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Wireless Sensor Network (WSN) has become a solution for real-time monitoring environments and is widely used in various 

fields. A substantial number of sensors in WSNs are prone to succumb to failures due to faulty attributes, complex working 

environments, and their hardware, resulting in transmission error data. To resolve the existing problem of fault detection in 

WSN, this paper presents a WSN node fault detection method based on ant colony optimization-graph convolutional network 

(ACO-GCN) models, which consists of an input layer, a space-time processing layer, and an output layer. First, the users 

apply the random search algorithm and the search strategy of the ant colony algorithm (ACO) to find the optimal path and 

locate the WSN node failures to grasp the overall situation. Then, the WSN fault node information obtained by the GCN 

model is learned. During the data training process, where the WSN fault node is used for error prediction, the weights and 

thresholds of the network are further adjusted to increase the accuracy of fault diagnosis. To evaluate the performance of the 

ACO-GCN model, the results show that the ACO-GCN model significantly improves the fault detection rate and reduces the 

false alarm rate compared with the benchmark algorithms. Moreover, the proposed ACO-GCN fusion algorithm can identify 

fault sensors more effectively, improve the service quality of WSN and enhance the stability of the system. 
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1. INTRODUCTION 
 

With the never-ceasing development and progress of microprocessor technology, using wireless sensor networks (WSN) to 

monitor environmental information has become a new and popular paradigm. At present, wireless sensor network, as the data 

collection port of information processing systems, has been widely used in various fields such as military defense, disaster 

warning, and intelligent agriculture (Kandris et al., 2020; Priyadarshi et al., 2020). Since the sensor usually contacts the 

external environment directly, it is common that it cannot work normally. However, if the system fails to detect the faulty 

sensor nodes in time, information will be lost or misreported, resulting in unpredictable consequences such as decision-

making errors, instrument damage, and so on. Therefore, it is very important to detect whether the wireless sensor network 

node works normally (Osman, 2022; Lo et al.,2013). Sensor failures can be divided into hard and soft failures (Wei et al., 

2022). Hard failure refers to the failure in the hardware facilities of the sensor nodes, which makes them unable to obtain 

information or communicate with other nodes. Soft failure means that although the sensor is still functioning, the information 

obtained or transmitted by the nodes is inaccurate. Because the sensor of soft fault is in an unstable working state, fault 

detection is relatively challenging, so the author mainly carries out fault detection for the soft fault (Kane et al., 2022; Chen 

et al., 2022). 

The WSN is a self-organizing monitoring system composed of myriads of sensor nodes. Its main function is to monitor 

and process the information of the target area in real-time. Its main function is to monitor and process the information of the 

target area in real-time. In WSNs, integrated sensors are usually laid out to monitor, perceive, collect, and process network 

information for an area so that it can be completely sent back to users (Jabbari et al., 2021; Jaiswal et al., 2022). When WSNs 

transmit and process data, most of the WSN nodes are randomly distributed. WSN nodes are often deployed in uncontrollable 

harsh environments, and it is not easy for users to perform maintenance on deployed nodes (Feng et al., 2019; Michaelides 

et al., 2020). As a result, when individual nodes crash, packet loss, and routing failure occur, it is difficult for users to handle, 
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causing errors in data transmission. This will increase the energy loss of network nodes and the share of network bandwidth, 

and the frequency of network failures will increase. Therefore, it is of paramount importance to research and studies an 

effective and applicable fault diagnosis algorithm for node modules (Lee et al., 2018). It has important practical significance 

for extending the working time of WSN and maintaining the stable operation of the system. 

Therefore, the WSN fault node detection method is studied more deeply. By putting forward ACO, finding the best path 

to locate WSN fault nodes, and applying the GCN model, the learning accuracy is further improved. This not only increases 

the detection accuracy but also provides support for the stable operation of the network. Overall, the main contributions of 

this paper are listed as follows. (I) By using the ant colony algorithm, users can locate the location of WSN nodes by looking 

for an optimal path. Through this random search algorithm and the search strategy of the ant colony algorithm, users can 

generally grasp the location of the faulty WSN nodes. (II) Then, based on the GCN network model, the obtained WSN fault 

node information is further learned. In the process of data training, the error is predicted according to the WSN fault node, 

and the weight and threshold of the network are further adjusted to increase the accuracy of fault diagnosis. (III) Finally, in 

the spatial-temporal processing layer, the graph convolutional network is used to extract the spatial distribution characteristics 

of wireless sensor networks and the fault characteristics in the high-dimensional space, and the high-dimensional data 

constructed as the sequential sequence is used as the input of the gated cycle unit. Then, the temporal evolution characteristics 

and spatial evolution characteristics of the sensor network data are extracted and fused through the gated cycle unit. 

 

2. RELATED WORK 

 

WSN is a self-organizing network based on opulent sensor nodes deployed in a specific area. The information transmitted 

between the mid-end and the end of the whole network is based on the relay nodes and is implemented by multi-hop 

forwarding, which includes the features of flexibility, dynamic, and distributed. It is widely used in disaster relief and 

environmental monitoring (Zhang et al., 2020). However, sensor nodes are more vulnerable to damage from external 

environments because they are usually randomly deployed in environments that are difficult for getting long-time 

maintenance. In addition, the low cost of manufacturing sensor nodes, sensor aging, and low battery power also causes the 

nodes to collect wrong data, which reduces the accuracy of monitoring data. Therefore, the research on fault detection of the 

wireless sensor network node is very important to ensure the good operation of WSN (Jurado et al., 2021). 

According to the different data processing methods, wireless sensor network fault detection can be divided into three 

types: centralized, distributed, and mixed (Aslam et al., 2019). A centralized fault detection algorithm has high detection 

accuracy. However, for large-scale wireless sensor networks, the applicability is lower, which is mainly because the 

communication between sensor nodes and sink nodes or base stations is implemented in a multi-hop way where a large 

amount of energy consumption will occur on the routing nodes. Besides, this method has a high diagnostic delay and cannot 

detect the status of the nodes in real-time. Distributed fault detection determines the working condition of a node by collecting 

and analyzing diagnostic response results from neighboring nodes for each sensor node. When information is transmitted 

between nodes, it carries a low amount of information, which enables the network to maintain well and prolong its life. It 

also achieves an effective reduction of data latency between the ends of the network. Mixed detection combines the above 

two algorithms to keep the whole network with low data latency and high detection accuracy by adding additional mobile 

nodes. Research and development on fault detection in wireless sensor networks have achieved some theoretical results, most 

of which use related algorithms in machine learning. Huang et al. (2020) proposed a fault detection method for industrial 

IOT sensor devices based on a restricted Boltzmann machine and an automatic encoder. This method extracts data features 

by constructing several Boltzmann machine modules, corrects parameters in the automatic coder, and constructs an optimal 

fault diagnosis model by inputting training data. Xiao et al. (2020) summarized the advantages of rough set theory and 

artificial neural network.  

Then, a decision diagnosis table is obtained by data compression to extract the fault feature set and construct a back-

end radial basis function neural network. Finally, the non-linear mapping relationship between fault types and fault features 

is constructed to further detect and distinguish the fault types. Zidi et al. (2018) pointed out that there is an improved 

distributed fault diagnosis method, Cross-Spatial Distributed Diagnosis (CS-DFD). In this way, a high-dimensional vector 

space model is built from the information collected at each node. At the same time, the cross-sliding window is established 

by the data in the sliding window and that of adjacent nodes, the horizontal fault weight is set, the anomaly vectors and 

threshold are detected to achieve fault diagnosis, and the accuracy of fault detection is improved. Zhang et al. (2018) used a 

Bayesian classifier to predict the probability of sensor nodes failing. By using boundary nodes to adjust the failure probability, 

the effect of failure nodes on detection accuracy is avoided. 

With the iterative update of algorithms, metaheuristic algorithms have been gradually used in this field in recent years. 

Because of its non-linear solving method, this kind of algorithm has a good application effect in solving complex structure 

problems (Agarwal et al., 2022). Lin et al. (2021) put forward a method that combines an improved flower pollination 

algorithm (IFPA) with a support vector machine. To improve the global search ability of flower pollination algorithm, parallel 
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operation is introduced in the paper. By dividing the population into groups, using improved mutation and cross-propagation 

strategies, better pollens are changed to refined pollens, and IFPA is used to optimize the parameters of the kernel function 

in support vector machines, thus achieving a more accurate detection result. Hoyingcharoen et al. (2019) proposed a fault 

detection algorithm that combines an improved multivariate cosmic optimization algorithm (MVO) with a feed-forward 

neural network (FNN). To enhance the population diversity of the MVO algorithm, the population is divided into subgroups 

for parallel operation, and the population diversity is enhanced by improving the communication mechanism. While the 

iteration reaches the threshold, the universe of different groups will exchange information, which further reduces the 

occurrence of search stagnation and increases the probability of jumping out of the local optimal solution. The improved 

MVO algorithm is used to optimize the parameters in FNN, which improves the classification accuracy of the FNN algorithm. 

Peng et al. (2022) synthesized the advantages of the algorithm and used the improved crow search algorithm and machine 

learning classifier to classify the failures. By comparing this algorithm with three different machine learning algorithms, it is 

found that the performance of this algorithm is better than other classifiers. Considering the characteristics of WSN node 

fault detection, a detection algorithm based on the combination of firefly optimization and extreme learning machine is 

presented in this paper. Firstly, based on the characteristics of the Levy algorithm in short-distance random walks and sudden 

long-distance jumps, the standard Firefly Optimization Algorithm (FA) is improved. It greatly reduces the probability that 

the objective function will fall into a local optimal solution. In addition, it improves the population convergence rate and 

achieves a balance between development and exploration capabilities. A target function for fault data detection in WSN is 

constructed using an extreme learning organization, and the target function is optimized using an optimized firefly 

optimization algorithm. In this way, the parameters of the extreme learning machine can be indirectly modified to achieve 

higher accuracy of fault data detection. 

To the best of our knowledge, there are no multi-objective fault detection proposals that focus on the input layer, space-

time processing layer and output layer, which are implemented in the WSN. Therefore, this paper presents fault detection 

method for the WSN via applying ACO-GCN models. 

 

3. WIRELESS SENSOR NETWORK ARCHITECTURE 
 

3.1 WSN modeling 

 

Sensors in wireless sensor networks are usually distributed in an irregular network structure. Such a structure can be modeled 

as an unoriented graph 𝐺 = (𝛷, 𝛦,𝛨)  (Li et al., 2021). The edges between sensors represent the connection between 

them.𝛷 = {𝜑1, 𝜑2, ⋯ , 𝜑𝑛} represents the collection of all sensor nodes, 𝜑𝑖(𝑖 = 1,2,⋯ , 𝑛) represents the sensor node named 

with serial number 𝑖 . 𝛦 = {𝑒𝑖,𝑗} represents the set of edges in the graph model and  𝑒𝑖,𝑗  represents that there are edges 

connected between 𝜑𝑖  and 𝜑𝑗. 𝛨 ∈ ℜ
𝑛×𝑛 represents the adjacency weight matrix of a graph, where 𝛨𝑖,𝑗 represents the edge 

weight between 𝜑𝑖 and 𝜑𝑗. In addition, the graph can also represent 𝐿 = 𝐷 − 𝛨 by the Laplace matrix, where 𝐷 = diag{𝑑𝑖} 

represents the degree matrix, 𝑑𝑖 = ∑ 𝛨𝑖,𝑗𝑗 . The normalized Laplacian matrix can be expressed as 𝐿𝑠 = 𝛱 − 𝐷−
1

2𝛨𝐷−
1

2 where 

𝛱 ∈ ℜ
𝑛×𝑛

 represents the identity matrix. The eigenvalue matrix 𝛬𝑠 = diag{𝜆𝑖}(𝜆1 ≤ 𝜆2⋯ ≤ 𝜆𝑛) and the eigenvector 

matrix 𝑈𝑠 corresponding to the eigenvalue are obtained via eigen decomposition of 𝐿𝑠 = 𝑈𝑠𝛬𝑠𝑈𝑠
𝑇. 

The shortest path between the node 𝜑𝑖 and 𝜑𝑗 is defined as geodesic distance 𝜌𝑖𝑗 . If 𝜑𝑖has no access to 𝜑𝑗, then 𝜌𝑖𝑗 =

∞. The 𝑘 -order neighbor definition of 𝜑𝑖 can be obtained by geodesic distance 𝐵(𝑖, 𝑘) ≡ {𝑗|𝜌𝑖𝑗 ≤ 𝑘}, that is, the node set 

whose geodesic distance from 𝜑𝑖 is less than or equal to 𝑘. The data collected by the sensor network at different times have 

certain differences. Therefore, the data collected by the sensor network in 𝑇 of consecutive moments can be expressed as 𝑋 =
[𝑥1, 𝑥2, ⋯ 𝑥𝑇]. Among them, 𝑥𝑇 = [𝑥(𝜑1), 𝑥(𝜑2),⋯ , 𝑥(𝜑𝑛)] represents the collection of data collected by each node of the 

sensor network at the time of 𝑡. 𝑥𝑖
𝑡 represents the data collected by the sensor node 𝜑𝑖 at the time of 𝑡. 

Through the construction graph model, the problem of wireless sensor network fault detection can be described in the 

following ways. A sensor network consisting of 𝑛sensors is deployed in a certain area. The data collected by the sensor 

network in 𝑇 consecutive times is 𝑋. 𝑥𝑡 represents the elements collected by the sensor network at the time 𝑡, that is, the set 

of signals to be detected. [𝑥𝑡−𝑇+1, 𝑥𝑡−𝑇+2, ⋯ , 𝑥𝑡−1] represents the historical signal set of the sensor network. Analyze 𝑋 and 

graph model𝐺of the sensor network by building a fault detection model to detect whether fault nodes exist at 𝑥𝑡 . If there is a 

fault node, the corresponding fault sensor will be further located.  

 

3.2 WSN node fault detection system 

 

This paper proposes a WSN node fault detection technology that combines ACO with the GCN model. It can detect WSN 

node fault information in an all-around way, which will make the detection of WSN node information more accurate and 
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reliable. The framework of this scheme mainly includes a data layer, an information detection layer, and a system application 

layer. The system architecture is shown in Figure 1. 
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Figure 1. WSN Node Fault Detection System 

 

In this system design, there are many sensor nodes in WSN. However, the more nodes there are, the greater the likelihood 

of failure. Therefore, it is necessary to fuse sensor node information before detecting node failures. Through the fusion of 

fault information, users can grasp the WSN node information more comprehensively and then calculate and process the fused 

WSN node information through the algorithm designed in this research. ACO is used to estimate and locate sensor nodes, 

and the GCN model is used to further study wireless sensor nodes. To make full use of the spatial and temporal characteristics 

of sensor networks, firstly, the spatial correlation of wireless sensor networks is depicted by the graph model, which is 

followed by the spatial characteristics of sensor networks extracted by GCN. Secondly, the spatial features extracted by the 

convolution network are fused with the data collected by the wireless sensor network and sent to the GRU. In GRU, the time 

characteristics of wireless sensor networks are extracted by making appropriate rounding of the information from the previous 

moment. Finally, the space-time characteristics are fitted to the fault detection results by the full connection layer. In this 

system design, the data obtained can be used in the data management center for user diagnosis and data display purposes. It 

can also be remotely transmitted to the remote data monitoring center through the industrial CAN bus for management by a 

higher-level monitoring center. 

 

3.3 Problem description 

 

WSN collects monitoring information under the auspice of a wide range of sensor nodes and studies the problem of WSN 

fault detection. The initial step is to detect and analyze whether the WSN node is functioning properly. Due to disturbances, 

if we detect data fluctuations with anomalies, we can conclude that the WSN node may fail. Define as follows to accomplish 

the above purpose.  
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( ) ( ) ,
m

n
y t F A t R =

 
, (2) 

 

where 𝐴𝑛
𝑚(𝑡) defines the system input, 𝑦(𝑡) describes system output, 𝐴𝑛

𝑚(𝑡) represents a data set used to detect whether there 

is a failure, and 𝑦(𝑡) defines the result of the failure detection.  

The fault detection is mainly to analyze the data collected by WSN to determine whether the node is working properly. 

Users can identify possible flawed data based on the time-space correlation of WSN data. Due to noise disturbance when 

WSN collects monitoring data, this will make the collected data not fully trusted. This problem was solved by building BRB-

r, where the function 𝐹 is the process of converting the input dataset to the output detection result, and 𝑅 is the set of 

parameters in the process of conversion (Hu et al., 2020).  

 

4. FAULT DETECTION FUSION ALGORITHM 
 

Figure 2 is a schematic diagram of a WSN node failure detection method. In this method, the ACO algorithm has great 

advantages in dealing with discrete combinatorial optimization problems. In this method, the ACO algorithm has great 

advantages in dealing with discrete combinatorial optimization problems. Therefore, after searching WSN nodes with ACO, 

the GCN model is used for detection, which can improve the accuracy of fault detection. When the fault node location is 

completed, the GCN model is used to detect the fault nodes in the wireless sensor network. As shown in Figure 2, the GCN 

model mainly consists of three parts: input layer, space-time processing layer and output layer. The input layer receives the 

sensor network data 𝑋 and the adjacency matrix 𝐻 of its graph model as an input of the space-time processing layer. The 

space-time processing layer consists of a GCN module and a GRU. First, the GCN module receives data from the input layer 

and extracts the spatial characteristic𝑆of the sensor network data through a graph convolution operation. The data of 

𝑆and 𝑋 are joined together and infused into GRU, and the space-time feature 𝛺 of sensor network data is extracted and 

transmitted to the full connection layer using GRU. Finally, the space-time feature  𝛺 is fitted to the probability 

matrix  𝑌 through the full connection layer and transferred to the output layer, where the elements of the probability 

matrix 𝑌 represent the classification probability of the corresponding nodes. The output layer converts𝑌into fault detection 

results and outputs them. 
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Figure 2. WSN Node Failure Detection Method 
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4.1 Ant colony algorithm model 

 

ACO algorithm was first proposed by Italian scholar Liu et al., which is a global optimization algorithm (Liu et al., 2022). 

According to the theory of the algorithm, if we set the number of WSN nodes to 𝑁 and the number of unknown nodes to 𝑀, 

the function expression is  

 

𝐹(𝑥1, 𝑦1, ⋯ , 𝑥𝑖 , 𝑦𝑖 , ⋯ ,⋯ , 𝑥𝑗 , 𝑦𝑗 , ⋯ , 𝑥𝑀, 𝑦𝑀) 

= ∑ ∑ (𝜑𝑖𝑗
′ − 𝜑𝑖𝑗)𝑗∈𝑁𝑖

𝑀
𝑖=1

2
. 

(3) 

 

In Equation (3), (𝑥𝑖 , 𝑦𝑖) represents the estimated coordinates of the unknown node𝑖, 𝑁𝑖 defines the set of neighbor nodes 

of node 𝑖 , 𝑗(𝑥𝑗 , 𝑦𝑗) is the neighbor node of node 𝑖 , and 𝑗is the unknown node or anchor node. Assuming𝑗an unknown 

node (𝑥𝑗 , 𝑦𝑗) can be calculated as an estimated coordinate. If𝑗is an anchor node, then (𝑥𝑗 , 𝑦𝑗) is its true coordinate. Then the 

Equation of 𝑑𝑖𝑗
′  is 

 

𝑑𝑖𝑗
′ = √(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
 , (4) 

 

where 𝑑𝑖𝑗
′  is the estimated distance calculated from the estimated coordinates of nodes 𝑖  and 𝑗 , and 𝑑𝑖𝑗  represents the 

measured distance between nodes 𝑖 and 𝑗. If the estimated coordinates of an unknown node 𝑖 are (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) at the time 

𝑡(𝑡 = 0,1,⋯ , 𝑡), the coordinates of 𝑀 unknown nodes can be expressed as a matrix 𝐷(𝑡). 
 

𝐷(𝑡) = (
𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝑀(𝑡)

𝑦1(𝑡) 𝑦2(𝑡) ⋯ 𝑦𝑀(𝑡)
) . (5) 

 

Each set of column vectors in 𝐷(𝑡) corresponds to an estimated coordinate of an unknown node. When locating WSN 

nodes, the matrix 𝐷(0) is transformed from 𝐷(1) to 𝐷(𝑡) based on the state. 

 

[𝑥𝑖(𝑡 + 1)𝑦𝑖(𝑡 + 1)]
𝑇 = [𝑥𝑖(𝑡)𝑦𝑖(𝑡)]

𝑇 + 𝜆(𝑡) ⋅ 𝑣𝑠  (6) 
𝜆(𝑡 + 1) = 𝜉𝜆(𝑡)  (7) 

𝑣𝑠 = {
[0,0]𝑇 ,     𝑠 = 0

[𝑐𝑜𝑠 (
2𝑠𝜋

𝑆
) ⋅ 𝑠𝑖𝑛 (

2𝑠𝜋

𝑆
)]
𝑇

,   𝑠 = 1,2,⋯ , 𝑆
 . (8) 

 

Equations (6), (7), and (8) give the possible direction of node transfer, respectively where (𝑥𝑖(𝑡 + 1), 𝑦𝑖(𝑡 +

1))
𝑇

and (𝑥𝑖(𝑡), 𝑦𝑖(𝑡))
𝑇

represent the estimated node at 𝑡 + 1 and 𝑡, respectively, and they belong to the group 𝑖  column 

vectors of 𝐷(𝑡 + 1) and 𝐷(𝑡). 𝜆(𝑡) represents the step that the node moves at the time 𝑡. 𝜉 is the step decay factor. The step 

size decreases over time until it finally approaches zero. 𝑣𝑠 represents the choice of the direction in which node 𝑖 moves, 

either without moving or along one of the 𝑆 directions in which the plane 𝑆 is divided. Then the probability function for ants 

to choose direction is 

 

𝑃𝑖𝑣𝑠 =
𝜏𝑖𝑣𝑠

∑ 𝜏𝑖𝑣𝑠
𝑆
𝑠=1

 . (9) 

 

The pheromone update rules for ant selection direction can be defined as follows. 

 

𝜏𝑖𝑣𝑠(𝑡 + 1) = {
𝜌 ⋅ 𝜏𝑖𝑣𝑠(𝑡) + 𝑄

𝜌 ⋅ 𝜏𝑖𝑣𝑠(𝑡)
 . (10) 

 

In Equation (10), it demonstrates that if 𝑣𝑠 is the direction chosen by the ant element with the smallest objective function 

value. The rest are other cases, and pheromones are representations that depend on the direction in which an ant element 

moves. Among the Equation  𝑃𝑖𝑣𝑠  represents the probability that node 𝑖  transfers in the direction of 𝑣𝑠 . 𝜏𝑖𝑣𝑠denotes the 

pheromone concentration of the node 𝑖 in the 𝑣𝑠  direction. 𝜌 represents the persistence of a pheromone, and 𝑄 is a constant 

that represents the contribution of the ant with the smallest objective function to the moving direction of the node. 
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At moment 𝑡 = 0, the unknown node estimation coordinate matrix 𝐷(0) is initialized in a random manner, and the 

pheromone constants in all directions are assigned initial values. When 𝑚 ants traverse all unknown nodes, the estimated 

coordinates for the next moment are determined by Equation (9). The objective function is calculated from the estimation 

matrix formed by each ant element. The estimation matrix of the ant element with the smallest objective function is selected 

as the new estimation matrix, and the pheromone concentration is changed according to Equation (10). Repeat the above 

steps. 

Then, the trilateral measurement method is applied to the location estimation of WSN nodes. As shown in Figure 3, 

assume that 𝐷 is the unknown node, 𝐴, 𝐵, and 𝐶 are the three anchor nodes within the communication range of 𝐷, whose 

coordinates are (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), respectively. The distances from 𝐴, 𝐵, 𝐶 to 𝐷 are 𝑑1, 𝑑2, 𝑑3.  

 

A B

C

D

 
 

Figure 3. Schematic Diagram of the Trilateral Measurement Method 

 

Set coordinates of 𝐷 to (𝑥, 𝑦), and set the column equations as follows. 

 

{

√(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 = 𝑑1

√(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 = 𝑑2

√(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 = 𝑑3

 . (11) 

 

Solve the equations 

 

[
𝑥
𝑦] = [

2(𝑥1 − 𝑥3) 2(𝑦1 − 𝑦3)

2(𝑥2 − 𝑥3) 2(𝑦2 − 𝑦3)
]
−1

= [
𝑥1
2 − 𝑥3

2 + 𝑦1
2 − 𝑦3

2 + 𝑑3
2 − 𝑑1

2

𝑥2
2 − 𝑥3

2 + 𝑦2
2 − 𝑦3

2 + 𝑑3
2 − 𝑑2

2] . (12) 

 

The result is the coordinates of the unknown node𝐷. Therefore, the location of WSN nodes can be achieved by using 

the ant colony algorithm model to obtain the location of WSN nodes. 

 

4.2 Graph convolution network model 

 

The GCN module receives the adjacent matrix 𝛨of the sensor network data 𝛸 and its graph model and extracts the spatial 

characteristics through the graph convolution operation. Graph convolution is defined as the product of filter 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜃) 
and graph signal 𝑥 ∈ ℜ

𝑛×𝑛
 in the frequency domain, as shown in Equation (13). 

 

𝑔𝜃 ∗ 𝑥 = 𝑈𝑠𝑔𝜃𝑈𝑠
𝑇𝑥 . (13) 

 

Among the term∗ represents the convolution of a graph. The computational complexity of Equation (13) is 𝑂(𝑁2), so 

the amount of operation of Equation (13) increases significantly with the increase in the dimension of data used. Therefore, 

it is necessary to use methods in the document to fit 𝑔𝜃  through a second-order Chebyshev polynomial to reduce 

computational complexity (Bianchi et al., 2022), that is: 

 

𝑔𝜃 ∗ 𝑥 ≈ 𝑐0𝑥 − 𝑐1𝐷
−
1

2𝛨𝐷−
1

2𝑥 = 𝑐 (𝐼𝑁 + 𝐷
−
1

2𝛨𝐷−
1

2) 𝑥 , (14) 
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where  𝑐 = 𝑐0 = −𝑐1 , while 𝑐0  and 𝑐1 represent the coefficients of the Chebyshev polynomial. There are two different 

situations that may occur when Equation (14) is iterated: gradient explosion and gradient. Gradient explosion (gradient 

disappearance) refers to the phenomenon that the updating result increases (decreases) rapidly with the number of iterations 

when the parameter gradient is calculated by the inverse propagation algorithm, which results in slow convergence of the 

neural network and other issues. Thus, 𝐼𝑁 + 𝐷
−
1

2𝛨𝐷−
1

2 is normalized to 𝐷̃−
1

2𝛨𝐷̃−
1

2 to mitigate the effects of gradient explosion 

or gradient disappearance, resulting in the definition of a convolution layer as follows 

 

ℎ = 𝐷̃−
1

2𝛨𝐷̃−
1

2𝑥𝑤𝑇 , (15) 

 

where 𝛨 = 𝛨 + 𝐼𝑁 represents the sum of the adjacent matrix 𝛨 and the unit matrix 𝐼𝑁, 𝐷̃ represents the degree matrix of 𝛨, 

and 𝑤𝑇  represents the weight vector. 

According to the definition of Equation (15), the forward propagation equation in the GCN module is  

 

𝑆𝑡 = 𝑓𝐺𝐶𝑁(𝑥𝑡 , 𝛨̃𝑠) = 𝛨𝑠(𝛨𝑠𝑥𝑡𝑤0
𝑇)𝑊1 , (16) 

 

where 𝛨𝑠 = 𝐷̃−
1

2𝛨𝐷̃−
1

2 means normalizing 𝛨. 𝑤0
𝑇  and 𝑊1 represent the weight vectors of the first convolution layer and the 

weight matrices of the second convolution layer, respectively. 𝑆𝑡 ∈ ℜ
𝑛×2 represents the spatial characteristics of the graph 

signal at 𝑡 time. 

Equation (16) enables each node in the graph to take advantage of its second-order neighbors by using a two-layer 

convolution layer. This makes full use of the spatial correlation of wireless sensor networks. As shown in Figure 4 (c). The 

shadow nodes in Figure 4 represent the center nodes, and the black nodes represent the 𝑘 -order neighbors of the center nodes. 

 

   
(a)k=0 (b)k=1 (c)k=2 

 

Figure 4. GCN Aggregation Neighbor Node Diagram 

 

4.3 Flowchart of fault detection fusion algorithm 

 

In order to verify the reliability of the ACO-GCN algorithm, each node in WSN regularly sends routing information and data 

collection to the root node, and the root node connects to the upper computer through the USB serial port to transmit the 

received routing information and data to the upper computer. The fault analysis module saves the routing information and 

data transmitted by the root node to the database in real time. At the same time, the algorithm can draw the topology structure 

of the whole network according to the received routing information and calculate the success rate of data transmission 

according to the received serial number. In addition, the key steps of the proposed ACO-GCN fusion algorithm are performed, 

as shown in Figure 5. 

 

(1) Initialize the unknown node coordinate matrix, set the initial values of each parameter, assume T is the number of 

iterations and set the initial values of each parameter. 

(2) Set the concentration of pheromone 𝜏𝑖𝑣𝑠 = 𝐶for all elements in the matrix (𝜏𝑖𝑣𝑠) 𝑀
∗(𝑆 + 1)where𝐶is a constant 

representing the initial value of the pheromone concentration. 

(3) Traverse the ant element through all unknown nodes. The direction in which each unknown node moves next is 

chosen by Equation (9).  

(4) Calculate the objective function value obtained by each ant, and select the smallest ant's estimation matrix as the 

unknown node's estimation matrix. 

(5) Update the pheromone concentration according to Equation (10), and then update 𝜆 according to Equation (7). 

(6) Determine whether the end condition is met (i.e., whether 𝑇 is greater than the maximum number of iterations or 

if the solution found by the ants is the same). End iteration if satisfied; otherwise, jump to Step 3. 

(7) The result of the output solution. 
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With the above calculations, as the first experiment. Then, using the above methods, the BP network model is used 

individually to experiment, and the error data is obtained as the second experiment. The ACO fusion algorithm was used 

alone as the third experiment. Below are three different forms of error data representations represented by a graph. 

 

Initialization

Generate objective function 

according to formula 1

Assign all elements in the pheromone 

concentration matrix with initial values

The ant element is used to traverse all unknown nodes in 

turn, and the next moving direction is selected according 

to Formula 9 to obtain the estimation matrix

Calculate the objective function of each ant element, and 

select the objective function as the estimation matrix of 

the smallest ant to generate a new estimation matrix

Update pheromone 

concentration and moving step

Meet the iteration 

end conditions?

The position of WSN node is further 

estimated by trilateral measurement

Output results

Yes

No

 
 

Figure 5. Flow Diagram of the ACO-GCN Fusion Algorithm 

 

5. RESULTS AND DISCUSSIONS 
 

5.1 Experimental datasets 

 

The software of this experiment uses Windows 10 and a 64-bit operating system. In addition, Python is used as a programming 

tool. The interior 58250U processor is selected as the hardware part coupled with 8G memory. The experimental data come 

from the Berkeley Laboratory Data Set (IBRL), and 60% of the data are used for model training and 40% for model 

performance testing. In order to simulate the actual failure situation, set the time of the failure sensor in the training set to 

10% of the total number and the time of the failure sensor to 5% of the total number. When a fault occurs, the number of fault 

sensors is 5% of the total number of sensors. Whether a fault occurs at the current moment or not, it needs to be detected 

using the first three consecutive moments of anomaly-free data. If the network operates for the same period of data 

transmission, nodes consume the same energy to forward data. The data for this experiment come from the wireless sensor 

network deployed by InterBrkeleey Lab (Suthaharan et al., 2010). The number of MICA2 sensor nodes is 54. Sampling tests 

for ambient data are performed every 30 seconds, and the time interval for node data collection is from February 28, 2004, 

to April 5, 2004. Data collection through nodes mainly covers four attributes: temperature, light intensity, node voltage, and 

temperature. In the experiment, the nodes of the sensor are set to 6, 13, 25, 37, and 49. By analyzing the time stamps in the 

samples, it is found that the locations where the anomalies occur are in the sample data of different periods that are randomly 
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inserted. The collected datasets are divided into two parts, one is a test set, and the other is a training set. The dataset is 

divided into a test set and a training set. In subsequent experiments, the number of four different fault data will be increased 

from 0 to 5% to achieve the comparison of different fault detection results. The experimental data are shown in Table 1. 

 

Table 1. Experimental Data Set 

 

Data set Number of training samples Number of exceptions Number of test samples Number of attributes 

IBRL-6 7000 500 7000 1 

IBRL-13 7000 500 7000 1 

IBRL-25 7000 500 7000 1 

IBRL-37 7000 500 7000 1 

IBRL-49 7000 500 7000 1 

 

5.2 Parameter settings 

 

Python has been used as the programming language in this experiment, assuming that the gross number of nodes is 100, and 

distributing them in a square area of 10𝐿 ∗ 10𝐿, where 𝐿 is the edge length of the area, 𝐿 = 5𝑚 in this experiment. Anchor 

nodes and unknown nodes are randomly distributed in a square area. In WSN, the communication radius of nodes is 15m, 

and the network connectivity is 10.2. Then set the relevant parameters, assuming the number of ants 𝑁 = 20, the direction 

of movement (𝑆 + 1) = 9, and the initial step length 𝜆 = 1, step decay factor𝜁 = 0.96, pheromone persistence𝜌 = 0.9, 

and𝑄 = 5stands for the smallest ant contribution to the pheromone of the objective function, and 150 stands for the largest 

iteration number. As is shown in Table 2. 

 

Table 2. Parameters Setting 

 

Symbol Description Value 

𝑁  Total number of nodes 100 

𝑆  Size 50*50 

𝑅  Communication radius  15m 

𝜂  Network connectivity  10.2 

𝑁𝑐  Number of ant colonies  20 

𝜆  Initial step size  1 

𝜉  Step size attenuation coefficient 0.96 

𝜌  Pheromone persistence 0.9 

𝑄  Pheromone contribution 5 

𝑁𝑚𝑎𝑥   Maximum number of iterations 150 

𝛹  Optimizer RMSprop 

𝐿(𝑦, 𝑦̂)  Loss function Cross entropy loss function 

𝑁𝑡𝑟𝑖 Number of trainings 200 

𝜏  Rate of learning 0.01 

 

In this experiment, Python is chosen as the programming language, Pytorch 1.6 is used to build the network model, and 

RMSprop optimizer is used to optimize the model parameters. RMSprop is a gradient-based loss function optimization 

algorithm for neural networks which has obvious advantages in reducing update fluctuation range and accelerating 

convergence speed and is an excellent optimizer in many cases. The cross-entropy loss function has strong applicability in 

classification, so it is used as the loss function in the training process, as defined in Equation (17). 

 

𝐿(𝑦, 𝑦̂) = −
1

𝑁
∑ 𝑦𝑛 𝑙𝑜𝑔2

𝑦̂𝑛  𝑁
𝑛=1 + (1 − 𝑦𝑛) 𝑙𝑜𝑔2

1−𝑦̂𝑛   , (17) 

 

where 𝑦 is a one-hot coded label vector and 𝑦∗ is a distribution probability. An appropriate learning rate allows the model to 

converge as quickly as possible without falling into a locally optimal solution. A better learning rate is selected by cross-

validation.  

The detection rate 𝑃𝐷𝑅 , failure detection rate 𝑃𝐹𝐷𝑅 , and false alarm rate 𝑃𝐹𝐴𝑅  are commonly used as indicators for 

evaluating sensor network failure detection results. Detection rate, failure detection rate, and false alarm rate can be expressed 

by real case 𝑁𝑇𝑃 , false positive 𝑁𝐹𝑃 , true and negative case 𝑁𝑇𝑁 , and false negative case 𝑁𝐹𝑁 . The fault conditions are 
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regarded as positive examples, and the normal situations are regarded as negative examples. Then 𝑁𝑇𝑃 represents the number 

of positive examples with correct model classification. 𝑁𝐹𝑃  represents the number of positive examples of model 

classification errors. 𝑁𝑇𝑁 represents the number of negative examples with correct model classification. 𝑁𝐹𝑁 represents the 

number of negative instances of model classification errors. Thus, the definitions of 𝑃𝐷𝑅, 𝑃𝐹𝐷𝑅 , and 𝑃𝐹𝐴𝑅 can be derived. 

{
 
 

 
 𝑃𝐷𝑅 =

𝑁𝑇𝑃+𝑁𝑇𝑁

𝑁𝑇𝑃+𝑁𝐹𝑁+𝑁𝐹𝑃+𝑁𝑇𝑁

𝑃𝐹𝐷𝑅 =
𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑁

𝑃𝐹𝐴𝑅 =
𝑁𝐹𝑁+𝑁𝐹𝑃

𝑁𝑇𝑃+𝑁𝐹𝑁+𝑁𝐹𝑃+𝑁𝑇𝑁

 . (18) 

 

As can be seen from the definition, the detection rate refers to the proportion of the number of samples that the model 

correctly classifies into corresponding categories. Failure detection rate refers to the proportion of samples correctly classified 

as correct by the model to all positive samples. The false alarm rate represents the proportion of the number of samples with 

errors in the total number of negative samples when the model predicts positive samples. 

 

5.3 Results and Analysis 

 

Based on the experimental datasets and parameter settings, this work is accomplished according to the flowchart of the fault 

detection fusion algorithm, as shown in Figure 5. In Figure 6, the horizontal coordinate𝑋represents time𝑡, and the vertical 

coordinate𝑌 represents the calculation error data. The diagram shows three different ways of experimenting in t-time, where 

▲ represents the error data obtained by using the ACO algorithm, ● represents the error data obtained by using the BP 

network model, ■ represents the error data obtained by using the ACO-GCN fusion algorithm. The calculation error data 

accordingly decreases with the increasing operation time𝑡, in which the benchmark ACO algorithm decreases significantly 

due to the inherent slower convergence. 

According to the comparison of the above curves, it is shown that the ACO-GCN algorithm of this research has a higher 

accuracy in obtaining error data, demonstrating that the algorithm mentioned in this research has less error, greatly improving 

the accuracy in determining fault nodes in WSN. The reason the ACO-GCN algorithm contributes to the lower calculation 

error data is that the fusion model consists of the input layer, space-time processing layer and output layer. More specially, 

the input layer receives sensor network data and graph models built by the wireless sensor network and firstly transmits them 

to the space-time processing layer. Then, in the space-time processing layer, the graph convolution network is used to extract 

the spatial distribution and fault characteristics of the wireless sensor network in high-dimensional space and construct the 

characteristics as time series as input of gated loop unit. Then the time and space evolution characteristics of sensor network 

data are extracted and fused by a gated loop unit. Finally, fault detection results are obtained at the output layer. 

 

 
 

Figure 6. Comparison of Error Data Using Different Algorithms 

 

In addition, the ACO algorithm [3], GCN [4] algorithm, and ACO-BP [5] algorithm are selected as benchmark 

algorithms, which can be used to evaluate sensor network fault detection results, and the simulation results are shown in 

Table 3. As can be seen from Table 3, compared with ACO, GCN and ACO-BP algorithms, the proposed ACO-GCN model 

has a higher detection rate𝑃𝐷𝑅, a higher failure detection rate 𝑃𝐹𝐷𝑅 , and a lower false alarm rate𝑃𝐹𝐴𝑅. Its overall detection 
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performance has obvious advantages over the other three algorithms. It is owing to that the ACO-GCN model aggregates the 

second-order neighbor information of each sensor node through two convolution layers, making full use of the spatial 

correlation of wireless sensor networks. Therefore, compared with the GRU model that only uses time characteristics, the 

ACO-GCN model has obvious advantages in performance. Compared with DFD and NDFD algorithms, the ACO-GCN 

model extracts the time characteristics of sensor network data through GRU, which performs better in feature extraction of 

time sample data. Therefore, this model has a better performance when detecting whether there is a fault in the sensor. The 

ACO-GCN model has better fault detection performance than the comparison algorithm, which shows that it has better 

performance in extracting and utilizing space-time characteristics and can effectively handle the problem of fault sensor 

detection in the WSN. 

 

Table 3. Evaluation Indicators of Each Algorithm Under Different Data Sets 

 

Data set Evaluating indicator 
Algorithm 

ACO/% GCN/% ACO-BP/% ACO-GCN/% 

Temperature data set 

Detection rate 𝑃𝐷𝑅 99.89 99.94 99.90 99.98 

Failure detection rate 𝑃𝐹𝐷𝑅  77.55 89.80 87.76 97.96 

False alarm rate 𝑃𝐹𝐴𝑅 0.11 0.60 0.10 0.02 

Sea level pressure data set 

Detection rate 𝑃𝐷𝑅 99.85 99.92 99.84 99.97 

Failure detection rate 𝑃𝐹𝐷𝑅  78.15 85.14 63.91 95.03 

False alarm rate 𝑃𝐹𝐴𝑅 0.15 0.08 0.16 0.03 

 

6. CONCLUSION 
 

The ACO is applied to the location of wireless sensor nodes, and a WSN fault node location algorithm based on ACO is 

proposed, which can realize the optimal search of WSN fault nodes. Through the iterative operation, the ant elements on the 

search path can be uniformly gathered, and the path of the ant elements can be adjusted in a standard and dynamic way to 

realize the estimation of the selected path, update the pheromone, and quickly obtain the local optimal solution of the path. 

The spatial characteristics of the sensor network are extracted by GCN. Then the extracted spatial features are combined with 

the input signal as the input of GRU, and the space-time features are extracted by GRU. Finally, the space-time characteristics 

are fed into the full connection layer and fitted into the fault detection results. The simulation results show that the ACO-

GCN model proposed by the author is superior to the ACO algorithm, GCN algorithm, and ACO-BP algorithm, which 

significantly improves the accuracy and reliability of WSN fault node detection and helps users to further study and analyze 

the WSN fault node events.  
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