size (J1) Batch size (J2) 

1 4 4 

2 4 20 

3 8 4 

4 8 20 

 

Table 3. Notations for the algorithm of machine agent 

 

Di  Demand for the ith job type 

BSi  Batch size for ith job type 

BSi*  Initial batch size received from job type agent for ith job type 

JPTi  Job processing time of ith job type 

BPTi  Batch processing time of ith job type 

STi  Average sequence-dependent setup time for ith job type 

CTj  Completion time for the jth position in sequence 

PTj  Processing time for a batch at the jth position in sequence 

JDOTi  Jobs delivered on time for ith job type 

DD  The due date for the job on the considered machine 

n  number of job types,  

l total length of the sequence 

 

Algorithm: 

 

Step 1: Calculation of demand for ith job type at the jth position in the sequence 

 

𝐷𝑖 = 𝐷𝑖−1 − 𝐵𝑆𝑖−1, 𝑖𝑓 𝑖 ≠ 1 (5) 

 

where i= Job-ID, j= position number 

 

i= 1, 2 …n; j=1, 2…. l 
 

 

Step 2: Calculation of batch size for ith job type at the jth position in the sequence 

 

𝐵𝑆𝑖 = 𝐵𝑆𝑖
∗ 𝑖𝑓 𝐵𝑆𝑖 < 𝐷𝑖 , 𝐷𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6) 

 

Step 3: Calculation of batch processing time for ith job type at the jth position in the sequence 

 

𝐵𝑃𝑇𝑖 = 𝑆𝑇𝑖 + 𝐵𝑆𝑖 ∗ 𝐽𝑃𝑇𝑖  (7) 

 

Step 4: Calculation of Processing time and completion time for a batch at the jth position in the sequence 

 

𝑃𝑇𝑗 = 𝐵𝑃𝑇𝑖 (8) 

 

𝐶𝑇𝑗 = ∑ 𝑃𝑇𝑘

𝑘=𝑗

𝑘=1

 (9) 

 

where k=position number 

Step 5: Calculation of jobs delivered on time for ith job type at jth position in sequence 

 

𝐽𝐷𝑂𝑇𝑖 = 𝐽𝐷𝑂𝑇𝑖 + 𝐵𝑆𝑖 , 𝑖𝑓 𝐶𝑇𝑗 < 𝐷𝐷 (10) 

 

Step 6: Repeat steps 1 to 5 until consideration of all batches; otherwise, go to step 7 
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Step 7: Calculation of Fraction Delivered On Time (FDOT) 

 

𝐹𝐷𝑂𝑇 =
∑ 𝐽𝐷𝑂𝑇𝑖=𝑛

𝑖=1

𝐷 × 𝑛
 (11) 

 

The sequences with the best value of the objective are sorted in descending order. For example, sequences with job type 

IDs [1 2 3 4], [4 2 1 3], [1 4 2 3] and FDOT of 1, 0.7 and 0.8, respectively, are arranged in descending order as [1 2 3 4], [1 

4 2 3] and [4 2 1 3]. The machine agent forwards the best-performing sequence from the sequences in the preference list to 

the inter-stage agent. Machine agent encounters varying problem complexity. Depending on the problem's complexity, the 

machine agent takes different modes of a decentralized approach to obtain the optimum sequence.  

 

3.3. Inter-stage Agent 

 

To prepare an optimal sequence of batches, the machine agent requires ready times of batches from the previous stage. The 

inter-stage agent acts as a coordinator between stages. From machine agents in the same stage, sequences of batches with 

their completion time are received at inter-stage agents. The inter-stage agent forwards the received completion times to 

machine agents in the next stage as ready times. Based on which machine processes which job type, the inter-stage agent 

distributes ready times for each machine agent in the next stage. The inter-stage agent calculates FDOT for the preceding 

stage by taking the mean of FDOT from all the machines in the preceding stage.  

It is also possible that machine agents forward multiple solutions to the inter-stage agent. In that scenario, the inter-

stage agent forms a combination of independent solutions received from individual machines. The interstage agent sorts 

These multiple combinations based on the on-time delivery performance, and one best combination is forwarded to the 

machines in the next stage.  

For example, let machine 1 with job type 1 and job type 2 and machine 2 be with job type 3 and job type 4 as arriving 

job types are two machines on the shop floor in stage 1. Let machine 1 agent and machine 2 agent correspond to machine 1 

and machine 2, respectively. The solution received by the inter-stage agent by machine 1 agent is [2 1 2 1] with FDOT equal 

to 0.72 and [1 1 2 2] with FDOT equal to 0.81, and the solution received by machine 2 agent be [3 4 3 4] with FDOT equal 

to 0.8 and [ 3 3 4 4] with FDOT equal to 0.91. then, four combinations of solutions are formed as follows: 

Combination 1: [2 1 2 1] and [3 4 3 4], combined FDOT = (0.72+0.8)/2 =0.76 

Combination 2: [2 1 2 1] and [3 3 4 4], combined FDOT = (0.72+0.91)/2=0.815 

Combination 3: [1 1 2 2] and [3 4 3 4], combined FDOT = (0.81+0.8)/2=0.805 

Combination 4: [1 1 2 2] and [3 3 4 4], combined FDOT = (0.81+0.91)/2=0.86 

Then, the formed combination would be sorted by inter-stage agent in descending order as combination 4, combination 

2, combination 3, and 1. Completion times of batches in combination 4 would be transferred to machines in the next stage.  

Without an inter-stage agent, if machines forward multiple solutions, then machines in the next stage would have to 

evaluate their solutions corresponding to each of the received ready times. The complexity grows as the number of machines 

in each stage grows because each machine must choose the same ready time from machines in the preceding stage to get a 

feasible overall solution. As can be seen, the significance of the inter-stage agent lies in its operational mechanism of 

controlling the growing complex network when multiple solutions are forwarded. It would be more significant if the material 

flow is comparatively more complex, such as job shops, flexible shops, and shops with re-entrant jobs.  

 

4.  NUMERICAL INVESTIGATION 
 

An exhaustive numerical investigation is performed to assess the performance of the decentralized approach. It is compared 

with the centralized approach for various problem categories to understand the efficacy of the proposed decentralized 

approach. Various problem categories are constructed by varying the number of job types on each machine (n), the number 

of machines in each stage (m) and the number of stages (s).  

All the categories and their corresponding problem sizes (for complete enumeration) are listed in Table 4. It can be seen 

from Table 4 that problem complexity increases exponentially from problem category 1 to problem category 5. With 

predefined problem parameters given in Table 5, the problem size for problem category 1 is 105, whereas for problem 

category 5, the problem size is 10229.   
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Table 4. Problem categories and their properties 

 

Problem categories n m s Problem size (Complete enumeration) 

Problem Category 1 2 1 2 3.2 * 105 

Problem Category 2 2 2 2 1.03*1011 

Problem Category 3 3 1 2 1.35*1012 

Problem Category 4 4 2 2 5.99*1040 

Problem Category 5 7 3 3 4.84*10229           

 
Figure 2. Increasing complexity through different levels for a single machine 

 

Table 5. Problem Parameters 

 

Processing Time Uniform (1,5) 

Sequence-dependent setup time Uniform (6,10) 

Demand 20 

Step size 4 

 

We generate integer-valued processing and setup times from uniform distribution (Table 5). The generated time values 

are assumed to be in minutes. Step size and demand are problem parameters which affect problem complexity in terms of 

time. A step is the next batch size for evaluation, and the step size is the incremental quantity added in the preceding batch 

size. For example, a step size of 4 would make it possible to evaluate batch sizes of 4,8,12,16,20 and so on. A decrease in 

step size increases computational complexity as the smaller batch sizes for a given demand increase the total number of 

possible batch size combinations at a machine. Another critical factor that contributes to the higher number of batch sizes is 

demand. For constant batch size, if demand for a job type increases, the corresponding possible number of batch sizes would 

also increase, increasing the number of sequences. We limit the work to a step size of 4 and demand of 20 for all problem 

categories. Further, for each problem category, two cases are considered, viz. slack and tight due dates cases, where a tight 

due date is more likely to produce a schedule with late jobs than a slack due date.  

Initially, an attempt is made to solve the problem using complete enumeration, viz. brute force approach. The results 

are in serial number 16 (CABruteForce, where CA is the Centralized approach) in Table 6. It can be seen from the table that 

complete enumeration is feasible only for problem category 1 because, with increasing complexity, evaluating all possible 

sequences is computationally inefficient. Conventionally, high-complexity issues are addressed using metaheuristics to limit 
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the search scope in solution space. One can use any metaheuristics to solve such problems; however, the difference in solution 

quality and time for various metaheuristics is insignificant compared to the difference in centralized and decentralized 

approaches (Upasani et al., 2017). Hence, the focus of this paper is not to identify a better metaheuristic approach but to 

compare the decentralized approach with any of the centralized approaches. In this work, we have utilized a genetic algorithm 

(GA) as metaheuristics. 

Further, we have gradually increased the population size in the GA from 10 to 40000, corresponding to the gradual 

increase in solution space exploration for a centralized approach. It provides an idea about computational expenses vs 

accuracy for centralized GA compared to a decentralized approach. Results are presented in serial numbers 17-22 (CAGA10 to 

CAGA40000, which stands for centralized approach with GA using a population size of 10 to 40000) in Table 6. In this work, 

GA implements the restart scheme by Ruiz and Maroto (2006) to avoid local optima. Other parameters of the GA are as 

follows: Crossover probability: 0.85, Mutation probability: 0.15, Elitism rate 0.9, Termination criterion: 70, Restart criteria: 

10.  

All cases are also solved using the proposed decentralized approach, and Table 6 presents the results. In the decentralized 

approach, job-type agents evaluate all possible combinations as the problem size is small and provide a solution in batch sizes 

to machine agents. 

The problem complexity at the machine agent depends on the number of solutions received from the job type agents. 

This work considers five possibilities with increasing problem complexity, viz., 20%, 40%, 60%, 80%, and 100% forwarding 

by the job type agents (PJTAF). These cases are shown in Table 6 in serial number 1 to 5 (DA20 to DA100, where 20 and 100 

is PJTAF). The gradual increase in time in all cases results from increasing complexity due to higher PJTAF. Brute force at 

the machine agent level is feasible only for problem categories 1-3. For problem categories 4 and 5, the complexity of 

complete enumeration increases as forwarding multiple batch sizes results in many possible sequences of batches. 

For individual problem categories, at machine agents, there exists the opportunity to perform brute force up to a certain 

'level' depending upon the number of solutions forwarded from job type agents and corresponding batch sizes. To understand 

the concept of 'level' in a problem, let us consider an example of a single machine on which two job types are arriving. From 

Figure 2, when the number of job types increases at level 1, the corresponding sequences also increase at level 4. At level 2, 

a discrete number of batch sizes are evaluated, and the number depends on the step size. At level 3, combinations of the 

batches are formed from the batch sizes. With increasing PJTAF, solutions at level 3 would increase, leading to an increase 

in time. At level 4, all possible sequences are created. Creating all possible sequences is feasible for problem categories 1, 2 

and 3 owing to relatively minor memory requirements for their problem size for a decentralized approach. However, 

subsequent problem categories can only be done by restricting the number of created sequences. 

The compounding effect is due to solution forwarding, increasing information at level 4. Hence, metaheuristics (in this 

case, GA) are applied to further control sequences selectively at levels 3 and 4. In Table 6, serial No. 6 to serial No. 10 shows 

the results of the use of GA at level 4 in the machine agent and PJTAF of 20, 40, 60, 80 and 100 by job type agent (DAGA20 

to DAGA100, which indicate the use of GA as metaheuristic and PJTAF from 20 to 100). It can be seen from the table that for 

problem category 5 with GA only, beyond PJTAF of 60, the solution is not possible. Hence, GA is then extended to level 3. 

Table 6, serial No. 11 to 15, shows the use of GA both in level 3 and 4 at machine agents with varying PJTAF (DAGAGA20 to 

DAGAGA100, which indicate GA at level 4 and 3 with PJTAF from 20 to 100). In summary, in the conventional centralized 

approach, the possibility of brute force is exhausted in problem category 1. In contrast, for the decentralized approach, local-

level brute force existed much beyond problem category 1, and it depends on percentage forwarding (PJTAF) by job type 

agent and step size for batch sizes.  

Algorithms of the decentralized and centralized approaches are coded in MATLAB R2019b. A numerical investigation 

is performed on a computer system with Windows 10 platform having Intel(R) Core (TM) i7-3770 CPU @ 3.40GHz 

processor and 8 GB RAM. Also, the time values shown in Table 6 after running the code are in seconds. 

 

4.1.  Observations and Discussion 

 

In order to comprehend the results presented in Table 6, the best-performing approaches among varieties of centralized and 

decentralized approaches are plotted for tight and slack due date settings (figure 3) across five problem categories. By best 

performance, we mean maximum FDOT in the shortest time. For example, for problem category 1, for tight due date setting, 

CAGA10000 and CAGA20000 give the same performance, but CAGA10000 achieves it in a lower time. So, CAGA10000 is the best-

performing centralized approach for problem category 1. Similarly, for problem category 2, the same performance is obtained 

for the tight due date setting for DA40 and DA60; however, DA40 achieves it in a lower time. Some key observations from 

Figure 3 and Table 6 are discussed below.  
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Figure 3 (a) to (i): Comparison of best-performing decentralized and centralized approaches for different problem 

categories and due date settings 
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Table 6. Analysis of Decentralized and Centralized Approaches with FDOT as Machine Agent’s Objective 

 
Sr. 

No Approach 

Problem Category 1 Problem Category 2 Problem Category 3 Problem Category 4 Problem Category 5 

Tight DD Slack DD Tight DD Slack DD Tight DD Slack DD Tight DD Slack DD Tight DD Slack DD 

FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time FDOT Time 

1 DA20 0.6 0.02 0.8 0.03 0.7 0.09 0.75 0.1 0.733 4.93 0.933 5.15 - - - - - - - - 

2 DA40 0.7 0.05 0.8 0.06 0.75 0.15 0.8 0.17 0.733 8.84 0.933 9.16 - - - - - - - - 

3 DA60 0.7 0.07 0.8 0.07 0.75 0.29 0.8 0.32 0.733 26.81 0.933 28.17 - - - - - - - - 

4 DA80 0.7 0.12 0.8 0.12 0.75 0.42 0.8 0.4 0.733 83.05 0.933 85 - - - - - - - - 

5 DA100 0.7 0.3 0.8 0.32 0.75 0.57 0.8 0.62 0.733 614.15 0.933 638.09 - - - - - - - - 

6 DAGA20 0.6 0.47 0.8 0.47 0.7 0.9 0.75 0.9 0.733 0.55 0.933 0.67 0.575 1.29 0.8 1.32 0.552381 4.18 0.761905 4.3 

7 DAGA40 0.7 1.84 0.8 1.84 0.7 3.55 0.8 3.52 0.733 4.31 0.933 4.14 0.725 19.14 0.9 19.24 0.752381 514.61 0.952381 517.42 

8 DAGA60 0.7 4.1 0.8 4.17 0.7 7.97 0.8 8.3 0.733 13.88 0.933 14.11 0.725 96.2 0.925 96.34 0.847619 8266.62 0.971429 8099.21 

9 DAGA80 0.7 7.42 0.8 7.29 0.7 14.34 0.8 14.33 0.733 33.7 0.933 32.61 0.75 303.36 0.9 299.5 - - - - 

10 DAGA100 0.7 11.77 0.8 11.33 0.7 22.36 0.8 22.16 0.733 64.44 0.933 63.84 0.725 724.55 0.9 740.33 - - - - 

11 DAGAGA20 0.6 9.44 0.8 9.66 0.7 18.03 0.75 18.3 0.733 11.27 0.933 11.10 0.7 25.83 0.85 25.21 0.73333 84.57 0.8667 86.21 

12 DAGAGA40 0.7 9.49 0.9 9.69 0.7 18.64 0.8 18.8 0.733 10.24 0.933 10.61 0.7 24.59 0.875 24.97 0.704762 83.7 0.9333 81.42 

13 DAGAGA60 0.7 9 0.8 9.5 0.65 19.32 0.8 19.42 0.733 10.99 0.933 10.66 0.7 23.93 0.825 26.43 0.67619 82.24 0.9333 83.15 

14 DAGAGA80 0.5 8.81 0.5 9.08 0.5 17.73 0.75 18.74 0.733 11.04 0.933 10.97 0.65 23.82 0.8 24.99 0.695238 81.03 0.895238 78.33 

15 DAGAGA100 0.5 9.24 0.5 8.98 0.55 18.42 0.5 17.7 0.667 10.43 0.933 10.94 0.625 24.29 0.75 25.5 0.594706 83.49 0.857149 78.81 

16 CABrute Force 0.8 121.7 1 122.47 - - - - - - - - - - - - - - - - 

17 CAGA10 0.5 4.5 0.8 4.84 0.6 8.4 0.7 8.78 0.733 2 0.933 4.45 0.375 2.79 0.675 8.9 0.228571 21.26 0.295238 20.57 

18 CAGA100 0.7 6.9 0.9 7.21 0.7 13.1 0.8 13.96 0.533 5 0.933 7.23 0.5 8.55 0.675 15.1 0.314286 42.42 0.52381 41.79 

19 CAGA1000 0.7 31.5 0.9 32.76 0.75 60.9 0.8 64.6 0.733 32.4 0.933 36.45 0.65 67.29 0.775 78.44 0.428571 262.03 0.619048 244.9 

20 CAGA10000 0.8 321.09 0.9 320.09 0.75 655.07 0.8 674.19 0.8 345.14 0.933 340.62 0.725 802.49 0.825 779.6 0.52381 2522.3 0.714286 2438.1 

21 CAGA20000 0.8 717.35 1 691.71 0.75 1539.43 0.8 1595.86 0.8 756.52 0.933 759.57 0.75 1700.4 0.875 1693.09 0.571429 5450.6 0.752381 5215.8 

22 CAGA40000 0.8 1686.62 1 1672.21 0.75 4043.29 0.8 4075.98 0.8 1711.7 0.933 1888.1 0.75 3916.74 0.9 4204.86 0.590476 11884 0.8 11821 
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Observation 1:  

Brute force for the centralized approach (CA brute force) was feasible only for problem category 1, as the time required to 

evaluate all possible cases increased exponentially beyond problem category 1 (i.e., with increasing problem complexity). 

Conventionally, heuristics/metaheuristics are used to deal with such complex problems. In the present example, for smaller 

problem size (problem category 1), GA reached the optimal solution given by the brute force (figure 3(a) and (f)) only beyond 

certain population size (10000 and 20000 for tight and slack due date case respectively) used in GA and because of the 

inherent nature of the algorithm, GA evaluates some solutions within solution space repeatedly. As a result, for smaller 

problem sizes, GA even took more time to reach an optimal solution compared to brute force. On the other hand, the 

decentralized approach produced performance comparable to brute force in significantly less time. In terms of objective 

function (FDOT) value, the decentralized approach gave 87.5% and 90% of FDOT for tight and slack due date settings, 

respectively. Regarding evaluation time, the distributed approach took significantly less time than brute force (0.04% for tight 

due date setting and 7.9% for slack due date setting). 

 

Observation 2: 

It can be easily realized that the ability of GA to reach the optimal solution strongly depends on population size. The higher 

the population, the better would be the performance. However, an increase in population size increases the algorithm's 

computational complexity and ultimately results in higher computational time. Also, with the increase in problem complexity 

from Category 1 to Category 5, the requirement of higher population size for GA to reach a better solution is visible 

(Centralized approach in Figure 3 (a) to (e)), as with centralized GA only.  

It leads to an important observation that if the problem size increases, centralized GA may require a significantly larger 

population size to reach an optimal or near-optimal solution. It increases the computation requirement, and one may have to 

compromise with smaller population size and relatively poor-quality solutions. With the decentralized approach, this 

compromise would be much smaller, as observed in Figure 3. For the decentralized approach to obtain reasonable 

performance, the required time increases slowly with increasing complexity. The decentralized approach matches and 

gradually surpasses the performance of the centralized approach with increasing problem complexity in a much shorter time. 

However, some considerations must be considered to maximize the performance of the decentralized approach. Observation 

3 makes these considerations clear. 

 

Observation 3:  

Going for 100% forwarding by a job agent is optional to get the best result. It can be seen from Table 6, serial numbers 1-5, 

that even with a lower number of solutions forwarded by a job type agent, the best possible performance was received for all 

the problem categories. Thus, using lower percentage forwarding by job type agents may be helpful to get quicker solutions.  

If GA is applied at various levels, as discussed before. A higher number of solutions forwarded by job-type agents can 

reduce the performance. For example, figure 4 (a) and (b) summarizes the results reported in serial number 6-15 for all five 

problem categories for slack due date cases.  

Similar results are reported for tight due date cases also. These results are because increased PJATF increases the 

problem complexity for subsequent GA at machine agents for various levels. Thus, GA fails to explore the solution space 

properly. Thus, higher performance may be obtained at a lower value of PJTAF. Machine learning models could be used to 

identify the correct value of PJTAF based on input variables. 

The significance of the decentralized approach for problems with high complexity is highlighted in Figure 5. For the 

problem, the category 5 decentralized approach converges to better performance in less time than the centralized approach, 

as the curve of trend converges to a lower mean FDOT in the case of the decentralized approach. In contrast, it converges to 

a higher mean FDOT for the centralized approach. 

Table 7 shows time variations across problem categories with minimum and maximum observed values across 

approaches within the approaches mentioned in the row for the corresponding problem category in the column. From DA20 

to DA100, the time increases rapidly across problem categories. From DAGA20 to DAGA100, time increases less rapidly compared 

to DA20 to DA100. For DAGAGA20 to DAGAGA100, the rate of increase of time reduces further; within these variations, time values 

are tightly close in the graph. These results can be attributed to the total evaluated sequences by the machine agent. With GA 

at level 4 and level 3, total evaluated sequences are reduced across problem categories, leading to a less rapid increase in 

time. Time calculations are presented further, which justifies time observations. 
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Figure 4. (a) and (b): Performance of decentralized approach with GA across problem categories for slack due date 

 

 
 

Figure 5. Trend for centralized and decentralized approach for problem category 5 across due date 

 

Table 7. Time variation across problem categories 

 

Approach 
Problem 

Category 1 

Problem 

Category 2 

Problem 

Category 3 

Problem 

Category 4 

Problem 

Category 5 

DA20 to DA100 0.02-0.32 0.09-0.62 4.93-638.09 - - 

DGA20 to DAGA100 0.47-11.77 0.9-22.36 0.55-64.44 1.29-740.33 4.18-8266.62 

DAGAGA20 to 

DAGAGA100 
8.81-9.66 17.7-19.42 10.43-11.27 23.82-26.43 78.33-84.57 

 

Time calculations: 

Previous observations show a clear difference in the performance of decentralized and centralized approaches regarding time. 

Time calculations show how the problem size affects the time required for centralized and decentralized approaches. When 

real-life problems are enormous and rapidly changing, saving time to obtain near-optimal solutions by a decentralized 

approach could be gigantic, giving a competitive advantage for Industry 4.0 kind of scenario for dynamic decision-making. 
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The following calculations are presented to understand the reason behind this difference. Table 8 describes notations that 

demonstrate problem size for decentralized and centralized approaches. The calculations below neglect the time required by 

the job type agent as it is minimal compared to the time required by the machine agent to list permutations of sequences of 

batches. 

 

Table 8. Notations used for time calculations 

 

n  No. of job types on the machine 

BSV  Total number of possible batch size values 

BSC  Total number of batch size combinations 

TS  Total sequences for all batch size combinations 

m  Total number of machines 

Di  An order quantity for jth job type 

BSij  Batch size for ith batch size combination and jth job type 

NBij  The number of batches formed from demand such that each batch is processed without interruption for ith batch 

size combination and jth job type 

Ni  Total number of batches on the machine for ith batch size combination 

 Where i=1, 2…….BSC 

 j=1, 2……n 

 

At level 3 from Figure 2, BSC is given by, 

 

𝐵𝑆𝐶 = 𝐵𝑆𝑉𝑛 (12) 

 

For example, for two job types with code JT1 and JT2, the batch sizes under consideration for both are 4,8,12,16 and 20. 

Hence, the BSV for both job types is 5. After substituting values, BSC would be 

 

𝐵𝑆𝐶 = (5)2 = 25  

 

𝑁𝐵𝑖𝑗 =
𝐷𝑗

𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒𝑖𝑗

 (13) 

 

𝑁𝑖 = ∑ 𝑁𝐵𝑖𝑗

𝑛

𝑗=1

 (14) 

 

If the two job types mentioned above had parts of demand 3 and 4, respectively, then Ni=3+4=7 

A sequence is formed as  

 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 1 1 1 2 2 2 2 

 

Total number of sequences for ith batch size combination (Si) 

 

𝑆𝑖 =
𝑁𝑖!

∏ (𝑁𝐵𝑖𝑗!)𝑛
𝑗=1

 (15) 

 

Substituting N1=7, Parts of demand11=3 and Parts of demand12=4 

 

𝑆1 =
7!

3! × 4!
= 35  

 

The number of total sequences (TS) is given by, 
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𝑇𝑆 = ∑ 𝑆𝑖

𝐵𝑆𝐶

𝑖=1

 (16) 

 

For the example considered before, 

 

𝑇𝑆 = 𝑆1 + 𝑆2 + ⋯ + 𝑆25  

 

Computation time depends on TS and is of the order: 

Decentralized approach –  𝑂(𝑚 × 𝑇𝑆 × 𝑁𝑎𝑣𝑔) 

Centralized approach– 𝑂(𝑇𝑆𝑚 × (𝑚 × 𝑁𝑎𝑣𝑔)) 

Navg is the average number of batches routed through a machine in all possible TS sequences. 

 

Given by, 𝑁𝑎𝑣𝑔 =
∑ 𝑁𝑖×𝑆𝑖

𝐵𝑆𝐶
𝑖=1

𝑇𝑆
 (17) 

 

For example, 

If time is Kth multiple of UD for Decentralized approach and UC for Centralized approach 

 

Where 𝑈𝐷 = 𝑚 × 𝑇𝑆 × 𝑁𝑎𝑣𝑔 (18) 

 

and 𝑈𝐶 = 𝑇𝑆𝑚 × (𝑚 × 𝑁𝑎𝑣𝑔) (19) 

 

Let TS =20, m=4, Navg=3 then the total time required would be 

Decentralized approach –   4 × 20 × 3 × 𝑘 = 240𝑘 𝑢𝑛𝑖𝑡𝑠 

Centralized approach –  204 × (4 × 3) × 𝑘 = 1.92 × 106𝑘 𝑢𝑛𝑖𝑡𝑠 

It shows a significant difference in time and required memory for the Decentralized and Centralized approaches. Also, 

enumerating all sequences is infeasible once a specific memory limit has been reached. Hence, the bound is put on the total 

number of generated sequences. This bound is implemented by fixing the number of batch size combinations generated at 

level 3 and sequences within each batch size combination generated at level 4, as described earlier.  

 

5. CONCLUSION 
 

In this work, a novel decentralized scheduling approach is developed where intelligence is imparted to jobs and machines. 

The approach successfully incorporates batch decisions in multi-stage job shop scheduling problems. Multi-stage scheduling 

problems with varying problem sizes are constructed to assess the efficacy of the proposed decentralized approach. These 

problems are also solved using a conventional centralized approach. The decentralized approach generally gives a good 

solution quality in less time.  

The capabilities of a decentralized approach to reach performance, which is closer to the global optimum, is 

demonstrated in problem category 1, even though a centralized approach with GA achieves the global optimum in a much 

longer time. Further, with increasing problem complexity, finding a global optimum with brute force was not feasible. Hence, 

a compromise must be made between time and solution quality. With the decentralized approach, this compromise was much 

smaller than the centralized approach. The significance of a decentralized approach can be highlighted with problems of 

larger problem size, where time consumed by a centralized approach would be unaffordable. Different variations of approach 

are found to be suitable to obtain optimum performance. i.e., best FDOT in minimum time. Hence, the time required can be 

optimized if the right amount of information is passed between agents by reducing the excess computation that comes with 

it while maintaining solution quality. Because of the combinatorial nature of the problem, problem complexity, and the vast 

number of problem instances to which it can be applied, finding the right amount of information to be passed between agents 

and the strategy to achieve the objective for each agent is a challenge. This work attempts to identify the right amount of 

information passed between agents and the strategy to achieve agents' objectives to maximize on-time delivery.  

We could assign more suitable objective functions to existing agents based on a shop floor goal—for example, 

inventory-related objectives to optimize costs. Then, machine learning-based approaches can lead to the identification of the 

right amount of information to be passed and a suitable objective for agents such that shop floor performance is maximized 

in minimum time. The agility of the decentralized approach can be tested in more dynamic environments with machine 

interventions and new job arrivals. 
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