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This paper proposes a new approach for solving dynamic facility layout problems (DFLP) using a genetic algorithm (GA) 

enhanced with machine learning techniques, namely clustering algorithms. The proposed course aims to design a robust 

layout that can adapt to changes in the input parameters. Traditionally, the DFLPs are solved using adaptive methods, i.e., 

the layout from period to period varies. However, in the robust approach, the layout remains the same throughout the different 

planning periods. The GA is used for generating the solutions, and the machine learning technique is used to cluster the 

solutions and select the candidate solution to undergo the local search procedure. The proposed approach is tested on a set of 

benchmark instances and compared with published approaches. The results show that the proposed approach outperforms the 

existing approaches in terms of solution quality, robustness, and computational efficiency. 
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1. INTRODUCTION 
 

To achieve effective functioning of production and service systems, it's essential to have a well-thought-out facility layout in 

addition to optimal planning and operational policies. Inadequate facility design can lead to various problems, such as 

decreased productivity, higher work-in-process, extended manufacturing lead times, and chaotic material handling. The 

objective function of the facility layout problem typically focuses on reducing the Material Handling Cost (MHC), which can 

account for 20-50% of the total operating cost of the operations within the facility (Chan et al., 2004). Efficient facilities 

planning can result in a 10-30% reduction in the costs associated with MHC, which is considered a non-value-added expense, 

leading to increased productivity. Efficient initial planning is crucial because implementing changes to an existing layout is 

a costly and challenging process, making it difficult to achieve without incurring significant expenses. Therefore, designing 

an efficient facility layout is essential for reducing costs and improving productivity in the long term. 

Facility layout design involves identifying the ideal arrangement and placement of departments, cells, or machines 

within those cells. Typically, the allocation of m departments to m locations with the goal of minimizing the Material 

Handling Cost (MHC) is modeled as a Quadratic Assignment Problem (QAP). Unfortunately, the QAP is an NP-complete 

problem, making optimization techniques inefficient for solving problems with more than 30 facilities within a reasonable 

timeframe. Consequently, heuristic approaches are necessary to obtain satisfactory suboptimal solutions to the facility layout 

problem. 

When the pattern of flow between facilities varies over periods, each period needs to be formulated as a separate QAP. 

Since the parameters within the QAP change, the optimal solution for one may not be the optimal solution for the other, 

requiring the facilities to change the positions over periods. Cost is involved in this shifting of facilities, and this possibility 

of shifting the facilities makes the problem more complex. However, obtaining an optimal solution or at least a near-optimal 

solution to such problems is important for the profitable operations of organizations in today’s business environment. 

In an environment marked by competition, markets are often characterized by heterogeneity and volatility. To ensure 

continued productivity in the face of such volatile demand conditions, manufacturing firms must configure their production 

processes in a manner that is well-suited to their specific needs. Manufacturing organizations must now possess the capacity 
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to create and manage facilities that can quickly and effectively adapt to developing technological advancements and shifting 

market requirements to achieve success. Consequently, modern manufacturing facilities must exhibit a high degree of 

flexibility and robustness to respond adequately to significant changes in their operating requirements. 

When demand remains relatively constant over time, the approach of the Static Plant Layout Problem (SPLP) has been 

proven to be an effective method for creating an appropriate layout for a facility. However, when demand is subject to frequent 

fluctuations, static layout generation approaches may prove to be inefficient at various points during the planning horizon. 

Changes in product demand, shifts in product mix, the introduction of new products, and discontinuation of existing products 

are all factors that can render the current facility layout inefficient, leading to increased Material Handling Costs (MHC) and 

necessitating a change in layout (Afentakis et al., 1990; Krishnan et al., 2009). In order to maintain an optimal facility layout, 

it is necessary to continually assess fluctuations in the demand for products and movement between different departments. 

This highlights the necessity of employing Dynamic Facility Layout Problem (DFLP) strategies to create layouts that can 

effectively adapt to the evolving requirements of manufacturing plants. 

When it comes to addressing the dynamic facility layout problem, there are two main approaches that have been 

explored: the adaptive/flexible/agile approach and the robust approach. When addressing facility layout problems, the 

adaptive approach presumes that changes in demand will occur periodically, and with easily movable machines and low 

rearrangement expenses, the facility layout can adapt to these variations. Conversely, the robust approach presumes that 

rearrangement costs are exorbitant and aim to reduce the overall expenses of material handling throughout all time frames 

through a unified layout. To develop layouts for single-period and multi-period problems with multiple production scenarios, 

the robust approach is frequently used. This approach recommends a single layout for multiple scenarios and periods. 

Rosenblatt (1986) was the first to model the dynamic facility layout problem, and they used a dynamic programming approach 

to solve the model for multiple periods. In each stage, the designer resolves a layout design problem that is static in nature 

for a particular set of options. Lacksonen (1997) proposed a model that could handle both rearrangement and unequal area 

constraints for the dynamic facility layout problem. The model utilized a pre-processing technique to produce solutions for 

large-scale problems and incorporated an enhanced branch-and-bound algorithm to generate workable layouts. Finally, Yang 

and Peters (1998) proposed a flexible machine layout model that includes both material handling and machine rearrangement 

costs. A rolling horizon planning time window is utilized in this layout design, enabling the facility layout to adapt to changes 

over time. 

A resilient model for DFLP is proposed in the work reported in this paper. A hybrid Genetic Algorithm incorporating 

machine learning algorithms with a local search into the Genetic Algorithm (GA) is used to solve the robust model for DFLP. 

The machine learning-based genetic algorithm (ML-GA) proposed in this study has been evaluated using various problems 

from the existing literature, and the results demonstrate its effectiveness in all cases. Specifically, the robust model has been 

applied to these problems, and the resulting robust layout solution has been compared to the adaptive layout solution and 

robust layout solution reported by various authors for the test instances used in the tests. Remarkably, the robust layout 

strategy yields a solution quality that is nearly equivalent to that of the adaptive layout strategy while avoiding production 

interruption and relocation. This implies that a robust layout can be defined as one that can efficiently manage fluctuations 

in product demand across various timeframes within the planning horizon. However, the method of obtaining robust layout 

for DFLPs are not much explored in the literature. The present work proposes a simple method to obtain robust layouts for 

DFLPs and presents a GA enhanced with a machine learning-based search algorithm for finding near-optimal solutions for 

complex DFLPs in a short time. 

The rest of the paper is organized as follows: section 2 provides an account of the existing published works on SFLPs 

and DFLPs. Here, the papers are listed in the literature as per the methods adopted for solving the problem. The research 

methodology adopted is explained in section 3. Section 4 depicts the experimental results, and section 5 concludes the paper 

with a discussion of the results obtained. 

 

2. LITERATURE REVIEW 
 

Facility layout design is a critical issue in manufacturing and service industries to achieve efficient utilization of space, reduce 

material handling costs, and enhance overall operational performance. The problem of facility layout design involves 

assigning different departments or workstations in a given area to optimize the operational efficiency and productivity of a 

facility. Various approaches have been proposed to generate layouts, which can be broadly classified into two categories: 

qualitative and quantitative. 

Closeness ratings between departments are utilized in qualitative approaches to determine a suitable layout. The main 

objective of such approaches is to minimize the material handling cost by arranging the departments or workstations in a 

manner that reduces the distance between them. In this approach, departments are rated based on their level of interaction, 

and a layout is generated based on the overall closeness rating. However, these approaches do not consider the specific 
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requirements of the departments, such as space, equipment, and environmental factors, which can limit their applicability in 

practice. 

On the other hand, quantitative approaches aim to minimize the total material handling cost (MHC) between the 

departments. These approaches consider the specific requirements of each department and the layout of the facility to 

minimize the MHC while satisfying the constraints. In this approach, the distance between departments is considered, along 

with other factors such as department size, shape, and orientation. Quantitative approaches are more comprehensive than 

qualitative approaches, as they consider multiple factors that affect the operational performance of a facility. 

The existing methods for the facility layout problem can be categorized into exact, heuristic, meta-heuristic, and hybrid 

solution approaches. Exact methods provide an optimal solution by exploring all possible layouts, but they are limited to 

small-size problems due to the computational complexity. Heuristic methods are designed to solve large-scale problems by 

using a set of rules or procedures that generate near-optimal solutions in a short time. Meta-heuristic methods are based on 

nature-inspired algorithms that explore the solution space to find a good solution, but they do not guarantee optimality. Hybrid 

approaches combine the advantages of both heuristic and meta-heuristic methods to improve the quality of solutions and 

reduce computational time. For a comprehensive review of the existing methods for the facility layout problem, see Kusiak 

and Heragu (1987), Yaman et al. (1993), Singh and Sharma (2006), Drira et al. (2007), Sharma and Singhal (2016), Zhu et 

al. (2017), Perez-Gosende et al. (2020), Alarcon-Gerbier and Buscher (2022), and Khaleghi and Eydi (2022). 

 

2.1 Solution Methods for Facility Layout Problems 

 

Researchers have proposed various methods to solve the facility layout problem. Tam and Li (1991) proposed a heuristic 

method that considers both quantitative and qualitative factors to generate a layout. Tang and Abdel-Malek (1996) proposed 

a genetic algorithm to solve the single-row facility layout problem (SFLP) with unequal areas. Foulds et al. (1998) proposed 

a tabu search algorithm to solve the SFLP with equality and inequality constraints. Chan et al. (2002) proposed a modified 

genetic algorithm to solve the SFLP with forbidden regions. 

Bock and Hoberg (2007) proposed a hybrid method that combines a genetic algorithm with a local search heuristic to 

solve the SFLP with constraints such as aisles, walls, and columns. Wilhelm and Ward (1987) proposed a simulated annealing 

algorithm to solve the facility layout problem with multiple objectives. Mak et al. (1998) proposed a genetic algorithm to 

solve the facility layout problem with unequal areas and multiple objectives. 

El-Baz (2004) proposed a hybrid simulated annealing algorithm to solve the facility layout problem with multiple 

objectives and equality constraints. Hu and Wang (2004) proposed a hybrid genetic algorithm to solve the facility layout 

problem with constraints such as rectangular shape and adjacency requirements. Rosenblatt (1979) proposed a method that 

combines qualitative and quantitative factors to generate a layout. 

Dutta and Sahu (1982) proposed a method that uses the hierarchical clustering algorithm to group departments based 

on their interaction and then generates a layout based on the clustering results. Numerous works of literature have focused on 

combining quantitative and qualitative factors in solving SPLPs. These works use different solution approaches and 

algorithms to optimize the layout design. Examples of such works include Rosenblatt (1979), Dutta and Sahu (1982), 

Malakooti and D’Souzas (1987), Soundar et al. (1988), Heragu and Kusiak (1990), Catherine and Tothero (1992), Raoot and 

Rakshit (1993), Meller and Gau (1996), Islier (1998), Sha and Chen (2001), Tuzkaya et al. (2005), Ertay et al. (2006), and 

Khilwani et al. (2008). 

 

2.2 Solution Methods for Dynamic Facility Layout Problems 

 

From the 1950s to the 1990s, SPLP received significant attention from researchers who conducted extensive research on the 

subject. However, in recent years, scholars have been focusing on addressing the dynamic facility layout problem (DFLP). 

Various researchers have proposed new and improved models and algorithms to solve DFLP. In 1986, Rosenblatt (Rosenblatt, 

1986) developed a model and solution procedure for DFLP with an adaptive approach for small-sized problems. A review of 

research on the dynamic layout problem is available in the work of Balakrishnan and Cheng (1998), as well as Ulutas and 

Islier's (2005) and Konak's (2007) works. The articles classify various algorithms based on whether the departments are of 

equal or unequal size and the nature of the material flow, whether it's deterministic or stochastic. Numerous researchers, such 

as Rosenblatt (1986), Balakrishnan et al. (1992), and Palekar et al. (1992), have developed adaptive, flexible, or agile layouts 

that can be easily rearranged to meet changes in production requirements. They used exact and heuristic methods to solve the 

DFLPs. Lacksonen and Enscore (1993), Lacksonen (1997), Kochhar and Heragu (1999), Balakrishnan and Cheng (2000, 

2009), Balakrishnan et al. (2000), Baykasoğlu and Gindy (2001), Balakrishnan et al. (2003), Corry and Kozan (2004), Dunker 

et al. (2005), Lahmar and Benjaafar (2005), Baykasoğlu et al. (2001), McKendall and Shang (2006), McKendall et al. (2006), 

and Norman and Smith (2006) are among the other researchers who have contributed to the development of DFLP solution 

methods. 
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2.3 Evolutionary Computation Methods for Dynamic Facility Layout Problems 

 

Several researchers have used meta-heuristics, such as simulated annealing, genetic algorithms, and ant colony optimization, 

to solve the DFLPs. Among them are Kochhar and Heragu (1999), Balakrishnan and Cheng (2000), Baykasoğlu and Gindy 

(2001), Corry and Kozan (2004), Baykasoğlu et al. (2006), and Norman and Smith (2006). Hybrid approaches have also been 

attempted by Balakrishnan and Cheng (2000), Balakrishnan et al. (2003), Dunker et al. (2005), McKendall and Shang (2006) 

and McKendall et al. (2006). Some researchers, such as Balakrishnan et al. (1992) and Baykasoglu et al. (2006), have 

considered a budget constraint on rearrangement costs in their models. Balakrishnan and Cheng (2009) investigated the 

performance of various algorithms under different conditions, such as fixed and rolling horizons, shifting costs, flow 

variability, and forecast uncertainty. Lahmar and Benjaafar (2005) presented a procedure for designing distributed layouts 

over a multi-period, while Kochhar and Heragu (1999) explored the design of a multiple-floor dynamic facility. Additionally, 

robust layouts for multiple production scenarios in a single period and multi-period have been developed by several 

researchers, including Kouvelis et al. (1992), Yang and Peters (1998), Benjaafar and Sheikhzadeh (2000), Aiello and Enea 

(2001), and Pillai and Subbarao (2008). Kouvelis et al. (1992) emphasized the importance of robustness for dynamic layout 

problems and developed an algorithm to generate robust layouts for manufacturing systems. Pillai and Subbarao (2008) 

presented a genetic algorithm-based solution procedure for forming part families and machine cells that can handle changes 

in demands and product mixes without any relocations. 

Bayliss and Panadero (2023) address the facility location and population assignment problem, where the feasibility is 

influenced by facility assignments and stochastic arrival times. To tackle this challenge, a novel learning heuristic algorithm 

is proposed. The algorithm involves two main steps: (1) training a machine learning algorithm using data derived from a 

queuing model (simulation module) and (2) constructing solutions using the trained machine learning algorithm to rapidly 

evaluate decisions based on facility completion and population waiting times. To assess the effectiveness of the learn heuristic 

algorithm, a comparison is made with two other methodologies: exact and simulation-only (Sim heuristic) approaches. 

Through a series of experiments, various trade-offs between solution cost, completion time, population travel time, and 

waiting time are explored, showcasing the efficiency and quality of the proposed algorithm. 

The effectiveness of a layout in a dynamic environment can be measured by different criteria, and the strategies used to 

develop robust or adaptive layouts depend on these criteria. Braglia et al. (2003) proposed a method using indices to identify 

whether a robust or agile layout strategy should be preferred. Building upon the single-row machine layout problem case 

study and an extensive series of experimental trials, the researchers have introduced two analytical metrics: Layout Problem 

Robustness Index (LPRI) and Layout Configuration Robustness Index (LCRI). These metrics aim to assess, respectively, the 

resilience of a stochastic layout problem and the robustness of a particular layout configuration when applied to a specific 

problem. Pillai (Pillai, 2005) explained the general measures of effectiveness used to evaluate layout performance under 

different conditions, such as the average percentage of cost difference, the percentage of situations where a layout is optimum, 

the maximum percentage of cost difference, and the robustness indicator. The flexibility of the layout to adjust to shifts in 

demand is quantified by the robustness indicator, which represents the percentage of cost difference that is equal to or less 

than a predetermined percentage. 

Raman et al. (2007) developed a model to measure the effectiveness of layouts in terms of layout flexibility, area 

utilization, and closeness gap. The notion of a "closeness gap" pertains to the nearness of closely interconnected facilities or 

departments, with consideration given to the distance that material handling equipment, information, and personnel need to 

traverse. This approach aims to enhance productivity by measuring these factors. 

Pillai and Subbarao (2008) proposed the concept of robust design for cellular manufacturing systems under dynamic 

demand and used it to develop a robust layout model for DFLP. The proposal was to create a cellular manufacturing system 

for a typical scenario that would be applicable for all periods within a multi-period planning horizon. The same idea was also 

extended to the development of a robust design for multi-period layout design. The layout effectiveness measures from 

Braglia et al. (2003) were used to evaluate the suitability of the solution obtained using the suggested robust model for DFLP 

problems. 

Measuring parameters such as layout flexibility, area utilization, and closeness gaps helps improve productivity. Under 

dynamic demand, the idea of implementing robust design principles in cellular manufacturing systems is a useful approach 

for developing robust layouts in DFLP. The effectiveness measures proposed by Braglia et al. (2003) can be used to evaluate 

the suitability of solutions obtained using the suggested robust model. An innovative approach has been developed by Pérez-

Gosende et al. (2023) to tackle the problem using a multi-objective mixed-integer non-linear programming (MOMINLP) 

model, referred to in the literature as the bottom-up approach. The proposed model, known as bottom-up mDFLP, 

encompasses three primary objectives: minimizing the total material handling cost (TMHC) and the total rearrangement cost 

(TRAC), maximizing the total closeness rating (TCR) between departments and maximizing the area utilization ratio (AUR). 

To enhance computational efficiency, the original MOMINLP has undergone a transformation into a more streamlined form, 
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now referred to as the multi-objective mixed-integer linear programming (MOMILP) model. This modification allows for 

improved computational speed and optimization in addressing the problem at hand. 

 

3. RESEARCH METHODOLOGY 
 

The work presented in this paper goes through two phases. In the first phase efficiency of the proposed algorithm is proven 

by solving static layout problem (SPLP) test instances. For this, the QAP instances available in the QAPLIB (Burkard et al., 

1997) are used, as QAPs are another representation of SPLPs. In the second phase, the DFLPs are converted into QAP by 

adding the flow matrices of different periods together to form the flow matrix of the QAP. Then, this QAP is used to find the 

robust layout for the corresponding DFLP. The details of each of the phases are provided in the following subsections. 

 

3.1 Problem description and formulation for SPLP 

 

When it comes to solving the plant layout problem in a static environment, typically for a single period, the focus is on 

assigning 'm' facilities to 'm' discrete locations to minimize the assignment cost. This cost is determined by the product of 

material flow between facilities, the distances between their locations, and the installation cost. However, in order to more 

accurately reflect the real-world complexity of the problem, the part-handling factor is also considered. This factor takes into 

account how the characteristics of a component may vary when transitioning from one procedure to another. For example, a 

part's size, weight, shape, or other attributes may change during assembly operations, and thus, the optimal layout can be 

different even if the quantitative demand for the part remains unchanged. In order to address this, the part handling factor 

suggested by Chan et al. (2004) is incorporated into the layout design problem. 

Solving the plant layout problem requires the consideration of several inputs, such as the number of parts to be produced, 

demand for each part, machine sequence or route sheet of the parts, part handling factor, and location layout grid. The 

Quadratic Assignment Problem (QAP) involves determining the flow and distance between facilities, with demand and 

machine sequence used to calculate the flow. Based on the above-mentioned factors, the flow between the facilities is 

calculated, which can be used as a single parameter in the modeling of the static layout problems. 

 

3.1.1 Model for SPLP 

 

The mathematical model of static layout problem 

 

Minimize 𝑍𝑠 =  ∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑖𝑗𝑥𝑘𝑙
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1  (1) 

 

Subjected to 

 
∑ 𝑥𝑖𝑗

𝑚
𝑖=1 = 1 ∀ j = 1,2, …, m (2) 

∑ 𝑥𝑖𝑗
𝑚
𝑗=1 = 1 ∀ i = 1,2, …, m (3) 

 

where 

 

𝑑𝑗𝑙 = |𝑥𝑗 − 𝑥𝑙| + |𝑦𝑗 − 𝑦𝑙|, Euclidean distance between facilities j and l (4) 

𝑥𝑖𝑗 = {0,1} ∀ i = 1,2, …, m and ∀ j = 1,2, …, m (5) 

𝑓𝑖𝑘 = part flow weight from facility 𝑗 to facility 𝑘  

 

𝑥𝑖𝑗 = 1 if facility 𝑖 is assigned to location 𝑗, 0 otherwise 

 

3.2 Proposed Machine Learning-based Genetic Algorithm (ML-GA) for Layout Formation 

 

The Genetic Algorithm (GA) is a search method that operates on a population of potential solutions, where each member of 

the population is represented by a feasible solution or chromosome. The GA proceeds through a series of iterative steps 

designed to improve the quality of the solution. These steps include selection, reproduction, evaluation, and replacement. 

Through the process of selection, the algorithm identifies the fittest solutions in the population and reproduces them to create 

new offspring. The offspring are then evaluated for their fitness, and those that are deemed less fit are replaced with new 

solutions. The algorithm terminates when the population has converged to an optimal solution, as defined by the problem 
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being solved. The flow diagram of the proposed Machine Learning based Genetic Algorithm (ML-GA) is depicted in              

Figure 1 

 

Initialize 
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Generate Initial 

Random Population

Evaluate 

Fitness

Termination 
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Selection

Crossover 

and Mutation
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Return Best 

Individual

YES

NO

Clustering

 
 

Figure 1. Flow diagram of proposed ML-GA 

 

3.2.1 Model for SPLP 

 

K-Means Clustering represents an Unsupervised Learning technique that organizes unlabeled datasets into distinct clusters. 

The parameter K determines the quantity of predefined clusters to establish during the process. For instance, if K is set to 2, 

the algorithm forms two clusters; similarly, for K=3, it generates three clusters, and so forth. The working of the K-Means 

algorithm is explained in the below steps: 

 

Step-1: Determine the number of clusters, denoted as K. 

Step-2: Randomly select K initial points or centroids. These may differ from the points in the input dataset. 

Step-3: Assign each data point to its nearest centroid, forming K predefined clusters. 

Step-4: Compute the variance and reposition the centroids of each cluster. 

Step-5: Iterate through the third step, reassigning each data point to the closest new centroid for its cluster. 

Step-6: If any reassignments have occurred, return to step 4; otherwise, STOP. 

 

3.2.2 Local Search 

 

In the proposed algorithm, a machine learning algorithm, namely the K-means clustering algorithm, is used for selecting the 

individuals which undergo the local search procedure. The population in the GA after the crossover and mutation operations 

are clustered using the K-means algorithm, and one individual from each cluster is selected randomly to undergo the local 

search procedure. By employing local search in only one individual in a cluster, it is ensured that repetitive evaluations of the 

same solutions resulting from the local search of various solutions falling to the same neighborhood are avoided.  

The approach employed for local search in this study is the pair-wise exchange (PWX) local search method. This method 

involves searching through all the potential solutions that result from exchanging two unique elements within the current 

solution. The PWX local search randomly selects two elements in the parent string and exchanges them (Banzhaf, 1990). For 

example, consider the parent solution string represented by (1 2 3 4 5 6), and suppose that the second and the fifth assignments 

are randomly selected, which results in the solution string (1 5 3 4 2 6). If an improved solution is identified, it supplants the 

original solution, and the PWX local search is repeated recursively with the newly replaced solution at the center. This 

iterative process persists until a solution is reached where there is no superior alternative within its PWX neighborhood. As 
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such, the recursive variant of the PWX local search method is utilized in this research. Figure 2 depicts the pseudocode for 

the PWX local search. 

The layout model defined above is solved using the proposed ML-GA coded in MATLAB. A program coded in 

MATLAB for the proposed algorithm was run on the Pentium 4, 2.60 GHz, 2 GB RAM processor. The performance of this 

solution procedure is tested by solving 92 test instances of sizes ranging from 12 to 50 obtained from the QAPLIB (Burkard, 

Karisch and Rendl, 1997). Section 4 contains a numerical depiction of the cases and a detailed analysis of the results.  

Table 1 presents the operations and parameters employed in the proposed ML-GA for obtaining the robust layout for 

DFLPs. These operations and parameters used in GA are selected after conducting a pilot study for optimizing the GA. 

 

 
Figure 2. Pseudocode for PWX local search 

 

Table 1. Selected operations and parameters for the proposed ML-GA 

 

Sl. No. Parameter / Operator Value 

1 Population Size d × p / 2 

2 Mutation Probability 0.04 

3 Crossover Probability 0.9 

4 Termination Criterion Number of Generations = 10 × d × p 

5 Selection Procedure Roulette wheel selection 

6 Crossover Operator Single point crossover 

7 Mutation Operator Swap mutation 

8 Offspring Insertion Strategy Parent replacement strategy 

9 Clustering Method K-means clustering 

10 Number of Clusters (K) d 

11 Local Search Method Pair-wise Exchange Local Search 

12 Fitness value The inverse of the cost associated with the solution 

Note: d represents the number of departments, and p represents the number of periods. 

 

3.3 Problem description and formulations for DFLP 

 

The Dynamic Facility Layout Problem (DFLP) deals with designing the optimal layout for a manufacturing system over a 

planning horizon, which consists of multiple periods. The assumption in the DFLP is that there will be different material flow 

matrices during different periods of the planning horizon. To solve this problem, adaptive approaches are employed, which 

involve rearranging facilities and incurring relocation costs. The adaptive DFLP model aims to minimize the combined 

Material Handling Cost (MHC) and relocation costs throughout the planning horizon. The process involves assigning 'm' 

facilities to 'm' candidate locations on the layout grid while factoring in the associated rearrangement costs. The mathematical 

formulation of the adaptive approach is a quadratic assignment model, which considers the dynamic nature of the system 

over time. Several researchers have proposed adaptive DFLP models that aim to minimize both MHC and relocation costs 

using various optimization techniques. The ultimate goal is to design an optimal layout that meets the requirements over the 

entire planning horizon while minimizing costs. Below is a common mathematical representation of the adaptive approach. 

 

Minimize 

𝑍 =  ∑ ∑ ∑ ∑ 𝐴𝑡𝑖𝑗𝑙𝑌𝑡𝑖𝑗𝑙

𝑚

𝑙=1

𝑚

𝑗=1

𝑚

𝑖=1

𝑇

𝑡=2

+ ∑ ∑ ∑ ∑ ∑ 𝐶𝑡𝑖𝑗𝑘𝑙

𝑚

𝑙=1

𝑋𝑡𝑖𝑗𝑋𝑡𝑘𝑙

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

𝑇

𝑡=1

 (6) 

 

PWX_pseudo_code 

{ 

 do 

 { 

  a. Select two random positions c1 and c2 in the parent.  

  b. Exchange or swap the elements in positions c1 and c2. 

 } while solution in b is better 

} 
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Subject to 

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑖 = 1, 2, . . . , 𝑚 𝑎𝑛𝑑 𝑡 =  1, 2, . . . , 𝑇

𝑚

𝑗=1

 (7) 

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑚 𝑎𝑛𝑑 𝑡 =  1, 2, . . . , 𝑇

𝑚

𝑖=1

 (8) 

𝑌𝑡𝑖𝑗𝑙 = 𝑋(𝑡−1)𝑖𝑗𝑋𝑡𝑖𝑙 , 𝑖, 𝑗, 𝑙 =  1, 2, . . . , 𝑚, 𝑡 =  1, 2, . . . , 𝑇 (9) 

𝑋𝑡𝑖𝑗 = {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑡 (10) 

𝑌𝑡𝑖𝑗𝑙 =  {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑙, 𝑡 (11) 

 

where 

m = Number of departments and locations. 

T = Number of periods. 

Atijl = Cost of shifting department i from location j to l in period t (where Atijj= 0). 

Ctijkl = Cost of material flow between department i located at location (site) j and k located at l in period t. 

 

 𝑋𝑡𝑖𝑗 =  {
1 if department 𝑖 is assigned to location 𝑗 at period 𝑡

0 otherwise
 

  

𝑌𝑡𝑖𝑗𝑙 ={
1 if department 𝑖 is shifted from location 𝑗 to 𝑙 at the beginning of period 𝑡

0 otherwise
 

 

The primary aim of function (6) is to reduce the total expenses incurred in transferring materials between departments 

by minimizing both the rearrangement costs and flow costs. To ensure that each location is allocated only one department 

during each period, constraint set (7) is implemented, while constraint set (8) guarantees that each location is assigned only 

one department during every period. Additionally, constraint set (9) is utilized to combine the rearrangement costs and 

material flow costs in situations where a department is moved between locations in consecutive periods. The decision 

variables are further subjected to the constraints (10) and (11) to satisfy the limitations imposed on them. 

 

3.4 The Proposed robust approach to DFLP 

 

Designing a layout that can accommodate varying flow or demand scenarios during different periods is a challenging issue 

known as the dynamic layout problem. To address this problem, a robust approach is required. Traditionally, layouts are 

developed for a single period, assuming that interdepartmental flow remains constant over time. However, this approach may 

not be suitable in a dynamic environment where demand or flow between facilities varies over time. 

To solve this issue, a sturdy solution is put forward, wherein a plan for the anticipated flow or demand scenario is 

formulated and employed throughout the entire planning horizon, eliminating the need to relocate facilities. This method 

involves a computational effort of only m!, which is notably less than the adaptive approach that necessitates (m!)T 

computational effort. 

If relocating facilities is difficult and expensive, the proposed approach is suitable. Additionally, it minimizes the risk 

of operational disruptions caused by moving facilities over multiple timeframes. To achieve this, a quadratic assignment 

model is developed to allocate 'm' facilities to 'm' potential locations on the layout grid for each planning horizon period. 

Overall, the robust approach to the dynamic layout problem offers a reliable and cost-effective solution to designing a 

layout that accommodates the expected flow or demand scenario of various periods. It requires less computational effort than 

other approaches and is ideal for situations where relocation costs are high or operational disruption is a concern. 

 

4. EXPERIMENTAL RESULTS 
 

The data set used for evaluating the performance of the layout formation method consists of data from the QAPLIB (Burkard, 

Karisch and Rendl, 1997). Data from Balakrishnan and Cheng (2000) are used to demonstrate the performance of a robust 

layout model.  

 

4.1 Analysis of results of SPLP using the ML-GA method of layout formation 
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It is necessary to validate the effectiveness of the proposed layout formation method's performance. Standard problem 

instances from the QAPLIB (Burkard, Karisch and Rendl, 1997) are used for this purpose. 

The problem instances obtained from the QAPLIB (Burkard et al., 1997) are mainly used for evaluation. ML-GA was 

utilized to solve a set of 92 standard problem instances sourced from QAPLIB (Burkard, Karisch and Rendl, 1997). The 

problem sizes ranged from 12 to 50, and the algorithm was initialized with a random solution value. Each problem was 

executed 10 times, and the resulting solution values were compared and recorded in Table 2. It is noteworthy that out of the 

92 problems, the best-known solution (BKS) was obtained in 77 instances after the 10 runs were performed. The remaining 

15 problems reported less than one percentage deviation from the best-known solution. Overall, it can be stated that the 

proposed ML-GA approach for creating layouts has the potential to yield satisfactory outcomes for layout problems.   

 

Table 2. Results of experiments using ML-GA for solving the SPLPs 

 

Sl. No. Problem Size Known Min 
Solution % Error 

Min Max Average Min Max Average 

1 bur26a 26 5426670 5426670 5432449 5429210.4 0.0 0.1 0.0 

2 bur26b 26 3817852 3817852 3824657 3820631.5 0.0 0.2 0.1 

3 bur26c 26 5426795 5426795 5427052 5426836.7 0.0 0.0 0.0 

4 bur26d 26 3821225 3821225 3821555 3821316.2 0.0 0.0 0.0 

5 bur26e 26 5386879 5386879 5387368 5386927.9 0.0 0.0 0.0 

6 bur26f 26 3782044 3782044 3782068 3782046.4 0.0 0.0 0.0 

7 bur26g 26 10117172 10117172 10118542 10117309.0 0.0 0.0 0.0 

8 bur26h 26 7098658 7098658 7099630 7098755.2 0.0 0.0 0.0 

9 chr12a 12 9552 9552 10096 9715.2 0.0 5.7 1.7 

10 chr12b 12 9742 9742 10102 9886.0 0.0 3.7 1.5 

11 chr12c 12 11156 11156 11662 11337.0 0.0 4.5 1.6 

12 chr15a 15 9896 9896 10702 10195.6 0.0 8.1 3.0 

13 chr15b 15 7990 7990 9486 8887.0 0.0 18.7 11.2 

14 chr15c 15 9504 9504 11366 10454.4 0.0 19.6 10.0 

15 chr18a 18 11098 11098 13334 12228.4 0.0 20.1 10.2 

16 chr18b 18 1534 1534 1534 1534.0 0.0 0.0 0.0 

17 chr22a 22 6156 6194 6412 6330.2 0.6 4.2 2.8 

18 chr22b 22 6194 6254 6478 6376.2 1.0 4.6 2.9 

19 els19 19 17212548 17212548 17937024 17284995.6 0.0 4.2 0.4 

20 esc16a 16 68 68 68 68.0 0.0 0.0 0.0 

21 esc16b 16 292 292 292 292.0 0.0 0.0 0.0 

22 esc16c 16 160 160 160 160.0 0.0 0.0 0.0 

23 esc16d 16 16 16 16 16.0 0.0 0.0 0.0 

24 esc16e 16 28 28 28 28.0 0.0 0.0 0.0 

25 esc16g 16 26 26 26 26.0 0.0 0.0 0.0 

26 esc16h 16 996 996 996 996.0 0.0 0.0 0.0 

27 esc16i 16 14 14 14 14.0 0.0 0.0 0.0 

28 esc16j 16 8 8 8 8.0 0.0 0.0 0.0 

29 esc32a 32 130 130 142 136.2 0.0 9.2 4.8 

30 esc32b 32 168 168 192 175.6 0.0 14.3 4.5 

31 esc32c 32 642 642 642 642.0 0.0 0.0 0.0 

32 esc32d 32 200 200 200 200.0 0.0 0.0 0.0 

33 esc32e 32 2 2 2 2.0 0.0 0.0 0.0 

34 esc32g 32 6 6 6 6.0 0.0 0.0 0.0 

35 esc32h 32 438 438 438 438.0 0.0 0.0 0.0 

36 had12 12 1652 1652 1660 1652.8 0.0 0.5 0.0 

37 had14 14 2724 2724 2724 2724.0 0.0 0.0 0.0 

38 had16 16 3720 3720 3722 3720.2 0.0 0.1 0.0 

39 had18 18 5358 5358 5370 5359.2 0.0 0.2 0.0 

40 had20 20 6922 6922 6926 6922.6 0.0 0.1 0.0 
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Sl. No. Problem Size Known Min 
Solution % Error 

Min Max Average Min Max Average 

41 kra30a 30 88900 88900 91720 90512.0 0.0 3.2 1.8 

42 kra30b 30 91420 91490 92380 91911.0 0.1 1.1 0.5 

43 kra32 32 88700 88700 90800 89982.0 0.0 2.4 1.4 

44 lipa20a 20 3683 3683 3765 3712.8 0.0 2.2 0.8 

45 lipa20b 20 27076 27076 27076 27076.0 0.0 0.0 0.0 

46 lipa30a 30 13178 13178 13373 13296.5 0.0 1.5 0.9 

47 lipa30b 30 151426 151426 174317 153715.1 0.0 15.1 1.5 

48 lipa40a 40 31538 31538 31898 31839.8 0.0 1.1 1.0 

49 lipa40b 40 476581 476581 476581 476581.0 0.0 0.0 0.0 

50 lipa50a 50 62093 62592 62724 62664.9 0.8 1.0 0.9 

51 lipa50b 50 1210244 1210244 1210244 1210244.0 0.0 0.0 0.0 

52 nug12 12 578 578 586 582.8 0.0 1.4 0.8 

53 nug14 14 1014 1014 1018 1017.2 0.0 0.4 0.3 

54 nug15 15 1150 1150 1160 1153.0 0.0 0.9 0.3 

55 nug16a 16 1610 1610 1622 1612.4 0.0 0.7 0.1 

56 nug16b 16 1240 1240 1240 1240.0 0.0 0.0 0.0 

57 nug17 17 1732 1732 1742 1735.0 0.0 0.6 0.2 

58 nug18 18 1930 1930 1954 1939.6 0.0 1.2 0.5 

59 nug20 20 2570 2570 2574 2572.0 0.0 0.2 0.1 

60 nug21 21 2438 2438 2460 2446.4 0.0 0.9 0.3 

61 nug22 22 3596 3596 3618 3599.4 0.0 0.6 0.1 

62 nug24 24 3488 3488 3526 3506.2 0.0 1.1 0.5 

63 nug25 25 3744 3744 3766 3749.8 0.0 0.6 0.2 

64 nug27 27 5234 5234 5268 5243.4 0.0 0.6 0.2 

65 nug28 28 5166 5166 5230 5196.8 0.0 1.2 0.6 

66 nug30 30 6124 6128 6186 6152.2 0.1 1.0 0.5 

67 rou12 12 235528 235528 235852 235592.8 0.0 0.1 0.0 

68 rou15 15 354210 354210 363604 358824.6 0.0 2.7 1.3 

69 rou20 20 725522 725662 741534 732431.2 0.0 2.2 1.0 

70 scr12 12 31410 31410 31410 31410.0 0.0 0.0 0.0 

71 scr15 15 51140 51140 53182 51935.2 0.0 4.0 1.6 

72 scr20 20 110030 110030 112692 110957.6 0.0 2.4 0.8 

73 sko42 42 15812 15818 15924 15865.4 0.0 0.7 0.3 

74 sko49 49 23386 23454 23516 23481.6 0.3 0.6 0.4 

75 ste36a 36 9526 9550 9900 9697.4 0.3 3.9 1.8 

76 ste36b 36 15852 15852 16150 15904.6 0.0 1.9 0.3 

77 ste36c 36 8239110 8254628 8410990 8296522.6 0.2 2.1 0.7 

78 tai12a 12 224416 224416 230704 225044.8 0.0 2.8 0.3 

79 tai12b 12 39464925 39464925 39464925 39464925.0 0.0 0.0 0.0 

80 tai15a 15 388214 388214 393768 390850.2 0.0 1.4 0.7 

81 tai15b 15 51765268 51765268 51866297 51812000.0 0.0 0.2 0.1 

82 tai17a 17 491812 494458 502908 499595.8 0.5 2.3 1.6 

83 tai20a 20 703482 707178 719654 712619.4 0.5 2.3 1.3 

84 tai20b 20 122455319 122455319 123416507 122797905.7 0.0 0.8 0.3 

85 tai25b 25 344355646 344355646 366555760 347915081.1 0.0 6.4 1.0 

86 tai30b 30 637117113 637117113 651247567 643406828.6 0.0 2.2 1.0 

87 tai35b 35 283315445 283315445 289568462 285062874.2 0.0 2.2 0.6 

88 tai40b 40 637250948 637250948 653971855 640512285.7 0.0 2.6 0.5 

89 tai50b 50 458821517 459081955 465646314 461246979.4 0.1 1.5 0.5 

90 tho30 30 149936 149936 151206 150454.0 0.0 0.8 0.3 

91 tho40 40 240516 240814 244454 242208.8 0.1 1.6 0.7 

92 wil50 50 48816 48824 48926 48881.2 0.0 0.2 0.1 
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4.2 Analysis of results of Dynamic Facility Layout Problem 

 

In this section, we will discuss the performance evaluation of a robust layout model, which uses data obtained from 

Balakrishnan and Cheng (2000). The dataset consists of 48 problems, six sizes (6 – departments 5 periods (6d5p); 6 – 

departments 10 periods (6d10p); 15 – departments 5 periods (15d5p); 15 – departments 10 periods (15d10p); 30 – departments 

5 periods (30d5p); and 30 – departments 10 periods (30d10p)) each with eight different scenarios, and the proposed robust 

model is used to solve the dynamic facility layout problem. To solve this problem, the ML-GA approach is employed, and it 

is run for ten replications. The results of these replications are presented in Table 4-9. 

This analysis demonstrates the effectiveness of the proposed approach in solving dynamic facility layout problems. By 

using a robust approach, we can develop a single layout that is used throughout the planning horizon, which simplifies the 

computational process and reduces the need for facility relocation. This approach is particularly useful in situations where 

facility relocation is difficult, expensive, or disruptive to operations. Additionally, the ML-GA solution procedure provides a 

reliable and efficient method for finding high-quality solutions to the layout problem. Overall, the results of this analysis 

suggest that the proposed robust model is an effective approach for solving dynamic facility layout problems in a wide range 

of scenarios. 

In the context of the dynamic facility layout problem, the primary objective is to find the best layout that minimizes the 

cost over the entire planning horizon. Researchers have proposed two approaches to solve this problem: the adaptive approach 

and the robust approach. In this paper, the authors compare the results obtained from Balakrishnan and Cheng's data set using 

the robust approach with the results obtained by several other research papers, including the adaptive approach. The data set 

contains eight problems in each of the six situations, totaling 48 problems. The proposed robust model for the dynamic facility 

layout problem uses the ML-GA as a solution procedure and is run for ten replications. 

A comparison was made between the outcomes of the robust approach and the adaptive approach. It was found that, 

even though there were no instances of facility relocation or operational disturbances throughout the planning horizon, the 

solution values of the robust approach did not significantly differ from those achieved by Balakrishnan and Cheng (2000). 

Thirteen research papers were considered for the comparison of results, out of which all except one followed the adaptive 

approach. The ninth paper by Pillai et al. (2011) followed the robust approach. Table 3 consolidates the various works used 

for the performance comparison of the proposed algorithm. 

 

Table 3. Works used for the performance comparison of the proposed algorithm 

 

Sl. No. Reference Solution Method Represented by 

1 Conway and Venkataramanan (1994) Genetic Search CONGA-1994 

2 Balakrishnan and Cheng (2000) Nested Loop GA NLGA-2000 

3 Balakrishnan et al. (2003) Hybrid GA with Dynamic Programming HGA-2003 

4 Erel, Ghosh and Simon (2003) Heuristic with Dynamic Programming DP-2003 

5 McKendall et al. (2006) Simulated Annealing SAII-2006 

6 McKendall and Shang (2006) Hybrid Ant Colony ACO-2006 

7 Baykasoğlu et al. (2006) Hybrid Ant Systems HAS-2006 

8 Şahin and Türkbey (2009) Hybrid Tabu - Simulated Annealing Heuristic TABUSA-2009 

9 Pillai et al. (2011) Simulated Annealing (Robust) SA(R) -2011 

10 McKendall and Liu (2012) Hybrid Tabu Search HTABU-2012 

11 Hosseini-Nasab and Emami (2013) Hybrid Particle Swarm Optimization HPSO-2013 

12 Turanoğlu and Akkaya (2018) Hybrid Algorithm Based on Bacterial Foraging 

Optimization 

SABFO-2018 

13 Zouein and Kattan (2022) Construction Approach Using ACO ACOII-2022 

 

The solution values obtained using the robust approach for each size of the problem (i.e., 6d5p, 6d10p, 15d5p, 15d10p, 

30d5p and 30d10p) exhibit an average deviation of 2.26-7.45% for the entire planning horizon compared to the best results 

obtained from the adaptive approach. Furthermore, the results indicate that the deviation is lower for 5-period problems as 

compared to 10-period problems for all sizes of the problem. Tables 4-9 illustrate the obtained results in detail. The average 

percentage deviation from best-known solutions (%Diff - BKS) and solutions reported in the paper adopting a robust layout 

approach (%Diff - Robust) are summarized in Table 10. For the 6d5p problems, the average percentage difference from the 

optimal solution considering the dynamic layout is 2.26% and considering the robust layout is 0.0%. For the 6d10p problems, 

the corresponding values are 3.2% and 0.0%. In the case of 15d5p problems, the variation from the dynamic optimal solution 

is 4.05%, and from the obtained values are the same as that reported by the robust layout. The variation from the dynamic 
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optimal solution is the highest for the 15d10p problems, which is more than 7%. But for the robust approach, the proposed 

method performs equally good. For 30d5p problems, the difference from the dynamic optimal solution is 2.5%, and in the 

case of robust layout, the proposed method is able to obtain better results for two test instances. For 30d10p problems, the 

average percentage variation from the dynamic optimal solution is 4.9%, while considering the robust approach, the proposed 

method reports the same results. 

These findings suggest that the robust approach is effective in designing a layout for a dynamic environment while 

minimizing the computational effort. Additionally, the results suggest that the robust approach can yield competitive solutions 

compared to the adaptive approach in terms of the quality of the solutions for the dynamic facility layout problem. 

 

Table 4. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems  

involving 6 departments and 5 periods (6d5p). 

 
 P1 P2 P3 P4 P5 P6 P7 P8 Avg. %dev 

CONGA-1994 1,08,976 1,05,170 1,04,520 1,06,719 1,05,628 1,05,606 1,06,439 1,04,485 0.84% 

NLGA-2000 1,06,419 1,04,834 1,04,320 1,06,515 1,05,628 1,04,053 1,06,978 1,03,771 0.25% 

HGA-2003 1,06,419 1,04,834 1,04,320 1,06,515 1,05,628 1,04,053 1,06,439 1,03,771 0.18% 

DP-2003 1,06,419 1,04,834 1,04,320 1,06,509 1,05,628 1,03,985 1,06,447 1,03,771 0.17% 

SAII-2006 1,07,249 1,05,170 1,04,800 1,06,515 1,06,282 1,03,985 1,06,447 1,03,771 0.45% 

ACO-2006 1,06,419 1,04,834 1,04,320 1,06,509 1,05,628 1,04,053 1,06,439 1,03,771 0.18% 

HAS-2006 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.16% 

TABUSA-2009 1,06,419 1,04,834 1,04,320 1,06,399 1,05,737 1,03,985 1,06,439 1,03,771 0.17% 

SA(R) -2011 1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 2.26% 

HTABU-2012 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.16% 

HPSO-2013 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.16% 

SABFO-2018 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.16% 

ACOII-2022 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.00% 

BKS 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 0.00% 

ML-GA 1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 2.26% 

%Diff - BKS 0.00% 2.15% 3.19% 1.75% 2.42% 3.64% 1.57% 3.35% 2.26% 

%Diff - Robust 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

Table 5. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems  

involving 6 departments and 10 periods (6d10p) 

 
 P9 P10 P11 P12 P13 P14 P15 P16 Avg. %dev 

CONGA-1994 2,18,407 2,15,623 2,11,028 2,17,493 2,15,363 2,15,564 2,20,529 2,16,291 2.10% 

NLGA-2000 2,14,397 2,12,138 2,08,453 2,12,953 2,11,575 2,10,801 2,15,685 2,14,657 0.36% 

HGA-2003 2,14,313 2,12,134 2,07,987 2,12,741 2,10,944 2,10,000 2,15,452 2,12,588 0.09% 

DP-2003 2,14,313 2,12,134 2,07,987 2,12,741 2,11,022 2,09,932 2,14,252 2,12,588 0.02% 

SAII-2006 2,17,251 2,16,055 2,08,185 2,12,951 2,11,076 2,10,277 2,15,504 2,14,621 0.66% 

ACO-2006 2,15,200 2,14,713 2,08,351 2,13,331 2,13,812 2,11,213 2,15,630 2,14,513 0.72% 

HAS-2006 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,582 0.00% 

TABUSA-2009 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 0.00% 

SA(R) -2011 2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 3.22% 

HTABU-2012 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 0.00% 

HPSO-2013 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 0.00% 

SABFO-2018 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 0.00% 

ACOII-2022 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 0.00% 

BKS 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,582 0.00% 

ML-GA 2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 3.22% 

%Diff - BKS 3.02% 2.49% 5.31% 2.27% 2.96% 3.56% 2.58% 3.56% 3.22% 

%Diff - Robust 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  
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Table 6. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems  

involving 15 departments and 5 periods (15d5p) 

 
 P17 P18 P19 P20 P21 P22 P23 P24 Avg. %dev 

CONGA-1994 5,04,759 5,14,718 5,16,063 5,08,532 5,15,599 5,09,384 5,12,508 5,14,839 5.70% 

NLGA-2000 5,11,854 5,07,694 5,18,461 5,14,242 5,12,834 5,13,763 5,12,722 5,21,116 6.12% 

HGA-2003 4,84,090 4,85,352 4,89,898 4,84,625 4,89,885 4,88,640 4,89,378 5,00,779 0.96% 

DP-2003 4,82,123 4,85,702 4,91,310 4,86,851 4,91,178 4,89,847 4,89,155 4,93,577 0.88% 

SAII-2006 4,80,496 4,84,761 4,88,748 4,84,414 4,87,911 4,87,147 4,86,779 4,90,812 0.40% 

ACO-2006 5,01,447 5,06,236 5,12,886 5,04,956 5,09,636 5,08,215 5,08,848 5,12,320 4.88% 

HAS-2006 4,80,453 4,84,761 4,88,748 4,84,446 4,87,722 4,86,685 4,86,853 4,91,016 0.39% 

TABUSA-2009 4,80,453 4,84,761 4,89,058 4,84,446 4,87,822 4,86,493 4,86,268 4,90,551 0.37% 

SA(R) -2011 5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 4.05% 

HTABU-2012 4,80,453 4,84,761 4,88,748 4,84,446 4,87,911 4,86,493 4,86,592 4,90,812 0.38% 

HPSO-2013 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150 0.00% 

SABFO-2018 4,80,453 4,84,853 4,89,981 4,86,006 4,88,556 4,88,196 4,87,476 4,91,789 0.56% 

ACOII-2022 4,80,453 4,84,761 4,88,748 4,84,446 4,87,753 4,86,493 4,86,732 4,90,551 0.37% 

BKS 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150 0.00% 

ML-GA 5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 4.05% 

%Diff - BKS 5.49% 4.59% 4.32% 4.11% 3.64% 2.75% 3.61% 3.85% 4.05% 

%Diff - Robust 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

Table 7. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems  

involving 15 departments and 10 periods (15d10p) 

 
 P25 P26 P27 P28 P29 P30 P31 P32 Avg. %dev 

CONGA-1994 10,55,536 10,61,940 10,73,603 10,60,034 10,64,692 10,66,370 10,66,617 10,68,216 9.06% 

NLGA-2000 10,47,596 10,37,580 10,56,185 10,26,789 10,33,591 10,28,606 10,43,823 10,48,853 6.57% 

HGA-2003 9,87,887 9,80,638 9,85,886 9,76,025 9,82,778 9,73,912 9,82,872 9,87,789 0.62% 

DP-2003 9,83,070 9,83,826 9,88,635 9,76,456 9,82,893 9,74,436 9,82,790 9,88,584 0.65% 

SAII-2006 9,79,468 9,78,065 9,82,396 9,72,797 9,78,067 9,67,617 9,79,114 9,83,672 0.15% 

ACO-2006 10,17,741 10,16,567 10,21,075 10,07,713 10,10,822 10,07,210 10,13,315 10,19,092 3.89% 

HAS-2006 9,80,351 9,78,271 9,78,027 9,74,694 9,79,169 9,71,548 9,80,752 9,85,707 0.24% 

TABUSA-2009 9,78,848 9,77,338 9,81,172 9,71,720 9,76,781 9,68,362 9,78,660 9,82,880 0.08% 

SA(R) -2011 10,59,100 10,22,447 10,68,402 10,54,997 10,51,395 10,57,543 10,37,066 10,40,450 7.45% 

HTABU-2012 9,81,412 9,78,004 9,83,109 9,71,720 9,77,100 9,71,287 9,78,576 9,83,341 0.19% 

HPSO-2013 9,78,588 9,76,208 9,78,027 9,71,759 9,76,119 9,68,539 9,78,519 9,82,964 0.01% 

SABFO-2018 9,82,087 9,79,095 9,82,914 9,74,144 9,79,376 9,70,247 9,83,527 9,84,664 0.34% 

ACOII-2022 9,79,081 9,77,338 9,81,172 9,71,720 9,76,310 9,67,617 9,78,576 9,84,025 0.08% 

BKS 9,78,588 9,76,208 9,78,027 9,71,720 9,76,119 9,67,617 9,78,519 9,82,880 0.00% 

ML-GA 10,59,100 10,22,447 10,68,402 10,54,997 10,51,395 10,57,543 10,37,066 10,40,450 7.45% 

%Diff - BKS 8.23% 4.74% 9.24% 8.57% 7.71% 9.29% 5.98% 5.86% 7.45% 

%Diff - Robust 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

Table 8. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems  

involving 30 departments and 5 periods (30d5p) 

 
 P33 P34 P35 P36 P37 P38 P39 P40 Avg. %dev 

CONGA-1994 6,32,737 6,47,585 6,42,295 6,34,626 6,39,693 6,37,620 6,40,482 6,35,776 12.95% 

NLGA-2000 6,11,794 6,11,873 6,11,664 6,11,766 6,04,564 6,06,010 6,07,134 6,20,183 7.95% 

HGA-2003 5,78,689 5,72,232 5,78,527 5,72,057 5,59,777 5,66,792 5,67,873 5,75,720 1.02% 

DP-2003 5,79,741 5,70,906 5,77,402 5,69,596 5,61,078 5,67,154 5,68,196 5,75,273 0.97% 

SAII-2006 5,76,741 5,68,095 5,74,036 5,66,248 5,58,460 5,66,597 5,68,204 5,73,755 0.59% 

ACO-2006 6,04,408 6,04,370 6,03,867 5,96,901 5,91,988 5,99,862 6,00,670 6,10,474 6.35% 

HAS-2006 5,76,886 5,70,349 5,76,053 5,66,777 5,58,353 5,66,792 5,67,131 5,75,280 0.71% 
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TABUSA-2009 5,74,624 5,68,256 5,72,865 5,66,231 5,57,356 5,66,599 5,67,628 5,73,487 0.48% 

SA(R) -2011 5,79,704 5,76,350 5,86,831 5,84,318 5,70,492 5,72,782 5,71,703 5,96,835 2.51% 

HTABU-2012 5,74,657 5,67,481 5,71,462 5,64,868 5,55,628 5,65,100 5,66,993 5,73,023 0.31% 

HPSO-2013 5,77,248 5,69,175 5,72,105 5,66,124 5,55,551 5,64,804 5,67,131 5,73,755 0.45% 

SABFO-2018 5,78,415 5,70,630 5,77,390 5,68,289 5,58,345 5,72,536 5,69,993 5,77,873 1.06% 

ACOII-2022 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207 0.00% 

BKS 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207 0.00% 

ML-GA 5,79,704 5,76,350 5,86,831 5,84,264 5,70,492 5,72,782 5,71,703 5,96,744 2.51% 

%Diff - BKS 1.04% 1.69% 3.79% 3.56% 2.92% 1.54% 1.24% 4.29% 2.51% 

%Diff - Robust 0.00% 0.00% 0.00% -0.01% 0.00% 0.00% 0.00% -0.02%  

 

Table 9. Comparison of the results of the adaptive and robust approaches for the dataset of 8 problems involving 30 

departments and 10 periods (30d10p). 

 
 P41 P42 P43 P44 P45 P46 P47 P48 Avg. %dev 

CONGA-1994 13,62,513 13,79,640 13,65,024 13,67,130 13,56,860 13,72,513 13,82,799 13,83,610 20.37% 

NLGA-2000 12,28,411 12,31,978 12,31,829 12,27,413 12,15,256 12,21,356 12,12,273 12,45,423 7.68% 

HGA-2003 11,69,474 11,68,878 11,66,366 11,54,192 11,33,561 11,45,000 11,45,927 11,68,657 1.51% 

DP-2003 11,71,178 11,69,138 11,65,525 11,52,684 11,28,136 11,43,824 11,42,494 11,67,163 1.38% 

SAII-2006 11,63,222 11,61,521 11,56,918 11,45,918 11,27,136 11,45,146 11,40,744 11,61,437 0.96% 

ACO-2006 12,23,124 12,31,151 12,30,520 12,00,613 12,10,892 12,21,356 12,12,273 12,31,408 7.10% 

HAS-2006 11,66,164 11,68,878 11,66,366 11,48,202 11,28,855 11,41,344 11,40,773 11,66,157 1.23% 

TABUSA-2009 11,61,751 11,60,656 11,55,406 11,44,821 11,25,968 11,43,480 11,45,830 11,64,322 0.96% 

SA(R) -2011 11,72,691 11,82,286 11,88,620 11,98,487 11,98,674 12,02,033 12,10,573 12,09,088 4.93% 

HTABU-2012 11,59,589 11,57,942 11,54,799 11,43,110 11,23,446 11,41,144 11,45,951 11,60,484 0.79% 

HPSO-2013 11,60,388 11,58,243 11,56,198 11,49,753 11,23,673 11,47,935 11,42,031 11,60,658 0.93% 

SABFO-2018 11,68,453 11,70,042 11,60,204 11,49,944 11,32,136 11,44,677 11,60,830 11,72,857 1.59% 

ACOII-2022 11,57,703 11,56,900 11,52,546 11,41,149 11,19,496 11,40,883 11,44,727 11,06,651 0.04% 

BKS 11,57,703 11,56,900 11,52,546 11,41,149 11,19,496 11,40,883 11,40,744 11,06,651 0.00% 

ML-GA 11,72,691 11,82,286 11,88,620 11,98,487 11,98,674 12,02,033 12,10,573 12,09,088 4.93% 

%Diff - BKS 1.29% 2.19% 3.13% 5.02% 7.07% 5.36% 6.12% 9.26% 4.93% 

%Diff - Robust 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

Table 10. The average percentage deviation from best-known solutions and solutions reported in Pillai, Hunagund and 

Krishnan (2011) 

 

Sl. No. Problem Size 
Average Deviation from 

BKS Robust Layout 

1 6d5p 2.26% 0.00% 

2 6d10p 3.22% 0.00% 

3 15d5p 4.05% 0.00% 

4 15d10p 7.45% 0.00% 

5 30d5p 2.51% -0.01% 

6 30d10p 4.93% 0.00% 

 

A comparison of the results obtained using the proposed ML-GA algorithm with the results reported in the works using 

GA-based algorithms are provided in table 11. There is no literature available that uses GA as its solution methodology and 

approaches the DFLP for obtaining a robust solution. The algorithms based on GA for solving DFLPs follows the adaptive 

approach. Even with the adaptive approaches, the first two papers report inferior solutions for the DFLPs than that obtained 

with the robust approach and the algorithm proposed in this work. Only the last paper (Balakrishnan et al. (2003)), which 

proposes a hybrid algorithm and follows the adaptive approach, reports better solutions than the one obtained in the current 

work. This suggests that the proposed ML-GA algorithm performs good among the GA-based algorithm implementations for 

solving DFLPs. 
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The study compared a proposed algorithm to others using Genetic Algorithms (GA) for solving DFLPs. While existing 

GA approaches are adaptive and change layouts periodically, the proposed method follows a robust approach, maintaining a 

constant layout. This eliminates facilities relocation costs but raises material handling costs. The savings in relocation costs 

do not outweigh the increased material handling costs, resulting in a higher total cost. Nonetheless, the robust approach 

simplifies the problem and only slightly increases the overall cost. 

 

Table 11. Comparison of the results of the proposed ML-GA approach with other GA-based approaches. 

 

6d5p P1 P2 P3 P4 P5 P6 P7 P8 

CONGA-1994 1,08,976 1,05,170 1,04,520 1,06,719 1,05,628 1,05,606 1,06,439 1,04,485 

NLGA-2000 1,06,419 1,04,834 1,04,320 1,06,515 1,05,628 1,04,053 1,06,978 1,03,771 

HGA-2003 1,06,419 1,04,834 1,04,320 1,06,515 1,05,628 1,04,053 1,06,439 1,03,771 

BKS 1,06,419 1,04,834 1,04,320 1,06,515 1,05,628 1,04,053 1,06,439 1,03,771 

ML-GA 1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 

%Diff - BKS 0.00% 0.86% 3.19% 1.64% 2.42% 3.57% 1.57% 3.35% 
 

         
6d10p P9 P10 P11 P12 P13 P14 P15 P16 

CONGA-1994 2,18,407 2,15,623 2,11,028 2,17,493 2,15,363 2,15,564 2,20,529 2,16,291 

NLGA-2000 2,14,397 2,12,138 2,08,453 2,12,953 2,11,575 2,10,801 2,15,685 2,14,657 

HGA-2003 2,14,313 2,12,134 2,07,987 2,12,741 2,10,944 2,10,000 2,15,452 2,12,588 

BKS 2,14,313 2,12,134 2,07,987 2,12,741 2,10,944 2,10,000 2,15,452 2,12,588 

ML-GA 2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 

%Diff - BKS 3.02% 2.49% 5.31% 2.17% 2.94% 3.52% 2.01% 3.55% 
 

         
15d5p P17 P18 P19 P20 P21 P22 P23 P24 

CONGA-1994 5,04,759 5,14,718 5,16,063 5,08,532 5,15,599 5,09,384 5,12,508 5,14,839 

NLGA-2000 5,11,854 5,07,694 5,18,461 5,14,242 5,12,834 5,13,763 5,12,722 5,21,116 

HGA-2003 4,84,090 4,85,352 4,89,898 4,84,625 4,89,885 4,88,640 4,89,378 5,00,779 

BKS 4,84,090 4,85,352 4,89,898 4,84,625 4,89,885 4,88,640 4,89,378 5,00,779 

ML-GA 5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 

%Diff - BKS 4.70% 3.08% 3.70% 3.94% 2.60% 2.30% 2.77% 1.44% 
 

         
15d10p P25 P26 P27 P28 P29 P30 P31 P32 

CONGA-1994 10,55,536 10,61,940 10,73,603 10,60,034 10,64,692 10,66,370 10,66,617 10,68,216 

NLGA-2000 10,47,596 10,37,580 10,56,185 10,26,789 10,33,591 10,28,606 10,43,823 10,48,853 

HGA-2003 9,87,887 9,80,638 9,85,886 9,76,025 9,82,778 9,73,912 9,82,872 9,87,789 

BKS 9,87,887 9,80,638 9,85,886 9,76,025 9,82,778 9,73,912 9,82,872 9,87,789 

ML-GA 10,59,100 10,22,447 10,68,402 10,54,997 10,51,395 10,57,543 10,37,066 10,40,450 

%Diff - BKS 7.21% 4.26% 8.37% 8.09% 6.98% 8.59% 5.51% 5.33% 
          
30d5p P33 P34 P35 P36 P37 P38 P39 P40 

CONGA-1994 6,32,737 6,47,585 6,42,295 6,34,626 6,39,693 6,37,620 6,40,482 6,35,776 

NLGA-2000 6,11,794 6,11,873 6,11,664 6,11,766 6,04,564 6,06,010 6,07,134 6,20,183 

HGA-2003 5,78,689 5,72,232 5,78,527 5,72,057 5,59,777 5,66,792 5,67,873 5,75,720 

BKS 5,78,689 5,72,232 5,78,527 5,72,057 5,59,777 5,66,792 5,67,873 5,75,720 

ML-GA 5,79,704 5,76,350 5,86,831 5,84,264 5,70,492 5,72,782 5,71,703 5,96,744 

%Diff - BKS 0.18% 0.72% 1.44% 2.13% 1.91% 1.06% 0.67% 3.65% 
 

         
30d10p P41 P42 P43 P44 P45 P46 P47 P48 

CONGA-1994 13,62,513 13,79,640 13,65,024 13,67,130 13,56,860 13,72,513 13,82,799 13,83,610 

NLGA-2000 12,28,411 12,31,978 12,31,829 12,27,413 12,15,256 12,21,356 12,12,273 12,45,423 

HGA-2003 11,69,474 11,68,878 11,66,366 11,54,192 11,33,561 11,45,000 11,45,927 11,68,657 

BKS 11,69,474 11,68,878 11,66,366 11,54,192 11,33,561 11,45,000 11,45,927 11,68,657 

ML-GA 11,72,691 11,82,286 11,88,620 11,98,487 11,98,674 12,02,033 12,10,573 12,09,088 

%Diff - BKS 0.28% 1.15% 1.91% 3.84% 5.74% 4.98% 5.64% 3.46% 
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5. DISCUSSION AND CONCLUSIONS 

 

In this research paper, a novel genetic algorithm meta-heuristic based on machine learning is introduced to address layout 

formation problems. The method's effectiveness is demonstrated through optimal solutions generated for various case studies 

sourced from the QAPLIB (Burkard et al. 1997). Furthermore, the authors have also devised a robust layout procedure that 

can handle dynamic facility layout problems. 

The proposed algorithm uses a machine learning algorithm, namely the k-means clustering algorithm, for enhancing the 

performance of the simple genetic algorithm. The efficiency of the proposed algorithm is proved using 92 QAP test instances 

available in QAPLIB (Burkard et al. 1997). The size of the problem instances considered varies from 12 to 50, and it is found 

that the proposed algorithm is effective in solving the QAP to optimality or near optimality. This novet algorithm is then 

applied to solve the robust versions of the DFLP instances made available by Balakrishnan and Cheng (2000). 

The robust layout method produces a layout based on a projected demand scenario or flow matrix for all planning 

periods. In contrast to the adaptive approach, the robust layout is consistent throughout the entire planning horizon and does 

not change from period to period. Although this layout may not be ideal for the entire planning horizon, its overall 

performance will still meet expectations because relocating facilities would require additional effort. 

To evaluate the performance of the proposed robust layout approach, the authors applied it to the problems of 

Balakrishnan and Cheng (2000). The findings demonstrate that 5-period problems of various sizes exhibit lower deviations 

than 10-period problems. Additionally, the robust approach solution values show an average deviation of 2.26–7.45% among 

problems of various sizes from the best results of the adaptive approach. Compared with the only robust approach available 

in the literature, the proposed algorithm provides 0% variation. In fact, in two instances, the proposed algorithm provides 

better solutions. These results indicate that the proposed robust approach performs well in solving the SPLPs and provides 

near-optimal solutions without significant computational difficulty. 

The authors compared the proposed algorithm with other works using GA for solving DFLPs. The other works using 

GA are based on the adaptive approach, in which the layout needs to be changed after each period. The proposed work is 

adopting a robust approach in which the layout remains constant over different periods. This will increase the material 

handling cost, and the facilities relocation cost will be zero. However, the savings in the relocation cost is less than the 

increase in the material handling cost, and thus, a robust approach will result in a higher total cost. However, the complexity 

of the problem is reduced, and the increase in the total cost is minimal. 

In conclusion, the proposed machine learning-based genetic algorithm meta-heuristic and the robust layout procedure 

can be valuable tools for solving facility layout problems in dynamic environments. Future research can explore the 

application of this approach to more complex layout problems and further investigate its performance in other real-world 

applications. Also, since the proposed ML-GA algorithm performs good in comparison with other GA-based algorithm 

implementations, it can be applied for solving the DFLPs following the adaptive approach. 
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