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A logistic regression tree (LRT) is a hybrid machine learning method that combines a decision tree model and logistic 

regression models. An LRT recursively partitions the input data space through splitting and learns multiple logistic regression 

models optimized for each subpopulation. The split selection is a critical procedure for improving the predictive performance 

of the LRT. In this paper, we present a novel separability-based split selection method for the construction of an LRT. The 

separability measure, defined on the feature space of logistic regression models, evaluates the performance of potential child 

models without fitting, and the optimal split is selected based on the results. Heterogeneous subgroups that have different 

class-separating patterns can be identified in the split process when they exist in the data. In addition, we compare the 

performance of our proposed method with the benchmark algorithms through experiments on both synthetic and real-world 

datasets. The experimental results indicate the effectiveness and generality of our proposed method. 
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1. INTRODUCTION 
 

A model tree is a predictive machine learning method that incorporates parametric models into a decision tree. The tree 

structure iteratively partitions the input data space, and a set of parametric models at leaf nodes make predictions in each 

subspace. The model tree approach has two main advantages. First, a model tree can effectively handle a tradeoff between 

prediction accuracy and interpretability. In general, the best prediction is achieved by “black-box models,” such as neural 

networks that are not easily interpretable. However, model interpretability is often the key to success in numerous research 

areas that require comprehensive human understanding. On the contrary, relatively interpretable models, such as decision 

trees and generalized linear models, have a limitation in the sufficient representation of complex relationships between the 

input and target variables. A model tree divides the input data into more homogeneous subgroups by the input variable values, 

and the model tree enables simple parametric models to adequately explain the partitioned data in each subgroup. In this way, 

the prediction performance of the parametric models can be improved while maintaining the ease of interpretation. The second 

advantage of model trees is subgroup identification. The real-world data often consist of subgroups with heterogeneous 

patterns (Liang et al., 2020). For example, in the healthcare field, a dosing effect of a medicine on a particular disease may 

differ depending on the patients’ gender or age group. As another example, in the marketing field, the optimal promotions 

can be different depending on the heterogeneous characteristics of the customer segmentation. Thus, it is essential to 

accurately identify the heterogeneous subgroups and reflect them in the prediction model. Model trees can address this 

challenge of accurately identifying the heterogeneous subgroups by partitioning the training data into subgroups according 

to the different patterns and learning the prediction models optimized for each. Due to such advantages of the model tree 

approach, model trees have been successfully used in various research areas, such as business (Bright et al., 2017; Kuruzovich 

and Lu, 2017; Sankaranarayanan et al., 2016), finance (Ben-David and Frank, 2009; Gerlein et al., 2016), medical and health 

sciences (Anil et al., 2017; Choi and Zeng, 2020; Di Leo et al., 2017; Jo and Jun, 2021; Osmanovic et al., 2017; Trincado et 

al., 2016), social science (Cappelli et al., 2019), bioinformatics (Chen et al., 2016), natural language processing (Espina and 

Figueroa, 2017; Nozza et al., 2016; Ravi and Ravi, 2017), and geosciences (Chen et al., 2017; Heung et al., 2017). 
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Logistic regression is one of the most popular models for classification. Logistic regression trees (LRTs) are a hybrid 

machine learning method that combines a decision tree model and logistic regression models. LRTs have the advantages of 

simplicity, interpretability, and accuracy compared with other model trees for classification using Naïve Bayes classifier 

(Kohavi, 1996), discriminant analysis (Loh and Shih, 1997; Kim and Loh, 2001; López-Chau et al., 2013; Wickramarachchi 

et al., 2016; Kim et al., 2018), linear regression model (Frank et al., 1998), and support vector machines (SVM) (Menkovski 

et al., 2008; Madzarov et al., 2009; Kumar and Gopal, 2010). Like other model trees, the performance of an LRT mainly 

depends on the model fitting and split selection. The model-fitting methods have been evolving through several algorithms. 

The early LRTs, such as the Smoothed and Unsmoothed Piecewise Polynomial Regression Trees (SUPPORT) algorithm 

(Chaudhuri et al., 1995) and the Logistic Tree with Unbiased Selection (LOTUS) algorithm (Chan and Loh, 2004), build the 

logistic regression models in a tree only using a fraction of observations that belong to the corresponding node. This local 

learning scheme is not only unstable but also vulnerable to overfitting due to the small number of training samples. Landwehr 

et al. (2005) proposed an epoch-making algorithm called Logistic Model Tree (LMT), which employs boosting for 

incremental learning of LRTs. Lee and Jun (2018) improved the computational efficiency of LMT by applying least-angle 

regression (LAR) (Efron et al., 2004) in the boosting process. 

Unlike the advances in model fitting, there has been no such improvement in the split selection of LRTs, especially in 

capturing the heterogeneous class-separating patterns. The ideal split for a model tree is the partition that maximally improves 

the predictive performance of consequent models at the child nodes. The simplest approach is exhaustively fitting the child 

models for all possible candidate splits and selecting the best one. However, the computational cost for the repetitive model 

fitting is impractical. Thus, a split criterion that seeks an improvement in the split selection of LRTs without the exhaustive 

search is necessary. Technically, in the classification of model trees, we can improve the predictive performance of child 

models in two senses: class impurity minimization and subgroup identification. The traditional decision trees for 

classification, which have a constant prediction at each leaf node, calculate the class impurity of candidate splits and select 

the split that generates the most class-homogeneous child nodes. The Gini impurity of CART (Classification And Regression 

Tree) (Breiman et al., 1984) and the information gain ratio of C4.5 (Quinlan, 2014) are typical examples of this approach. 

Most of the previous model trees use such class impurity measures for their split selection. The splits simply cut off a group 

of data that have the same class, regardless of how the parametric models separate the classes. Therefore, the splits do not 

consider how the model classifies the data. 

On the contrary, some model trees employ statistical tests as an explicit split criterion for subgroup identification. The 

algorithms used for subgroup identification aim to detect the instability of the parametric models that occurs due to the 

different patterns in the subgroups. This criterion solely focuses on subgroup identification while ignoring the distribution of 

class labels. Therefore, if the statistical test fails to detect a significant model change by a split, the model tree will stop 

growing, even though the model tree can still improve its predictive performance by more splits in a direction to increase 

class purity. Thus, a model tree must consider both aspects to achieve the best predictive performance. 

In this study, we present a novel split selection method for constructing an LRT. We define the class “separability,” 

which indicates how well the classifier separates the data into different classes. The class separability measure is defined on 

the feature space of a logistic regression model, and it looks ahead the classification performance at the child nodes without 

model fitting. The proposed split selection process partitions the input data space into subpopulations with heterogeneous 

class-separating patterns in terms of both class impurity and parametric models. Thus, every intermediate node aims for the 

best split that maximally improves the consequent logistic regression models by efficient comparison of the candidate splits 

without an exhaustive search for all possible candidate splits. Experimental results on both synthetic and real-world datasets 

indicate that our proposed method effectively detects the heterogeneous subpopulations of the training data, and the method 

consequently yields a simple and accurate LRT compared with the benchmarking methods. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the related works. Section 3 introduces 

our proposed methods, including the class separability measure and the split selection rule. Section 4 describes our 

experimental study, followed by a discussion of the results. Finally, Section 5 concludes the paper with a summary and final 

remarks. 

 

2. RELATED WORK 

 

Here, we briefly review the existing LRTs and their split selection methods. The first algorithm that uses logistic regression 

models in a model tree is SUPPORT (Chaudhuri et al., 1995). This algorithm learns a logistic regression model at each node 

and calculates pseudo-residuals based on the nearest-neighbor averaging. Then, the observations are grouped by the sign of 

the pseudo-residuals, and the input variable with the largest difference between the groups is chosen as the split variable. 

Another LRT learner that focuses on unbiased split variable selection based on a modified chi-squared test is LOTUS (Chan 

and Loh, 2004). Like SUPPORT, this algorithm adopts a local learning scheme that fits the node models only based on the 

isolated observations at each node. LMT (Landwehr et al., 2005) has made a breakthrough in the model fitting process by 
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proposing a boosting method that incrementally learns logistic regression models. This approach enables the leaf models to 

reflect the global effect of surrounding the tree structure by incrementally updating models inherited from ancestor nodes. 

This process is called global learning. Furthermore, LMT implements a variable selection, whereas the previous algorithms 

only build full models using all the input variables. Lee and Jun (2018) proposed an LMT-L model that improves the 

computational efficiency of LMT by adopting LAR in the boosting process, called the LAR-Logistic algorithm. 

The split selection methods of the LRTs can be divided into two groups. The first group uses a class impurity measure 

for the split criterion. The split criterion recursively partitions the input data space to be as class-homogeneous as possible. 

This approach is the most common approach that is widely used by not only traditional decision trees but also LRTs. LMT 

selects the splits using the information gain ratio criterion (Quinlan, 2014), which is one of the most popular class impurity 

measures. LOTUS selects the splits using a modified chi-squared test, which is another example of the class impurity 

measures. Similarly, SUPPORT divides the observations in a node into two groups based on the signs of their pseudo-

residuals, which are identical to the class labels. Although these class impurity-based splits are intuitive and simple, they do 

not involve the classification models, as the measures are calculated based on the class label of training samples. The second 

group includes the methods of subgroup identification. The model-based recursive partitioning (MOB) algorithm (Zeileis et 

al., 2008) is a representative subgroup identification algorithm for a parametric model that can be fitted using M-type 

estimators (e.g., the least-squares and maximum likelihood estimators). MOB examines the change in model parameters 

considering each split variable using a parameter instability test. Although MOB suggests a unified framework that embeds 

heterogeneous subgroup identification in model trees, it has several limitations. First, it only detects structural changes or 

parameter instability in parametric models. As such, if the statistical test fails to find a significant model change, the model 

tree will stop growing. However, as aforementioned, the model tree can still improve its predictive performance by more 

splits in a direction to increase class purity. Second, the proposed model tree by MOB divides the input variables into 

predictors and covariates. The predictors are used only for the parametric models, whereas the covariates are used only for 

splitting the tree. Because we have no prior knowledge of the input variables, it is advantageous to allow them for both the 

model and split. 

 

3. PROPOSED METHOD 

 

In this section, we propose a novel split selection method for constructing an LRT. First, we explain the class separability 

measure of logistic regression for a split evaluation. Second, we describe a split selection rule based on the proposed class 

separability measure. Finally, we propose an LRT algorithm, called as an LMT, using fast incremental learning and 

separability-based split selection (FS-LMT), which applies the proposed split rule to the LMT-L model in Lee and Jun (2018). 

 

3.1 Class Separability Measure of Logistic Regression for a Split Evaluation  

 

Logistic regression learns a linear separating hyperplane by formulating the odds ratio of class probability as a linear 

regression model. Given an observation of 𝑝 input variables, 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑝]
𝑇
, and the binary class label, 𝑦 ∈ {−1, +1}, 

the predicted class probability 𝑝̂ = 𝑃(𝑦 = 1) is calculated using (1): 

 

𝑝̂ =
𝑒𝑥𝑝(𝑥𝜷̂)

1+𝑒𝑥𝑝(𝒙𝜷̂)
 , (1) 

 

where 𝛽̂ denotes the estimated coefficient vector of the logistic regression model (the intercept term, 𝛽0, is omitted for the 

sake of simplicity). Figure 1 presents the fitting curve of 𝑝̂ versus 𝑋𝛽̂. The markers at the top and bottom indicate the training 

data points whose true label is +1 and -1, respectively. The estimated value of 𝑝̂ is equal to 0.5 at the point where 𝑋𝛽̂ = 0. 

The data points that satisfy 𝑋𝛽̂ < 0 are classified as class -1 as their 𝑝̂’s are less than 0.5. Conversely, the data points that lie 

on the right from the origin point, i.e., 𝑋𝛽̂ ≥ 0, are classified as class 1 as their 𝑝̂’s are equal to or greater than 0.5. Figure 2 

demonstrates how the logistic regression predicts the class of training data. The “x” markers indicate the observations that 

are incorrectly classified by the logistic regression model, whereas the “o” markers stand for the correctly classified 

observations. The incorrect predictions occur in the overlapped region of the markers at the top and bottom. Therefore, a split 

that removes the overlap can improve the predictive accuracy of the consequent logistic regression models. For example, the 

classification accuracy of a logistic regression model is significantly improved when the observations are split into two 

groups, namely, correctly predicted and incorrectly predicted, as presented in Figure 3. The “overlapping area” is the region 

that ranges from the leftmost observation at the top to the rightmost observation at the bottom. Intuitively, the class 

separability by logistic regression can be measured via the number of observations that are included in the overlapping area. 

The logistic regression model is unable to separate the observations of different classes in this region. As shown in the 
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example of Figure 3, a split can greatly improve the classification accuracy of the child models if it finds the partitions in 

which there are no overlapping areas on the feature space of logistic regression. Note that in defining the overlapping area, 

careful attention must be paid, as the area can possibly be overestimated by outliers. To address this problem, the confidence 

interval is defined as follows: 

 

  
 

Figure 1. Feature space induced by logistic regression. 

 

 

Figure 2. Prediction of class via logistic regression. 

 

 
 

Figure 3. The optimal data split for logistic regression. 
 

Definition 1. Let 𝑐 ∈ {−1, +1} be the class for the true label, 𝑦. 𝜇𝑐 and 𝜎𝑐 denote the mean and the standard deviation 

of 𝑿𝜷 values for class 𝑐, respectively. The confidence interval of class 𝑐,  𝐶𝐼𝑐  is defined as 

 

𝐶𝐼𝑐 = [𝑙𝑐 , 𝑢𝑐] = [𝜇𝑐 − 𝑘𝜎𝑐 , 𝜇𝑐 + 𝑘𝜎𝑐] . (2) 

 

The value of 𝑘 can be determined by using Chebyshev’s inequality, which is defined as 

 

𝑃(|𝑋 − 𝜇| < 𝑘𝜎) > 1 −
1

𝑘2 , (3) 

 

where 𝑋 is a random variable of an arbitrary probability distribution, and 𝜇, 𝜎 denote the mean and the standard deviation 

of 𝑋, respectively. Chebyshev’s inequality holds with any probability distributions. In this research, the value of 𝑘 is set to 

2.236 for the confidence interval containing at least 80% of the observations. We define the overlapping area, 𝑂𝐴, as the 

overlapped range of 𝐶𝐼𝑐’s: 
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Definition 2. The overlapping area, 𝑂𝐴, is defined as 

 

𝑂𝐴 = [𝑙+1, 𝑢−1] , (4) 

 

when 𝑢−1 > 𝑙+1. 

Figure 4 presents 𝐶𝐼 and 𝑂𝐴 for the “Australian Credit Approval Data Set” from the UCI machine learning repository 

(Dua and Graff, 2019). The observations included in 𝑂𝐴 are indicated in purple, whereas the outliers located out of CI are 

indicated in gray. If the outliers were included, the 𝑂𝐴 would be overestimated.  

 

 
 

Figure 4. Illustration of 𝐶𝐼 and 𝑂𝐴. 

 

Now, we define the separability measure, 𝑆𝑀, based on 𝑂𝐴 and 𝐶𝐼𝑐. 

 

Definition 3. The separability measure, 𝑆𝑀, is defined as 

 

𝑆𝑀 = 1 −
𝑁𝑂𝐴

𝑁𝐶𝐼+1+𝑁𝐶𝐼−1

 , (5) 

 

where 𝑁𝑂𝐴 and 𝑁𝐶𝐼𝑐
 denote the number of observations located in 𝑂𝐴 and 𝐶𝐼𝑐 , respectively.  

As aforementioned, the 𝑆𝑀 value measures how accurately the logistic regression model classifies the data. A higher 

value of 𝑆𝑀 implies that the logistic regression model more accurately separates the data of different classes. This implies 

that a split improves the predictive performance of the child models as much as the 𝑆𝑀 values are increased. 

 

Proposition. 𝑆𝑀 is a normalized measure that satisfies 0 ≤ 𝑆𝑀 ≤ 1. 

Proof. Because 𝑂𝐴 is defined in the range of 𝐶𝐴, then ∑ 𝑁𝐶𝐼𝑐𝑐 ≥ 𝑁𝑂𝐴.  

 

Therefore, 0 ≤ 𝑆𝑀 = 1 −
𝑁𝑂𝐴

∑ 𝑁𝐶𝐼𝑐𝑐
≤ 1. 

 

𝑆𝑀 is a normalized measure that ranges from 0 to 1. When the 𝑆𝑀 value is 0, the logistic regression model is unable to 

classify the observations at all, whereas when the 𝑆𝑀 value is 1, the observations are perfectly classified. It should be noted 

that 𝑆𝑀 is equal to 1 when all samples in the current node have the same class. This property indicates the split by which the 

class of observations at each subspace is maximally homogeneous when no significant heterogeneity of class-separating 

patterns exists in the data. In other words, the separability-based split measure is not only able to detect the model 

heterogeneity when it exists but can also be used regardless of the existence of heterogeneous subpopulations in the given 

data, like the class-impurity-based measures. This property allows the proposed split selection method far more generality, 

and in Section 4, the property will be validated via a numerical experiment. While not discussed in this paper, 𝑆𝑀 could also 

be extended to multiclass classification through one-vs-one or one-vs-rest binary logistic regression models. 
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3.2 Split Selection Method 

 

The proposed separability-based split selection method calculates 𝑆𝑀 for every candidate split of the current node and selects 

the best split with the largest 𝑆𝑀  value. First, a split rule to define candidate split rules is to be determined. Different 

approaches for split rules are divided to orthogonal, oblique, and nonlinear split. The orthogonal split approach divides the 

data space via an axis-parallel split. This approach is simple and intuitively interpretable. The oblique split approach 

statistically learns a hyperplane for a split, which is not necessarily orthogonal to the axis of the split variable. This flexibility 

of the oblique split rule leads to a smaller tree than the orthogonal split; however, the interpretability decreases because the 

split rule is represented by a linear function of multiple input variables. The nonlinear split approach is the most flexible 

approach, which requires the least assumptions for the split rule. A nonlinear split is represented by a linear combination of 

arbitrary basis functions. These functions require high computational complexity, and they are prone to noise in the training 

data. Our proposed method uses the orthogonal split approach to achieve interpretability. In the traditional decision trees, the 

simple orthogonal splits yield a large tree that is not only hard to interpret but also prone to overfitting. However, it does not 

necessarily happen in the proposed method as the logistic regression models at the leaves are much more complex than a 

constant prediction of the traditional decision trees. 

At each intermediate node, the candidate split rules for the input variables are generated, and the best split is selected 

by the evaluation of 𝑆𝑀. The orthogonal split rule for a numerical variable is given as a threshold value to the split variable. 

It groups the observations into two subsets: the value of the split variable of one subset is less than the threshold, whereas 

that of the other subset is greater than the threshold. The candidate threshold values, 𝜃𝑗,𝑘 for a numerical variable 𝑋𝑗 are 

calculated as an average of each adjacent pair of 𝑙 distinct values observed in the training data as  

 

𝜃𝑗,𝑘 =
𝓋𝑗,𝑘+𝓋𝑗,𝑘+1

2
,   𝑘 = 1, … , 𝑙 − 1 , (6) 

 

where 𝓋𝑗,𝑘 is the 𝑘𝑡ℎ smallest observed values of 𝑋𝑗. For a categorical split variable, the observations at the current node are 

partitioned according to the distinct values of the split variable.  

The second step of split selection is the evaluation of the candidate splits. It is impractical to compare all candidate splits 

by fitting the child models because the split rule generates numerous candidates. Fortunately, our proposed separability 

measure, 𝑆𝑀, can look ahead to the predictive performance of the logistic regression models in the child models without 

requiring model fitting. The weighted average of the 𝑆𝑀 values for the child nodes generated by the candidate split, 𝜃, at the 

current node, 𝑡, is computed as 

 

𝑆𝑀𝜃(𝑡) =
1

𝑁(𝑡)
∑ 𝑁(𝑡′) 𝑆𝑀(𝑡′)𝑡′∈𝑆𝜃(𝑡)  , (7) 

 

where 𝑁(𝑡) is the number of samples at 𝑡, and 𝑆𝜃(𝑡) is the set of child nodes generated by 𝜃. 𝑆𝑀𝜃(𝑡) estimates the predictive 

performance of logistic regression models at the child nodes. The split with the largest 𝑆𝑀𝜃(𝑡) is selected as the optimal split 

of 𝑡: 

 

𝜃∗ = arg max
𝜃

𝑆𝑀𝜃(𝑡) . (8) 

 

The node 𝑡 splits only when 𝑆𝑀𝜃∗(𝑡) is greater than 𝑆𝑀(𝑡), otherwise, the tree stops growing. 

 

3.3 The FS-LMT Algorithm 

 

Here, we propose the FS-LMT algorithm. FS-LMT selects the splits using the separability-based measure and learns the 

parameters of logistic regression models via LAR-Logistic proposed by Lee and Jun (2018). Figure 5 presents the 

procedure of FS-LMT, which is described as follows: 

- LAR-Logistic builds a logistic regression model at the root node. The number of boosting iterations is determined 

using the Akaike information criterion (Akaike, 1998) with maximum iterations of 200. The number of iterations 

identically applies to all the nodes in the tree. 

- The root node finds a split using the proposed separability-based split selection algorithm. The child nodes fit the 

logistic regression models on the corresponding subsets of the data using LAR-Logistic. The boosting starts with 

the parameters inherited from the parent node. 

- The splitting and model fitting continue in the same fashion until a node satisfies at least one of the stopping criteria. 
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- The CART cross-validation-based pruning algorithm (Breiman et al., 1984) prunes the grown tree. As a result, the 

algorithm provides the optimal subtree. 

 

 
 

Figure 5. The procedure of the FS-LMT algorithm. 

 

For the FS-LMT algorithm, several user-defined parameters need to be determined. The stopping criteria for pre-pruning 

were set to be the same as those used by Landwehr, Hall, and Frank (2005). Specifically, a node does not split if it satisfies 

either of the two conditions: 1) it contains fewer than 15 observations or 2) it does not have more than two subsets that contain 

more than two instances each. A logistic regression model is built at a node only if it contains at least five examples. For 

efficient model learning, we adopt the heuristics from Landwehr, Hall, and Frank (2005) and Sumner, Frank, and Hall (2005). 

The maximum number of boosting iterations is set to 200, and each iteration uses training samples with 90% of the total 

weight mass. 

 

4. EXPERIMENTS 

 

Here, we describe the experiments and discuss the results. First, we conducted experiments using simulated datasets. The 

experimental results indicate how the proposed method finds heterogeneous subgroups. Second, we performed experiments 

using real-world datasets. The experimental results evaluate the proposed method by comparing it with other benchmark 

classification methods. 

 

4.1 Experiments Using Simulated Data 

 

Figure 6 presents a two-dimensional (2D) XOR dataset. The shapes of the data points indicate two different classes: class 1 

and class 2. The samples for class 1 were generated via random sampling of 100 samples from two different bivariate Gaussian 

distributions of [𝑋1, 𝑋2], 𝑁([2.5, 2.5], 𝑰) and 𝑁([7.5, 7.5], 𝑰), where 𝑰 denotes the corresponding identity matrix. The samples 

for class 2 were generated in the same manner from 𝑁([2.5, 7.5], 𝑰) and 𝑁([7.5, 2.5], 𝑰). The XOR dataset is a typical 

example of heterogeneous data with different class-separating patterns in the subpopulations. The entire observations cannot 

be classified by a linear function; however, they are linearly separable when divided by the vertical (or horizontal) centerline. 

For this reason, linear classifiers, such as logistic regression, linear discriminant function, and linear SVM, fail to classify the 

XOR dataset. On the contrary, nonlinear classifiers, such as neural networks, kernel SVM, and Gaussian processes, may 

successfully classify the observations; however, they provide no meaningful interpretation of the heterogeneity for reasoning. 

To solve this problem, one can use the model tree approach that builds stratified predictive models in the subspaces. The key 

is to detect the heterogeneity and find proper partitions of the data. 
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Figure 6. The 2D XOR dataset. 

 

Figure 7 presents the trees constructed by LMT-L and FS-LMT for the 2D XOR dataset. LMT-L, which uses identical 

procedures with FS-LMT, except for the split selection, was included to validate the effectiveness of the separability-based 

split selection algorithm of FS-LMT. The plots for individual nodes illustrate the distribution of observations and the 

separating hyperplane (dashed line) of logistic regression. The prediction accuracy of logistic regression models in each group 

is given below the plots. Figure 7(a) demonstrates how the class-impurity-based split method partitions the 2D XOR data. 

The LMT-L algorithm, which uses the information gain ratio as the split criterion, takes off a small part of observations 

around the rim when it splits as it looks for a group of a homogeneous class, as presented in Figure 7(a). The final model fails 

to find the proper split for heterogeneity and leads to poor prediction accuracy. On the contrary, the FS-LMT algorithm, which 

employs the separability-based split selection algorithm, effectively selects the optimal splits, as presented in Figure 7(b). 

The 𝑆𝑀 value is maximized when the observations are divided according to whether the 𝑋2 value is less than 5 or not. After 

a single split, the prediction accuracy reaches 0.97 and 1.00. These experimental results support the effectiveness of the 

separability-based split selection algorithm in the detection of heterogeneous class-separating patterns. 

 

  
(a) (b) 

 

Figure 7. Classification results of the 2D XOR dataset:  

The tree constructed by (a) the LMT-L algorithm and (b) the FS-LMT algorithm. 
 

Figure 8 presents the experimental results on the 3D XOR datasets. The samples for class 1 were generated via random 

sampling of 100 samples from [𝑋1, 𝑋2] ~ 𝑁([7.5, 7.5], 𝑰) and 𝑁([2.5, 2.5], 𝑰) while 𝑋3 = 1 and 𝑋3 = 0, respectively, where 

𝑰  denotes the corresponding identity matrix. The samples for class 2 were generated in the same manner from 

[𝑋1, 𝑋2] ~ 𝑁([2.5, 2.5], 𝑰)  and 𝑁([7.5, 7.5], 𝑰)  while 𝑋3 = 1  and 𝑋3 = 0 , respectively. As in the 2D XOR example, the 
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information gain ratio cannot successfully find a separating hyperplane of the 3D XOR data, whereas in the case of the 

proposed separability-based split selection, the accurate linear functions that perfectly classify classes 1 and 2 can be learned 

with only one split. 

 

  
(a) (b) 

 

Figure 8. Classification results of the 3D XOR dataset: 

Tree constructed by (a) the LMT-L algorithm and (b) the FS-LMT algorithm. 
 

4.1 Experiments Using Real-World Data  

 

We apply the FS-LMT algorithm to the analysis of quantitative structure–activity relationships (QSAR). In chemical and 

biological sciences, QSAR models study the relationship between chemical structures and biological activities, and these 

models predict the characteristics of new chemicals (Huang, 2017). A predictor and the associated biological activity often 

have a different relationship according to the status of other variables, and it is crucial to reflect the complex interactions in 

the predictive model. Mansouri et al. (2013) used a given dataset to develop QSAR models for the study of the relationship 

between chemical structures and the biodegradation of molecules. In this study, we use the dataset employed by Mansouri et 

al. (2013). Biodegradation experimental values of 1,055 chemicals were collected from the webpage of the National Institute 

of Technology and Evaluation of Japan. The predictors consist of 41 biodegradation experimental values, and the response 

class is whether the molecules are readily biodegradable or not. 

We used several algorithms to the QSAR dataset for comparison. In addition to LMT-L, random forests (RF), SVM with 

Gaussian kernel (SVMg), and multilayer perceptron (MLP) were compared as the benchmark methods. The RF models were 

developed using 100 decision trees. The kernel parameter of SVMg was tuned via a grid search in a range of 

[2−10, 2−9, … , 29, 210]. The MLP algorithm used two layers consisting of 10 hidden nodes of 𝑡𝑎𝑛ℎ functions and one output 

node of the logistic function. The mean and standard deviation values for 10 repetitions of 10-fold cross-validations were 

calculated for these algorithms. 

The experimental results are presented in Table 1. We observe that the FS-LMT algorithm obtains higher classification 

accuracy than the other methods. Figure 9 presents the tree constructed by the FS-LMT algorithm. The node models learned 

by FS-LMT are optimized in the corresponding subspaces. For example, the estimates for the logistic regression model 

coefficients at nodes 4 and 5 have different values; moreover, the coefficient estimates for 𝑋11, X13, 𝑋17, 𝑋24, 𝑋34, and 𝑋36 in 

nodes 4 and 5 have opposite signs. This result clearly explains the different class-separating patterns. These final models and 

the competitive predictive accuracy of FS-LMT support that the FS-LMT algorithm successfully classifies the data with 

heterogeneous subgroups. 

 

Table 1. Mean and standard deviation of the classification accuracy for FS-LMT, LMT-L, RF, SVMg, and MLP on the 

QSAR dataset. 
 

Classifiers FS-LMT LMT-L RF SVMg MLP 

Avg. Acc 0.8751 0.8623 0.8653 0.8548 0.8423 

Std. 0.0329 0.0313 0.0247 0.0274 0.0415 



Lee and Jun A Novel Split Selection of an Logistic Regression Tree  

 

307 

 
 

Figure 9. The final predictive model constructed by FS-LMT for the QSAR dataset. 

 

In addition, we applied FS-LMT to additional real-world datasets to evaluate the generality of the algorithm. The 

experiments compared the LMT, LMT-L, and FS-LMT algorithms to validate the effectiveness of the proposed split selection 

method. The two different versions of LMTs, namely, LMT using SimpleLogistic (LMT-S) and MultiLogistic (LMT-M)–by 

Landwehr, Hall, and Frank (2005), were used. Table 2 describes the 14 benchmark datasets collected from the UCI machine 

learning repository (Dua and Graff, 2019). The datasets have different characteristics with respect to the number of 

observations, proportion of missing values, and number of numerical, binary, and nominal (i.e., categorical variables with 

more than two distinct values) variables. We transformed each nominal variable by one-hot encoding when we built the 

logistic regression models. 

 

Table 2. Description of the datasets used in the experiment. 

 

Dataset 
 

Numerical 

variables 

Binary 

variables 

Nominal 

variables 

Sum of 

cardinality 

Hepatitis 155 6 13 0 26 

Sonar 208 60 0 0 0 

Heart-statlog 270 6 3 4 19 

Heart-h 294 6 3 4 19 

Heart-c 303 6 3 4 19 

Ionosphere 351 33 0 0 0 

Horse-colic 368 7 3 12 54 

Vote 435 0 16 0 32 

Boston 506 12 1 0 2 

Australian 690 6 4 4 37 

Japan 690 6 4 5 40 

Breast-w 699 9 0 0 0 

Pima 768 8 0 0 0 

German 1,000 7 2 11 54 

 

Furthermore, we replaced missing values with the computed mean and mode for numerical and categorical variables, 

respectively. As aforementioned, the split selection method of FS-LMT seeks the partition by which the class of observations 

at each subspace is maximally homogeneous when there is no significant heterogeneity of class-separating patterns exists in 
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the data. In other words, the FS-LMT algorithm can be used regardless of the existence of heterogeneous subpopulations in 

the given data. Table 3 presents the comparison of the mean accuracy and standard deviation obtained via 10 repetitions of 

10-fold cross-validations for LMT-S, LMT-M, LMT-L, and FS-LMT. The FS-LMT algorithm gives the highest predictive 

accuracy in a larger number of datasets than the LMT algorithms using the information gain ratio for the splits. These 

experimental results support that the FS-LMT algorithm is not only for data with explicit heterogeneity but also applicable to 

general datasets for classification. 

 

Table 3. Mean classification accuracy and standard deviation for LMT-S, LMT-M, LMT-L and FS-LMT. 

 

Dataset LMT-S LMT-M LMT-L FS-LMT 

Hepatitis 
0.819 0.824 0.836 0.830 

(0.096) (0.090) (0.088) (0.110) 

Sonar 
0.754 0.729 0.757 0.764 

(0.086) (0.089) (0.086) (0.093) 

Heart-statlog 
0.825 0.829 0.840 0.844 

(0.073) (0.073) (0.071) (0.064) 

Heart-h 
0.822 0.830 0.835 0.860 

(0.066) (0.062) (0.063) (0.025) 

Heart-c 
0.825 0.827 0.831 0.841 

(0.072) (0.079) (0.076) (0.082) 

Ionosphere 
0.922 0.879 0.899 0.894 

(0.041) (0.046) (0.052) (0.075) 

Horse-colic 
0.835 0.794 0.818 0.818 

(0.056) (0.063) (0.062) (0.083) 

Vote 
0.955 0.951 0.954 0.961 

(0.029) (0.031) (0.031) (0.031) 

Boston 
0.868 0.869 0.873 0.889 

(0.047) (0.047) (0.047) (0.042) 

Australian 
0.852 0.844 0.854 0.852 

(0.044) (0.046) (0.045) (0.032) 

Japan 
0.856 0.847 0.857 0.848 

(0.040) (0.040) (0.041) (0.036) 

Breast-w 
0.965 0.961 0.966 0.967 

(0.022) (0.022) (0.022) (0.016) 

Pima 
0.768 0.768 0.768 0.772 

(0.044) (0.047) (0.045) (0.033) 

German 
0.740 0.746 0.747 0.758 

(0.046) (0.044) (0.043) (0.047) 

Average 

accuracy 
0.843 0.836 0.845 0.850 

 

5. CONCLUSION 

 

In this paper, we proposed a novel split selection method for constructing an LRT. The separability measure, defined on the 

feature space of logistic regression models, evaluates the performance of potential child models without fitting, and the 

optimal split is selected based on the results. The splits detect heterogeneous subgroups that have different class-separating 

patterns when they exist in data. Otherwise, the split continues to improve the predictive performance of the model by finding 

the subgroups that minimize class impurity. Several experimental results on the synthetic and real-world datasets indicate that 

our proposed method cannot only efficiently find proper splits for an LRT with few splits but also effectively builds LRTs 

that accurately predict the classes of data. Moreover, the splits directly explain different class-separating patterns. Thus, it is 

easier to interpret the final models with heterogeneous representations of the class distribution. 
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