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With improvements in the national consumption level, the tourism industry is playing an increasingly important role in the 

national economy, and the proportion of tourism revenue in GDP is constantly increasing. In this paper, we first improve the 

standard Drosophila algorithm by adaptively adjusting the fly population number and search step size while optimizing the 

initial iteration position and improving the local search ability and search efficiency. Then, the improved algorithm (FOA) is 

combined with the echo state network to establish a two-stage combined prediction model called the Adaptive Fruit Fly 

Optimization Algorithm-Echo State Network (AFOA-ESN). The experimental results show that the AFOA-ESN model has 

higher prediction accuracy compared to other prediction models, and the convergence rate and prediction accuracy of the 

AFOA-ESN are better than the standard ESN and FOA-ESN, proving the effectiveness of model improvement. 
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1. INTRODUCTION 
 

Since the beginning of the 21st century, tourism has ushered in a golden age of rapid development. In 2017, China’s total 

tourism revenue reached 5.4 trillion yuan, an increase of 15.14% from 4.69 trillion yuan in 2016, which is much higher than 

the GDP growth rate. In the past decade, tourism revenue in GDP rose from 4.05% in 2007 to 6.53% in 2017. With the growth 

of tourism income, the sports ecological tourism industry has also undergone qualitative changes. According to relevant data, 

China’s tourism industry is gradually shifting from the second stage to the third stage, and the future market prospects are 

very broad. National policy support and the endogenous growth of tourism supply and demand have jointly created the 

prosperity and development of tourism for more than ten years. The World Tourism Council’s research report predicts that 

by 2027, the number of Chinese “new tourist households” (those with new incomes of more than USD 35,000) will exceed 

64 million, which is far above second-ranked India (9.4 million new tourist households predicted by 2028). The direct 

contribution of China’s tourism industry to GDP will jump to about USD 1.3 trillion (based on 2017 fixed price estimates). 

Beyond the current number-one country, i.e., the US (USD 509.4 billion), China will have a 10-year compound growth rate 

of 6.6% and a global ranking of fifth place. In the next 10 years, China’s tourism industry will create about 34 million jobs 

directly, which is far higher than second-ranked India (9.38 million), and this will help to ensure domestic employment. 

Information on the current and future levels of tourism demand and its contribution to the economy is very important due to 

the business institutions and decision-making departments of the government. For countries or regions in the Caribbean Sea, 
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tourism market prosperity is the most critical measure by which to predict the macro economy of the country or region (Han 

et al., 2013). Tourism products are perishable, and accuracy is critical to the problem of tourism demand prediction.  

To date, many studies have been conducted on measurement models, decision vector machine models, gray theoretical 

models, and artificial neural network models, but in the face of nonlinear prediction problems, the prediction effect is 

different. Zhang and Chen (2013) proposed echo state networks (ESNs); compared with traditional algorithms, the model 

construction mode for these networks is different. The unique structure of this method opens up new research ideas and 

directions. In the echo state neural network reserve pool and traditional neural network algorithm, the connection weight in 

the network initialization reserve pool is composed of the input weight and output weight. In the process of training, the input 

weight and reserve pool weight values do not change. Only the size of the reserve pool output weight changes, and this 

effectively avoids complex, time-consuming training of the artificial neural network. Echo-state neural networks can deal 

with nonlinear problems well, and the training process is simple and efficient. In nonlinear prediction problems, an echo state 

neural network has many advantages compared with traditional artificial neural networks and other types of algorithms and 

has great application prospects. However, in the face of different types of problems and data, the traditional ESN model may 

have strong random and non-optimal initial parameter settings, and the output results are uncertain. Therefore, this method 

can further enhance the prediction effect of ESN through some optimization methods. The selection of parameters is a major 

consideration. Current research mainly combines intelligent algorithms to obtain optimized parameter inputs so as to help 

build suitable prediction models. However, it is difficult to find the appropriate objective function for some parameters, such 

as internal weights, so applying combinatorial optimization techniques is one way to alleviate the disadvantages brought 

about by parameter randomization. 

The fruit fly optimization algorithm (FOA) is a new heuristic global search optimization algorithm that was proposed 

in recent years. It has the advantages of a simple calculation process, strong global convergence, short execution time, self-

organization and adaptability, and strong portability. Increasing numbers of scholars have applied the intelligent algorithm to 

the traditional deterministic optimization problem. Most of the current research results were analyzed using an ESN or the 

FOA algorithm alone, but in this paper, we study the combined prediction model combining an ESN and the FOA to find a 

model that can improve the accuracy and reliability of prediction. In addition, with the rise in tourism demand, the academic 

community's demand for regional tourism is also gradually becoming high, but for the study of sports, ecological tourism 

demand is still relatively low. Combined with the above content, we select sports ecological tourism demand as a research 

direction based on the construction of the AFOA-ESN model to predict the direction of tourism demand. The proposed AFOA 

algorithm effectively improves the convergence speed, the prediction accuracy, and the initial position optimization ability. 

We also apply the combined FOA-ESN prediction model and an FOA-ESN-based model to provide auxiliary support for 

tourism industry demand prediction and operational-related decisions. The study refers to the development of sports 

ecotourism. 

 

2. RELATED WORK 

 

2.1 Research on the Demand Prediction of Sports Ecotourism 

 

Zhang et al. (2015) took the number of visitors from the top ten source countries to Hong Kong as the dataset. According to 

four prediction models, ARIMA (Autoregressive Integrated Moving Average Model), ALDM (Alternating Direction Method 

of Multipliers), ECM (Engine Control Module), and VAR (Variation), several different predictive models were constructed, 

and after testing the prediction effect of the above methods, it was found that the combination of models can improve the 

effect of tourism prediction. Wang et al. (2016) combined linear and nonlinear statistical models to make predictions for time 

series with possible nonlinear features, testing the prediction accuracy of the combined model by using time series datasets 

of the outbound travel demand in Taiwan and comparing a single prediction model with a model combining the two methods. 

It was found that several combined predictive models had more accuracy than a single prediction model and could identify 

the turning point of the change in the tourism environment. Zhang et al. (2014) studied the prediction effect of four methods: 

the time series model, the metrology model, the gravitational model, and the expert decision system. They found that the 

simplest and lowest-cost time series models are suitable for practitioners. The gravitation model is suitable for solving 

international tourism problems. The expert decision system is suitable for scenarios where some data are not available. Wu 

and Zhou (2017) used seven quantitative prediction methods, sampling predictions of the tourist flow at 24 starting sites; 1 

year and 2 years were selected for prediction. The results showed that the l-year forecast period was better than the 2-year 

period. In the process of data collection and the research itself, Song et al. (2020) studied the relationship between prediction 

accuracy, data characteristics, and research characteristics, and Wang et al. (2021) made a comprehensive analysis of nearly 

2000 published tourism prediction studies. This indicated that data characteristics and prediction accuracy vary in different 

types of prediction methods, so selecting the appropriate prediction model according to the data characteristics can effectively 

reduce the prediction cost. 
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To date, many scholars have studied the driving factors of the change in sports ecotourism demand. Huang et al. (2005) 

used a measurement model to predict Hong Kong tourism data from 2001 to 2008. The factors that had the largest impact on 

the number of tourists in Hong Kong were tourism costs, economic conditions (measured using the income of tourist origin), 

the price of competing products, and the reputation of tourists. These factors can be used as input variables to provide 

important information for the prediction of tourists in Hong Kong. Chen et al. (2019) conducted a systematic analysis of 

tourism needs and studied a relatively general algorithm to explore the influence of qualitative non-economic factors on 

tourism, including leisure time factors and climate factors. The results showed that leisure time and climate factors have more 

influence on tourists than economic factors. This proves the importance of qualitative non-economic factors in tourism 

motivation theory and demand analysis. Niu et al. (2013) incorporated business sentiment indicators into their model. The 

experimental results showed that business sentiment indicators improved the accuracy of fit and prediction. Expanding 

business sentiment surveys to tourism could create substantial benefits. Wang and Zou (2013) introduced consumer 

expectations in time series models. Four models were tested using autoregression (AR), autoregressive integrated moving 

average (ARIMA), self-excitation threshold autoregression, and the Markov transfer matrix. 

To sum up, sports ecotourism products are perishable, and their accuracy is critical to tourism demand prediction. The 

mismatch between tourism resources and demand will cause huge losses in social resources and capital and affect social and 

economic development. The prediction model construction method, data selection, and algorithm selection will have a great 

impact on tourism demand prediction. Therefore, prediction research in respect of sports ecotourism is of some significance. 

 

2.2 Research on Fruit Fly Optimization Algorithm (FOA) 

 

Wang and Zou (2013) presented a new population intelligence algorithm with global search capability and fast convergence 

properties. This algorithm is relatively simple, has a fast calculation speed, fast solution speed, and high accuracy, and is 

currently used in many combinatorial optimization and continuous optimization fields. The most widely used application of 

the fruit fly optimization algorithm (FOA) in continuous optimization is parameter selection, such as the structural parameters 

of ANNs (Wang and Zou, 2012), penalty parameter of SVR, and conversion coefficient (Li et al., 2022; Xi and Han, 2014). 

The FOA shows strong search power in the above studies, so we consider the selection of the predicted input variables using 

the FOA. 

The fruit fly optimization algorithm (FOA) itself has some shortcomings; for example, it is not suitable for solving 

problems with negative arguments, and it is not sufficient for solving complex stability. Additionally, the convergence 

precision of the algorithm is not precise, and it is especially prone to causing local extrema. Therefore, improvement of the 

FOA has high application value and is a research hotspot. Zhang et al. (2015) proposed the first-in-first-out (FIFO) improved 

algorithm and selected a test function to test the FIFO improvement effect. The results show that the optimization algorithm 

for the forecasting of FIFO is superior to the traditional flies. Nazir et al. (2021) introduced a cloud model in the FOA. The 

constructed algorithm, CM-FOA, improved the flies. The cloud model can track the fly's optimization iteration process and 

random movement. Dehghani et al. (2020) proposed a new FOA in order to improve the algorithm’s global optimization 

ability. He et al. (2019) proposed an adaptive fly optimization algorithm based on the population and the current optimum 

using probability replication. To continue the optimization, Xie et al. (2020), by increasing the inertia, changed the 

diminishing nonlinear characteristics and the relationship between the individual and the group to build an improved fly 

optimization algorithm. He et al. (2018) proposed a fly optimization algorithm using multiple groups, a new method of 

community monitoring. The algorithm only has a few parameters, and the calculation process is simple. Zhang et al. (2018) 

balanced the population diversity and stability of the parameters, creating a level probability strategy and new mutations. The 

LP-flies optimization algorithm was proposed. The algorithm achieved the ideal result in the optimization of the continuous 

function and processing joint supply problems. Luo et al. (2019) used two fly populations to put forward the DDSC-flies 

optimization algorithm. By updating the overall optimum and restructuring subgroups to exchange information, two 

subgroups improved the population dynamic search and avoided slow convergence due to random positions. The search 

accuracy and speed are superior to the traditional FOA. 

 

3. RESEARCH ON SPORTS ECO-TOURISM DEMAND FORECASTING BASED ON 

IMPROVED FOA ALGORITHM 

 

3.1 Standard FOA algorithm 

 

The fruit fly optimization algorithm was developed by Pan (2011). The movement of the bionic simulation fly model was 

added to the FOA algorithm in order to find the optimal solution; the goal was a relatively new heuristic algorithm. The FOA 

has strong global search ability and fast convergence performance. In addition, because the algorithm is simple in structure, 

it involves fewer variable parameters, so the operation quantity is lower than most other heuristic algorithms. The 
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experimental results show that the FOA is successful in the reserve pool echo state network parameter optimization of 

operable functions and optimization ability. 

The FOA mainly consists of five steps: population initialization, random flight, flavor concentration determination, 

flavor concentration, and position labeling. The logical structure of the FOA is shown in Figure 1. 

 

 
 

Figure 1. Logical structure of the FOA algorithm. 

 

Step 1: Population initialization. The population initialization stage needs to define the basic characteristics of the flies. 

First, the size of the group (Sizepop) determines the number of random positions at each iteration, the maximum number of 

iterations (Maxgen), and the total number of flies through olfactory foraging. 𝑋𝑎𝑥𝑖𝑠 and 𝑌𝑎𝑥𝑖𝑠 represent the initial position (the 

current position represents the moment during iteration); the search step (𝑆𝑙𝑒𝑔𝑡ℎ) represents the maximum distance each fly 

can fly during each iteration. 

Step 2: Random flight. Each fly within the population is given a random flight direction, and the location information 

variables 𝑋𝑖 and 𝑌𝑖 are recorded. The fly population will search for an odor within the search step range. The location update 

formula is as follows: 

 

𝑋𝑖 = 𝑋𝑎𝑥𝑖𝑠 + 𝑆𝑙𝑒𝑛𝑔𝑡ℎ  (1) 

𝑌𝑖 = 𝑌𝑎𝑥𝑖𝑠 + 𝑆𝑙𝑒𝑛𝑔𝑡ℎ  (2) 

 

Step 3: Calculate the flavor concentration determination value (𝑆𝑖). The taste concentration determination value of the 

Drosophila population is used because the abscissa and ordinate of the Drosophila position in some functions cannot express 

the Drosophila position, so the reciprocal value of the distance function is used as the obtained concentration determination 

value 𝑆𝑖. 𝑆𝑖 is not the final flavor concentration, and the parameter needs to be substituted into the function to be optimized. 

The flavor concentration determination value is not counted in this algorithm. 

 

𝐷𝑖𝑠𝑡𝑖 = √𝑋𝑖2 + 𝑌𝑖2
 (3) 

𝑆𝑖 = 1/𝐷𝑖𝑠𝑡𝑖  (4) 

 

Step 4: Determine the flavor concentration value (𝑆𝑚𝑒𝑙𝑙𝑖) . The flavor concentration values of the Drosophila 

population behave mathematically as the dependent variable size of the function to be optimized and represent the prediction 

error size of the neural network optimization in this study. According to the flavor concentration determination value of the 

fruit fly population, the food flavor concentration is obtained using formulas 3-5, usually assuming that the higher the flavor 

concentration, the closer the fruit fly is to the food. 

 

1. Population initialization 

2. Random flight  

3. Determine the taste concentration 

determination value 

4. Determine the flavor 

concentration value 

5. Location mark 

Until: Stop when the conditions are met 

Smell search 

EAD 
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𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) (5) 

 

Step 5: Position tag. In a fruit fly population, before flight to the local optimal solution, every individual fly in a 

population is noted according to its position to calculate the corresponding density. The taste level at the location of the 

maximum will be selected as the group of fruit flies together fly to that position; namely, the starting position of the next 

iteration. Further, if the optimal value of the current iteration (𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙)  is better than before the global optimal 

(𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙_𝑔𝑙𝑜𝑏𝑎𝑙), the current iteration is used to update the 𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙 value of  𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙_𝑔𝑙𝑖𝑏𝑎𝑙 for the global optimal. 

 

[𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙 𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥] = 𝑚𝑎𝑥(𝑆𝑚𝑒𝑙𝑙𝑖) (6) 

𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙 𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙  (7) 

𝑋𝑎𝑥𝑖𝑠 = 𝑋(𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) (8) 

𝑌𝑎𝑥𝑖𝑠 = 𝑌(𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) (9) 

 

The iterative process of the FOA includes steps 2 through 5 of the above steps if the stop condition is implemented (i.e., 

the number of iterations accumulates to the maximum iteration number), and the current 𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙_𝑔𝑙𝑖𝑏𝑎𝑙 is extracted as 

the optimal solution found in the whole Drosophila search process. 

 

3.2 ESN Echo State Network Prediction Model 

 

Echo state networks (ESNs) have a reservoir pool that differs from traditional neural network algorithms. When the network 

is initialized, the connection weights are randomly generated. At the beginning of an ESN startup, a reservoir is generated to 

serve as a base, and then a hidden space with dynamic and complex properties is formed. The connection weights between 

neurons within the reservoir are not adjusted with the training process. The reserve pool is composed of input weight and 

output weight. In the process of training, we keep the status of the input weight and reserved pool weight value and change 

the size of the reserved pool output weight, usually according to the ESN actual output value and target value error. The least-

squares method is used to adjust the weight, effectively avoiding the artificial neural network’s complex, lengthy training. 

 
Figure 2. ESN network structure diagram. 

 

Win W 

Wback 

Wout 

u(t) y(t) x(t) 

Winout 
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A typical ESN network contains three levels where the input layer is used to convert the input information into the 

initial activation signal, the reserve pool further converts the input layer activation information into the output layer 

information because of its complex internal connection structure, and the reserve pool has the non-linear dynamics of the 

recurrent neural network. The network structure is shown in Figure 2, where a solid line is a necessary connection, and a 

dotted line is an optional connection. 

The input layer of the ESN has K nodes, the value of K depends on the dimension of the input information, the univariate 

prediction model K is equal to l, and the multivariate prediction model K is greater than l. There are N nodes in the hidden 

layer (i.e., the reserve pool), representing the number of neurons in the reserve pool. The number of nodes in the output layer 

is L, depending on the dimension of the output information. 

The connection weights of the input layer, reserve pool, and output layer are represented by 𝑊𝑖𝑛 , 𝑊, and 𝑊𝑜𝑢𝑡 , 

respectively. If there is no feedback structure, the network weights do not contain 𝑊𝑏𝑎𝑐𝑘. Several weight matrices usually 

have different scales, depending on the input, output information format and the internal connection mode. The weight to be 

adjusted during training is the weight 𝑊𝑜𝑢𝑡 between the reserve pool and the output layer nodes. 

Recursive neural networks are characterized by short-term memory and function to process nonlinear systems, and the 

activation function of neurons can be selected according to the actual requirements. The information at the current moment 

is input from the input layer to the reserve pool. Combined with the feedback information of the state at the last moment and 

the output layer in the reserve pool, the input signal of the neuron is formed together through a certain weight, and then the 

input signal is converted into a new round of state vector 𝑥(𝑡 + 1) through the activation function. The updated formula is as 

follows: 

 

𝑥(𝑡 + 1) = 𝑓(𝑊𝑖𝑛 ⋅ 𝑢(𝑡 + 1) + 𝑊 ⋅ 𝑥(𝑡) + 𝑊𝑏𝑎𝑐𝑘 ⋅ 𝑦(𝑡)) (10) 
 

f represents the activation function that constitutes the state vector 𝑥(𝑡 + 1). 𝑥(𝑡) represents the state of the reserve pool 

in the previous step, and the state vector 𝑥(0) at time 0 can be randomly generated. 𝑢(𝑡) represents the input vector at step 𝑡, 

the length of which depends on the dimension of the input information. 𝑦(𝑡) represents the output vector in step t, and 𝑦(𝑡 +
1) represents the next step, as determined by the next input vector 𝑢(𝑡 + 1), the next state vector 𝑥(𝑡 + 1), and the output 

vector 𝑦(𝑡) in the current step. The specific formulas are as follows: 

 

𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), … 𝑢𝑘(𝑡)]𝑇
 (11) 

𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑘(𝑡)]𝑇
 (12) 

𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), … 𝑦𝑘(𝑡)]𝑇 (13) 
𝑦(𝑡 + 1) = 𝑓𝑜𝑢𝑡{𝑊𝑜𝑢𝑡 ⋅ (𝑢(𝑡 + 1), 𝑥(𝑡 + 1), 𝑦(𝑡))} (14) 

 

3.3 Improved Fruit Fly Optimization Algorithm to Optimize the Combinatorial Prediction Model of ESN 

 

3.3.1 Improvement Ideas 

 

Due to the key factors and structure setting, the standard FOA has four characteristics: the number of individuals in the fly 

population is determined during the initial stage; the range of activity of each fly (maximum random step) is not fixed; the 

initial position of the fly population is randomly determined and unique, and the initial position of the next iteration is 

determined by the location of the current optimal solution. These four features lead to the following problems in the 

implementation of the standard FOA: (l) The individual number of the Drosophila population is fixed. In the process of 

optimization, the Drosophila population may still consume more computing power despite the poor overall performance of 

local solutions, thus affecting the operation efficiency of the algorithm. Alternatively, where the local solution performs 

better, the Drosophila population may miss the optimal solution due to an insufficient number of optimal individuals. (2) The 

maximum random step size of Drosophila may cause an excessive number of iterations in the locations where the local 

solution performance is poor, and the local solution cannot be fully mined in the local optima due to the large step size range 

of the local solution, which affects the efficiency and optimization ability of the algorithm. (3) The initial position of the 

Drosophila population is random and unique, resulting in a large mass fluctuation of the initial solution before the iteration 

starts, which will affect the effect of the subsequent iteration calculation.  

In order to avoid several problems encountered by the standard FOA, the AFOA algorithm is proposed. The specific 

improvement ideas are as follows: 

(1) Initial positions are optimized to introduce informative flies. Similar to the fruit fly population optimization process, 

a random position search before the start of the iteration will return the information from the random position solution to the 

Drosophila population, which selects the optimal location as the initial position for entering the iteration. To expand the initial 
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position search ability of the information flies, the AFOA algorithm gives them a larger random search step size (which can 

be set to a global search), after which the fruit fly population conducts a local search. 

(2) Introducing a variable maximum search step size strategy. The AFOA algorithm introduces the scaling factor, which 

is the ratio of the current value to the target value of the solution (the scaling factor is the ratio of the 𝑚𝑎𝑝𝑒 to the target 

𝑚𝑎𝑝𝑒 of the current iteration), and the value of the scaling factor multiplied by the standard search step is the maximum 

search step of the next iteration. 𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ is the standard search step; 𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝑡 + 1) is the maximum search step 

for the next iteration. The advantage of a random step size is that the current local optimal solution can increase when the 

solution is poor and quickly jump out of this range. When the current local optimal solution is good, the step size can be 

reduced to increase the local search ability at this position. 

 

𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝑡 + 1) =
𝑚𝑎𝑝𝑒(𝑡)

𝑚𝑎𝑝𝑒_𝑡 𝑎𝑟𝑔 𝑒 𝑡
∗ 𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ 𝑆 𝑡𝑎𝑛 𝑑 𝑎𝑟𝑑 (15) 

 

(3) Introduction of a variable Drosophila population size strategy. This strategy can be simply understood as follows: 

when the population of the current position is stimulated by a higher odor concentration, the number of flies searching for 

food increases; the number of flies in the population decreases due to a low odor concentration. This strategy can improve 

the search power of the Drosophila population at the superior local locations of the current solution while reducing the time-

consuming excess at locations near the non-optimal solution. Similar to the variable search step strategy, the variable 

population size strategy introduces a scaling factor, which is the ratio of the target value of the solution to the current value 

(the scaling factor is the ratio of the target 𝑚𝑎𝑝𝑒 to the current iteration), and the scaling factor multiplied by the standard 

population size is the size of the Drosophila population in the next iteration. 

 

𝑆𝑖𝑧𝑒𝑝𝑜𝑝(𝑡 + 1) =
𝑚𝑎𝑝𝑒_𝑡 𝑎𝑟𝑔 𝑒 𝑡

𝑚𝑎𝑝𝑒(𝑡)
∗ 𝑆𝑖𝑧𝑒𝑝𝑜𝑝 𝑆 𝑡𝑎𝑛 𝑑 𝑎𝑟𝑑 (16) 

 

Termination condition judgment. When the maximum number of iterations of the initial setting is not reached 

(𝑀𝑎𝑥𝑔𝑒𝑛), the iteration count t is increased by 1. When the iteration stops, the global optimal solution (𝑆𝑚𝑒𝑙𝑙 𝑏𝑒𝑠𝑡) and 

the optimal position (𝑋_𝑏𝑒𝑠𝑡 ,  𝑌_𝑏𝑒𝑠𝑡) are output. 

 

3.3.2 The AFOA-ESN Combined Prediction Model 

 

In this study, the improved fruit fly optimization algorithm was combined with the ESN network to construct a new 

combinatorial prediction model, i.e., AFOA-ESN (Figure 3). Compared with traditional ESN, the AFOA-ESN model uses 

the global search capability of the FOA for parameter optimization, so it does not need to manually debug ESN parameters 

to quickly construct the prediction model applicable to the current problem. Compared with the FOA-ESN model, the AFOA-

ESN model can automatically adjust the population size and the maximum random step size according to the current 

optimization state, and optimize the local position search and local position jumping out ability. The computational efficiency 

and optimization effect are also improved. Further, the AFOA-ESN algorithm introduces informative flies to optimize the 

initial position and improve the convergence ability of the algorithm. 

The AFOA-ESN is a two-stage combinatorial predictive model, where the first stage optimizes the ESN parameters 

with the AFOA algorithm, and the ESN network is trained on the test set to determine its key parameter values. The second 

stage is the prediction stage, i.e., the offline ESN with optimized parameters: 

(1) Data preprocessing. Data are input into the combined prediction system. In order to prevent the size of the input data 

from affecting the network, data processing is usually performed, and the preprocessed data are used as the input network of 

the model for prediction. 𝑋′ represents the normalized data, 𝑋 denotes the raw data; 𝑋𝑚𝑖𝑛 is the minimum of the raw data and 

𝑋𝑚𝑎𝑛 is the maximum of the raw data. The common normalized data processing methods have the following formula: 

 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑛 − 𝑋min
 (17) 

 

(2) Parameter initialization: the parameters of the AFOA algorithm and ESN network need to be initialized, and the 

parameters of the AFOA algorithm include standard population size, standard maximum random step size, and maximum 

iteration number; its data information is determined by flight. The parameters include spectral radius size, input node, output 

node, sparsity, etc. 

(3) ESN parameter optimization: There are two layers of the AFOA cycle structure. The first cycle structure is the 

random position of the Drosophila population, and the second is the cycle structure of the iterative count. When the fly’s 
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position is random, the smell in that direction is strong, and the stronger the smell, the more likely the next flight target is in 

that direction. After a series of screening flights, the final parameters and processes are determined. 

(4) ESN network prediction: This link needs to refer to the predicted error value, judge the optimization effect of AFOA, 

and finally find the best network parameters and predicted values. 

 

 
 

Figure 3. AFOA-ESN combined prediction model execution process. 

 

4. EXPERIMENTAL ANALYSIS 

 

4.1 Data Analysis 

 

In this paper, the features and principles of the FOA and ESN neural network are reviewed, we put forward the AFOA-ESN 

combination prediction model, and we observe the prediction effect of the FOA-ESN and AFOA-ESN through experiments. 

The experimental data are the monthly data in respect of the number of tourists in a certain place, which is the sum of 

the number of domestic tourists and the number of foreign inbound tourists; the number of tourists in a certain area is shown 

in Figure 4. In order to ensure consistency with the original test conditions, all data items use the Log10 (N) function, and the 

results are shown in Figure 5. The data collection period is from 2011 to April 2022, showing strong cyclical characteristics 

in form. These data are used to verify the ability of the FOA-ESN model to improve the ESN network and the prediction 

efficiency and prediction accuracy of the AFOA-ESN model compared with the FOA-ESN model. We also compare the 

model with the results of Sun, ANN, SVR, LSSVR, KELM-lin, KELM-poly, KELM-rbf, KELM-wav, and various 

algorithmic models combined with the search index (Fan et al., 2020). To agree with the original test conditions, all data were 

preprocessed using the Log10 (N) function. 
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Figure 4. Number of tourists in a certain place (10,000 people). 

 
 

Figure 5. Number of visitors to a local area (Log10 (N)) (log of the raw data). The x-axis represents the month number; 

the y-axis represents the number of people (10,000). 
 

In terms of parameters, the input data length of the ESN network is 36 months, so there are 36 nodes at the input layer. 

Each ESN network outputs only one data point, so the output node is set to 1. The FOA-ESN and AFOA-ESN combined 

prediction model is used to determine the size of the reserve pool and the size of the spectrum radius. In the construction 

stage of the neural network, only two parameters are assigned a certain range, and the specific size is generated by random 

numbers. Specifically, the size of the reserve pool is 50 to 500, and the spectral radius is 0.01 to 1.00. Other parameters of 

the ESN network are similar to those of experiment I. The activation function uses the tanh function, and the activation state 

memory parameter a is set to 0.20. During network training and testing, other parameters of the ESN remain unchanged 

except the reserve pool size and spectral radius. The maximum step length of the FOA algorithm is determined in the iteration 

process, where the single-step variation range of the reserve pool size is [-50,50], the spectrum radius variation range is [-

0.25,0.25], the Drosophila population size is 10, and the maximum number of iterations is 100 (the population size and search 

step length of the AFOA algorithm are adaptive adjustments). 
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4.2 Error Evaluation Indexes 

 

Three sets of experiments tested the application effects of the ESN, FOA-ESN, and AFOA-ESN models in tourism demand 

prediction from different dimensions. Typically, experiments require evaluating the prediction results combined with several 

different metrics of error in order to analyze and compare the effects of various prediction methods from multiple 

perspectives. The application of various error evaluation indexes can improve the comprehensiveness and objectivity of the 

prediction model effect measurement. 

The mean absolute error (𝑀𝐴𝐸) measures the average of all predicted values 𝑦𝑡̂  versus the actual absolute error 𝑦𝑡 , 

which is enough to reflect the difference between the predicted value and the real value. The mean squared error (𝑀𝑆𝐸) is 

the sum of squares of the deviation between the predicted value and the true value divided using the number of prediction 

times, which will amplify the large error term and can be used to analyze the stability of the prediction time series error, with 

a wide range of applications. Root mean squared error (𝑅𝑀𝑆𝐸) is the square root on the basis of the mean squared error 

(𝑀𝑆𝐸), which is also an error statistics method considering the absolute value scale. The mean absolute percentage error 

(𝑀𝐴𝑃𝐸) takes into account the proportion between errors and true values and can be used to compare errors between data of 

different sizes. Usually, (𝑀𝐴𝑃𝐸) values below l0% indicate excellent results. 

 

𝑀𝐴𝐸 =
∑  𝑡=1

𝑛 |𝑦𝑡

∧
− 𝑦𝑡|

𝑛
 

(18) 

𝑀𝑆𝐸 =
∑  𝑡=1

𝑛 (𝑦𝑡

∧
− 𝑦𝑡) ∧ 2

𝑛
 

(19) 

𝑅𝑀𝑆𝐸 = (
∑  𝑡=1

𝑛 (𝑦𝑡

∧
− 𝑦𝑡)

2

𝑛
) ∧ 0.5 (20) 

𝑀𝐴𝑃𝐸 =
∑  𝑡=1

𝑛
|𝑦𝑡

∧
− 𝑦𝑡|

𝑦𝑡

𝑛
 

(21) 

 

4.3 Predicting the Number of Visitors in an Area Based on the AFOA-ESN Model 

 

The hardware and programming environment of this group of experiments were the same as those in Section 2. The method 

was the one-step prediction method, predicting the 37th data point with 1 to 36 data points. Finally, the 12 predicted values 

in the test set were compared with the real values and analyzed using two error indicators, MAPE and NMSE. 

The following experimental results show that the FOA-ESN has good prediction accuracy and optimization effects, 

with a MAPE of 0.53% and NMSE of 0.67%, and both indexes are optimal. At the same time, the FOA-ESN model is very 

robust, and the prediction error of each data point is controlled within 1.59% (MAPE). The FOA-ESN can make the error 

gradient drop rapidly, which proves that this method can effectively solve the problem of sports ecotourism demand 

prediction. 

As shown in Figure 6, the AFOA-ESN further improved the prediction accuracy compared to the FOA-ESN model, 

with a MAPE control within 0.41% and an NMSE of 0.66%. Further, due to the existence of information flies and adaptive 

mechanisms in the AFOA algorithm, the algorithm can obtain better initial positions than the FOA algorithm, with faster 

local search ability and iteration speed, and show faster convergence ability. The MAPE of the initial iteration of the AFOA-

ESN model is around 0.5%, which is about 0.06% lower than that of the FOA-ESN model. In terms of convergence speed, 

at the tenth iteration of the AFOA-ESN model, the MAPE drops below 0.44% and below 0.42% after forty generations, and 

the error-index is lower than that of the FOA-ESN model. The improvement in the AFOA-ESN model shows the rationality 

and applicability of the optimization algorithm. The parameter settings are shown in Table 1. 
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Figure 6. FOA-ESN error gradient chart (a); AFOA-ESN error gradient chart (b); FOA-ESN predicted number of tourists in 

Beijing (c); AFOA-ESN predicted number of tourists in Beijing (d). 

 

Table 1 AFOA-ESN and other model parameter settings 

 

Model Parameter setting 

ARIMA The level is 0, the difference degree is 3, and the order is 3 

BPNN The maximum training times are 2000, the learning rate is 0.01, the number of nodes in the input 

layer is 6, the number of nodes in the output layer is 1, the number of hidden layers is 1, and the 

number of nodes in the hidden layer is 5. The activation functions of the hidden layer and the output 

layer are the tansig function and linear function purelin, respectively, and the training function is 

the trainlm function 

PCA-BPNN 

PCA-ADE-BPNN 

The maximum training times of BPNN are 2000, the learning rate is 0.01, the number of nodes in 

the input layer is 6, the number of nodes in the output layer is 1, the number of hidden layers is 1, 

and the number of nodes in the hidden layer is 5. The activation functions of the hidden layer and 

output layer are the tansig function and linear function purelin, respectively. The training function 

is the trainlm function. The population size of the ADE algorithm is 50, the maximum number of 

iterations is 30, the crossover probability is 0.6, and the scaling factor is 0.2 ~ 0.9 

FOA-ESN The number of nodes in the input layer and the number of nodes in the output layer of the ESN are 

12, the number of nodes in the output layer is 1, the size of the reserve pool is 50 to 500, the spectral 

half-diameter is 1.0 to 2.0, the activation function uses the tanh function, and the activation state 

memory parameter a is set to 0.20. The population size of the FOA algorithm is 10, and the 

maximum number of iterations is 100 
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Model Parameter setting 

AFOA-ESN The number of nodes in the input layer and the number of nodes in the output layer of the ESN are 

12, the number of nodes in the output layer is 1, the size of the reserve pool is 50 to 500, the spectral 

half-diameter is 1.0 to 2.0, the activation function uses the tanh function, and the activation state 

memory parameter a is set to 0.20. The population size and search step of the AFOA algorithm are 

adaptively adjusted based on the objective function value, and the maximum number of iterations 

is 100 

 

Table 2 Predictive value and error analysis of FOA-ESN, AFOA-ESN model, and contrast algorithm 

 

Types of models No index Baidu  Google Baidu + Google 

ARIMAX 9.17 5.96 6.18 4.05 

ANN 4.07 2.42 2.37 1.97 

SVR 3.59 2.2 2.31 1.93 

LSSVR 3.41 1.83 2.12 1.7 

KELM-lin 3.06 1.31 1.55 0.9 

KELM-poly 1.92 1.2 1.44 0.79 

KELM-rbf 1.71 1.03 1.36 0.64 

KELM-wav 1.85 1.1 1.35 0.73 

FOA-ESN 0.53 

AFOA-ESN 0.41 

 

Based on the findings presented in Table 2, for the AFOA, the three prediction error indexes of the ESN (MAPE, MSE, 

and MAE) are better than those of the FOA-ESN model, showing that the prediction accuracy improvement effect is obvious. 

In terms of the validation set in the process of optimization, for the AFOA-ESN initial iteration, the MAPE is below 1.15%, 

which is about 0.15% below the previous FOA-ESN. The AFOA-ESN and FOA-ESN model values are lower than 0.85%. 

In conclusion, for the AFOA-ESN model, the initial position optimization, convergence speed, and accuracy are better than 

those of the FOA-ESN model. The results are shown in Table 3. 

 

Table 3 Algorithm prediction error analysis 

 

 MAPE (%) MSE MAE 

ARIMA 14.66 4685.30 63.33 

VAR 17.85 8560.00 79.52 

PCA-VAR 14.34 5280.00 61.59 

BPNN 6.97 2120.00 32.55 

PCA-BPNN 6.98 1940.00 32.46 

PCA-ADE-BPNN 6.42 1930.00 30.96 

FOA-ESN 2.41 161.52 10.63 

AFOA-ESN 1.56 71.71 6.86 

 

5. CONCLUSIONS 

 

In this paper, we proposed that the AFOA algorithm effectively improves the convergence speed, the prediction accuracy, 

and the initial position optimization ability. We combined the AFOA and ESN algorithm to build a new combined prediction 

model, i.e., the AFOA-ESN, and its operation principles and processes were discussed in detail. The combined prediction 

model effectively improves the problems of the standard ESN model, where parameters are random, unstable, and easily fall 

into local optima. We applied the AFOA-ESN model to sports ecotourism through different types of experiments. The 

application effect of the FOA-ESN for the tourism industry demand prediction problem and the improvement effect of the 

AFOA-ESN compared with the FOA-ESN model were verified in stages, and good experimental results were obtained. The 

MAPE for the initial AFOA-ESN iteration was below 1.15%, about 0.15% lower than the previous FOA-ESN. In addition, 

with the rise of the big data industry, increasing numbers of tourism-related databases have begun to be established, the most 

typical being the application of the network search index. In our subsequent research, we will use a variety of big data means 

to enrich the diversity of the input information and select prediction information suitable for the sports ecotourism industry. 
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