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Constructive Heuristics for the Resource Constraint Project Scheduling Problems (RCPSP) are preferred scheduling methods 

when the project network broadens. Then, to generate a good schedule from these heuristics, the priority list used in the 

algorithm becomes crucial. This paper proposes a Cluster-Based Priority List (CB-PL) method for generating lists to improve 

makespans of schedules obtained from constructive heuristics. The method creates more intellectual priority lists that generate 

lower makespans. The approach is built and fine-tuned upon the existing relative literature. The performance of the method 

is measured by comparing the makespan results. The experiment for the comparison uses serial and parallel scheduling 

schemes with seven priority rules. Then the experiment is tested through a set of benchmark data. Finally, schedules obtained 

through the CB-PL showed significant makespan reductions and increases in an overall number of better solutions. 
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1. INTRODUCTION 
 

The Resource-Constrained Project Scheduling Problem (RCPSP) is one of the primary keys to success in project management 

as it is the successor of the common project scheduling problem. The RCPSP aims to generate an applicable schedule for the 

projects with resource consumption. So, the scheduling becomes a deciding factor for the initial makespan planning for the 

projects. Therefore, the makespans obtained by these schedules are essential for the projects' on-time completion (Herroelen, 

2005; Habibi et al., 2018). This problem has mostly been seen as the team's problem of being ineffective in their scheduling. 

The basic version of the RCPSP is a single project including numerous activities to be scheduled as soon as possible. The 

problem contains precedence and successor relationship, resource consumption, and duration that it takes for the activities in 

the project. Also, the required resources for the project are assumed renewable. 

The RCPSP is NP-hard (Blazewicz et al., 1983). Due to this situation, the problem is hard to solve for an optimal 

schedule in a reasonable time, even with projects that have 30 activities (Coelho and Vanhoucke, 2018). The general solution 

for this immense time consumption of optimal solutions is to use heuristic algorithms (Demeulemeester and Herroelen, 2002; 

Roy and Sen, 2019). Heuristics used to create feasible schedules for RCPSP are called constructive heuristics. Generally, 

these heuristics are solved by adding activities to an empty schedule from pre-created priority lists (Demeulemeester and 

Herroelen, 2002; Ulusoy and Hazır, 2021). The priority lists used in these heuristics are lists based on rules that take project-

related information into account. 

Task clustering is a solid approach to different scheduling problems with efficient use (Lu et al., 2015; Hajikano et al., 

2016; Santoso et al., 2017; Roy et al., 2021). The developed heuristics, used with clustered tasks, obtain lower makespans 

than existing heuristics of the same research area. Still, even though the approach's usefulness is proven, it has not been 

covered for the RCPSPs. Therefore, this paper presents a cluster-based priority list method (CB-PL) to improve makespans 

obtained out of constructive heuristics that use priority lists for basic RCPSP. As an exact replication from other research 

topics is not possible, the base of the method is developed onto the syntheses of existing approaches. Then, it is finalized with 

the tuning of the futures of RCPSP into this base. The base of the CP-PL approach used is covered in the multiprocessor 

scheduling problems (Boeres et al., 2004; Jedari and Dehghan, 2009), which are the most relatable study RCPSPs. Because 
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both problem types, the scope of this paper, and multiprocessor scheduling problems use directed acyclic graphs. So, the 

main adaptation for the base is built upon these multiprocessor scheduling problems. From this base, the finalized method 

works by making some adjustments to the creation of the priority lists instead of making changes to the algorithms themselves. 

The CB-PL method enables us to obtain more sensible priority lists by using the clusters generated from the baseline 

schedules. Then, the new lists obtain lower makespans with the same constructive heuristics. In this perspective, the CB-PL 

method increases the performance of the most used and basic approaches in solving RCPSP. 

Thus, there are two purposes to this paper. The first purpose is to develop a method for clustering activities that can be 

used with existing priority rules to create priority lists to increase their performance. So, the CB-PL method is adapted and 

developed by combining the methods from existing literature for activity clustering and properties of RCPSP. Then the second 

purpose is to present an evaluation method for the performance of the CB-PL method. The performance is evaluated by 

comparing makespans obtained with original priority lists and the lists generated by the CB-PL method. The remainder of 

this paper is organized as follows. Section 2 reviews the RCPSP, the applied activity clustering related studies for the 

scheduling and clustering related studies. Then the detailed description of the method and the application of an illustrative 

example are given in Section 3. In Section 4, the numerical experiment for evaluating the method is described in detail. Then 

Section 5 analyses the results of the numerical experiment. Finally, a conclusion for the method's performance and the 

summary of the paper are presented in Section 6. 

 

2. LITERATURE REVIEW 
 

2.1 RCPSP Related Literature 

 

The RCPSP literature has a considerable number of studies on the type of the problem and solution procedures for them, 

which can be found by Brucker et al. (1999), Demeulemeester and Herroelen (2002), Kolisch and Hartmann (2006). The 

RCPSP is the extension of the project scheduling problem that is classified as 𝑐𝑝𝑚|𝐶𝑚𝑎𝑥  by Herroelen et al. (1999), without 

any resource constraints and only a predecessor-constrained scheduling problem. In the problem representation, cpm outlines 

the strict finish-start precedence constraint relationship with zero-time lag, while 𝐶𝑚𝑎𝑥 represents the makespan minimization 

of the project. This problem is especially used in completing Temporal Analysis on the project network. On the other hand, 

the basic RSPSP is classified as m, 1|𝑐𝑝𝑚|𝐶𝑚𝑎𝑥  and this problem is proved to be NP-Hard (Blazewicz et al., 1983). The 

problem classification adds m number of renewable resources to the problem. The "1" in the classification scheme depicts 

resources for this problem being renewable (Demeulemeester and Herroelen, 2002). Also another critical aspect of this 

problem is that the project network graph representing the problem by definition is acyclic. Then, by also assuming the graph's 

nodes are topologically numbered, the final graph is referred to as a directed acyclic graph (Demeulemeester and Herroelen, 

2002). 

The solution generation techniques for the RCPSP are studied under two subjects, exact procedures and heuristic 

procedures by Demeulemeester and Herroelen (2002). As the name implies, exact procedures generate optimal base schedules 

for the problem. The usual approaches for these procedures are usually the linear programming-based ones or the branch-

and-bound method-based ones. However, exact procedures have one shortcoming. As this procedure achieves optimal 

makespan for the project network, delays in the implementation, especially for activities in the critical path, require the 

calculation of the schedule again. Also, the computation time needed for some project networks to achieve optimal solutions 

is large. Therefore, project managers prefer to use heuristic procedures. Heuristic procedures compared to exact ones give 

acceptable and feasible project schedules achievable in a reasonable short computational time. Heuristics procedures are 

examined under constructive heuristics and improvement heuristics. Out of these two, improvement heuristics are built upon 

an already existing schedule. They do not build schedules from scratch. However, the constructive ones build the schedule 

from scratch. Readers interested in improving heuristics can be referred to existing literature (Demeulemeester and Herroelen, 

2002). 

The constructive heuristics are based on scheduling schemes and priority rules. The scheduling schemes correspond to 

the way that a feasible schedule is constructed. At the same time, the priority rules decide the order in which the activities are 

scheduled in the scheduling schemes. The basic scheduling schemes are serial (Kelley, 1963) and parallel scheduling (Brooks 

and White, 1965) schemes. The mentioned schemes start creating the schedule from the dummy start node and build the 

schedule by adding the activities according to their priority rule. Especially the serial scheme does this by adding activities 

one by one depending on resource availability and precedence completion of the activities. 

On the other hand, the parallel scheme adds all the available activities considering their constraints for the given decision 

point. Note that activity additions are always made in order of their priority order. If a constructive heuristic application uses 

one scheme and one priority rule as described so far, it is called the single-pass method. However, as the easiness of using 

the single-pass method became apparent, multi-pass methods, combinations of schemes, and priority rules for scheduling 

have been proposed (Li and Willis, 1992). 
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As a selection rule for the activities, the priority lists affect the makespan of the schedule, similar to scheduling schemes. 

By their usage in the algorithms, there are two priority rules, the static and the dynamic ones. The static priority rules are the 

ones that are calculated at the beginning of the scheduling, and then they are used for the activity selection throughout the 

algorithm without any change in the order of the activities. On the other hand, the dynamic ones require updates on the priority 

list each time an activity is scheduled. Other than this distinction, according to the priority list's attribute, the lists have been 

categorized under five major categories (Lawrence, 1985). These categories are as follows; Activity-based priority rules 

consider only the activity-related attributes, Network-based priority rules work with network-related attributes like successor 

and predecessor relationships except for the resource consumption, Critical path-based priority rules use attributes generated 

from the temporal analysis (critical path calculations) results of the network, Resource-based priority rules covers the rules 

that are generated based on recourse consumption of activities. Finally, Composite priority rules are generated by combining 

the previous priority values by a weighted sum. Lastly, if the activities are added to the priority list starting from the start 

node or end node, two types of lists can be created for the same rule: a Forward priority list and a backward priority list. It is 

essential to mention that depending on the rule type, these two types of lists might not be available if the list is based on a 

unique rule. Besides the type and classification of the priority lists, a crucial aspect of the lists is how they require the order 

of activities to be in sequential order. It means that for any priority rule in question, the activity added to the list requires all 

successors to be already ordered for forward activity additions and predecessors for the backward additions. 

 

2.2 Clustering Method Application Related Literature 

 

Clustering of tasks in scheduling is not a saturated subject as the variety of scheduling problems increases. Some of the latest 

studies that use task clustering for scheduling problems can be found for operation room scheduling for hospitals (Santoso et 

al., 2017) and the automobile repair sector (Alex Joseph and Saini, 2018). It is important to note that the scheduling problem 

for both of these clustering applications is remotely related to the project scheduling problem. They cluster the tasks according 

to their properties and create a priority order accordingly. Later, using this priority, they create their schedules. In other words, 

they create categories for the available tasks in their areas. Even though these cases use the clustering method, their 

approaches are case-sensitive. Still, in this paper, these approaches are also used for developing the CB-PL method. The 

operating room scheduling application (Santoso et al., 2017) does this by clustering surgical activities by their cluster. They 

use K-means clustering (MacQueen, 1967) with the Silhouette method (Rousseeuw, 1987). They can decide the clusters with 

a deciding factor for an optimal number of clusters. Then they order the priority of these clusters according to the activities' 

durations in the clusters. The priorities of clusters are decided by the Shortest Processing Time method as mentioned to give 

better results. Finally, they use the priority order they created in a genetic algorithm for scheduling. Their results show 

increased efficiency as patient waiting time and nurse overtime for the problem decrease. 

On the other hand, the automobile repair example (Alex Joseph and Saini, 2018) uses a determined clustering approach. 

Initially, they defined a four-category that takes the criticality of the tasks into account. Then they define a priority order in 

these categories according to the further specific problem of the automobile that requires a repair. Finally, the scheduling 

approach used with this clustering method is shown that it does increase the on-time delivery of repaired automobiles. The 

intake from these papers can be summarized under the clustering method used with task attributes to improve the scheduling 

problems. Therefore, the method presented in this paper generalizes this improvement on project scheduling problems. 

However, these applications do not require a graph representation, which is the case for the RCPSP. Such difference differs 

the RCPSP from these types of problems. So, the base of the method cannot be referenced by Santoso et al. (2017) and Alex 

Joseph and Saini (2018). Yet, their approaches are required for the finalization of the CB-PL method.  

The most similar subject to RCPSPs, which also uses attributes of the task for the clustering, is scheduling directed 

acyclic graph (DAG) tasks on multiprocessors. Even though both RCPSPs and multiprocessor task scheduling problems are 

based on similar graphs, task clustering is not utilized in the project scheduling as it has been in task scheduling on the 

multiprocessor. Clustering of tasks related studies for multiprocessor scheduling is one of the most extensive ones (Gerasoulis 

and Yang, 1992; Boeres et al., 2004; Jedari and Dehghan, 2009). The earlier studies that present a framework for this subject 

can be found in Gerasoulis and Yang (1992). The clustering application aims to divide tasks into the available processors. As 

such, the tasks assigned to a cluster cannot be separated from the other. The way clustering is applied creates mini-DAGs out 

of the original graph, which is dealt with by their assigned processors. In which created mini-DAG does not have a task that 

breaks the predecessor and successor relationship inside the cluster. However, the successor relationship is protected between 

clusters. So, the clusters can be assigned to processors then later scheduled clusters are combined according to their successor 

relationships. 

The more replicable study to project scheduling from a multiprocessor task scheduling subject is the study of Jedari and 

Dehghan (2009). They propose a new task scheduling algorithm for Heterogeneous Distributed Computing Systems 

(HeDCSs). The applied heuristics in these systems also show similarities with project scheduling problems heuristics. HeDCS 

heuristics also have list-based heuristic algorithms (Adam et al., 1974), similar to the constructive heuristics that use priority 
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lists. The proposed Resource-Aware Clustering (RAC) for Directed Acyclic Graph (DAG) algorithm uses a clustering 

methodology applicable to the HeDCSs, systems with varied processors and resources. An example of resources, in this case, 

is the processing power of the processors. The algorithm first creates clusters of the tasks assigned to processors. An important 

aspect of their clustering method is to have the clustering application without considering resources so that the clustering is 

fair. Then the scheduling of clusters is then calculated with a list-based heuristic that uses Modified Bottom-Level to prioritize 

the tasks. The property used in the prioritizing is the tasks' longest distance to graph start or endpoints. Finally, their 

comparison results show improvement compared to other available list-based algorithms. More recent papers' like Hajikano 

et al. (2016) and Roy et al. (2021) also use task clustering for scheduling multiprocessors. The crucial differences between 

these two papers to Jedari and Dehghan's (2009) application are the method used in the list-based algorithm and the method 

heuristic. Also, although list-based heuristics are the main approaches in these papers, the clustering methodology is not 

covered explicitly. Therefore, this paper takes Jedari and Dehghan's (2009) approach as the base for replication to create a 

CB-PL method as it is more relatable than other task clustering applications. 

 

2.3 Clustering Methods Related Literature 

 

K-means algorithm (MacQueen, 1967) is the most commonly applied clustering algorithm available in the literature. The 

algorithm starts with k single random points, which then, by the addition of the other points it, generates the clusters. The 

amount of the clusters stays constant with the k amount as initially was used to declare the random points. The declaration of 

the amount, k, can be made intuitionally, or methods for finding the optimal number of clusters for the map can be used. A 

common method for finding such an optimal k is the Silhouette Method (Rousseeuw, 1987). However, the computational 

time increase is the negative side of using the Silhouette Method to have the optimal k amount for the k-means algorithm. 

For example, the operation scheduling problem study (Santoso et al., 2017) uses this combination for their clustering method. 

The combination is useful for their case because they analyze the system and create the clusters one time for the variety of 

the tasks (surgical activities) in their systems. Therefore, they do not require the computation of clusters for any additional 

surgical activity that arrives in their system. They would only require it if a new type of surgical activity emerges in their 

system. However, such is not the case for the project scheduling problem. Any additional activities or changes in the project 

network would cause the network's graph, the mapping, to have changed. The change would require applying the clustering 

algorithm again as the new clusters differ from the previous ones.  

The Affinity Propagation (AP) method (Frey and Dueck, 2007) overcomes this computational time need. At its core, 

the AP method aims to succeed in the shortcoming of the K-mean algorithm in other aspects. Especially the reliance of the 

K-means algorithm on its initial random point selection for finding satisfactory results. Compared to the K-mean algorithm, 

the AP method starts by considering all data points as possible clusters. Then, they create final clusters according to their 

proposed relationship of points by iterating until convergence of the graph is reached. 

 

2.4 Conclusion 

 

Firstly, the literature on the RCPSP problem was reviewed. Then, the possible clustering method studies from respective 

scheduling problem areas that are related or similar to the RCPSP were reviewed. However, none of the studies could be 

exactly replicated to the RCPSP for a clustering method application. Therefore, a new method utilizing the features of these 

studies and RCPSPs is required to take advantage of task clustering. 

The clustering method applied by Jedari and Dehghan (2009) in their multiprocessors scheduling matches with the 

RCPSP according to the graph representation. Both are represented as directed acyclic graphs. However, their method is not 

directly replicable in the RCPSP because of its limitations. The first and foremost reason is that there cannot be a limit for 

the number of clusters, as it is limited by the number of processors in their case. Second, the resource availability 

in RCPSP's case is renewable throughout the schedule. If their method is to be applied, then the activities in the project need 

to be clustered according to their predecessor and successor relationship. Then the problem would have to schedule the 

activity clusters within themselves before combining them in the main schedule. Such an approach is not suggested 

in RCPSP. Because a schedule generated from such manner increases idle resources, as the scheduling would act like 

combining big puzzle pieces. Nevertheless, in this study, their method of creating the initial map was taken as the base for 

the CB-PL method's cluster generation step. 

Following the map generation, the CB-PL method synthesized similar ideas from the operation room scheduling case 

by Santoso et al. (2017) and the automobile repair case by Alex Joseph and Saini (2018) for cluster and priority list 

generation. The method used the Santoso et al. (2017) way of generating the number of clusters, as for the RCPSPs' cluster 

amount cannot be sensibly decided like Jedari and Dehghan (2009). For this purpose, two general clustering methods from 

the literature were also reviewed. As the Affinity Propagation method (Frey and Dueck, 2007) performs better than the K-

means algorithm (MacQueen, 1967), the clustering algorithm is decided to be AP for the CB-PL method. Finally, the Alex 
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Joseph and Saini (2018) method for activity prioritization was integrated for the priority list generation from generated 

clusters. Similar to their approach, the CB-PL method prioritizes clusters and then decides on the priority of activities by the 

original priority rules. The CB-PL method developed based on these integrations is covered in Section 3. 

 

3. METHODOLOGY 
 

This section covers cluster-based priority list methods' theoretical explanation, and an illustrative example of method 

application is given. In the theoretical explanations, the graph and the maps are defined and used for the clustering method 

for the RCPSP. Later, the obtained clusters are defined. Conclusively, the CB-PL method's way of creating modified priority 

lists is covered. Then finally, the method is applied for an illustrative example.  

 

3.1 Cluster-Based Priority List Method 

 

3.1.1 Project Network Graph Representation 

 

Activity on Node (AoN) representation is used for the graph representation of the project networks of the RCPSP. Such that, 

let the graph be 𝐺 = (𝑉, 𝐸)  with 𝑉  as the set of nodes (activities) and the E as the set of arcs (successor/predecessor 

relationship). By this, |𝑉| = 𝑛 as it starts from 1 (Start dummy node) to 𝑛 (End dummy node). It is also assumed that node 

numberings are topologically ordered such that node numbers are increasingly ordered according to their 

successor/predecessor relationship. By doing so, arcs always point from a smaller numbered node to a higher-numbered one. 

Note that notations of node and activity are used interchangeably as both would dictate the same. In this prospect, let 𝑖 denote 

the number of the node that is in question such that 𝑖 = 1, . . . , 𝑛. Then for the relationship of the nodes, let 𝑆𝑖 denote the set 

of the immediate successors 𝑖 and 𝑃𝑖  denote the set of the immediate predecessor of node 𝑖. Then the 𝑆1 , 𝑃1 , and 𝑆𝑛 , 𝑃𝑛 

dummy nodes are defined accordingly. Also, let 𝑑𝑖 denote the durations required for the activity 𝑖 to be completed. Final 

notations for the problem would be for the project network itself would be the resources; therefore, let 𝑅𝑖𝑘 and 𝑅_𝑎𝑣𝑎𝑖𝑙𝑘 

represent the resource consumption of node 𝑖 for the resource 𝑘 and the availability of resource 𝑘. The 𝑘 here represents the 

resource type as there can be multiple resources up to 𝑀 such 𝑀 = |𝑅_𝑎𝑣𝑎𝑖𝑙|, therefore 𝑘 = 1, . . . , 𝑀. 

 

3.1.2 Map Creation 

 

The clustering method applied for the CB-PL differs from the multiprocessors scheduling example (Jedari and Dehghan, 

2009). The main idea behind the CB-PL method is to find activity and resource consumption condensed areas in the project 

network. Let these areas be called the critical areas. In this aspect, the map created for the clustering algorithm requires such 

activity and resource-related information availability. As such, the CB-PL method's clustering method follows the idea of 

creating critical areas. Such that clusters do not need to be bounded by their relationships, as is the case for Jedari and Dehghan 

(2009). For example, nodes 𝑖 and 𝑗 that do not have either successor/predecessor relationship can be found in the same cluster. 

Therefore, a solid map representation that allows reasonable point representations for clustering is required. The 

representation is achieved by creating early and late start schedules from the critical path analysis mentioned in 

Demeulemeester and Herroelen (2002). These schedules are used to create points for the map. These schedules assume a 

resource-free state, or in other words, an infinite resource available state, for the generation of project schedules. Then the 

schedules are generated by using 𝑑𝑖 and the predecessor and successor relationship of the activities. It is important to note 

that created clusters become fair clusters, similar to Jedari and Dehghan (2009), as map creation is based on these resource-

free schedules. The resource-free schedules that can be created enable us to have two map types from early/late start 

schedules. Let the maps created from these schedules be named early and late maps. As the CB-PL method can be applied to 

both of these maps, each must be defined. However, it can be seen in Section 5 that late maps generate better results with the 

CB-PL application in the forward priority lists. For the early start schedule, let 𝐸𝑆𝑇𝑖  and 𝐸𝐹𝑇𝑖 denote the earliest possible 

start and finish times of activity 𝑖, 1 ≤ 𝑖 ≤ 𝑛. Then for the late start schedule, let 𝐿𝑆𝑇𝑖  and 𝐿𝐹𝑇𝑖  denote the latest possible 

start and finish times. These notations are used for the creation of points for the maps. Demeulemeester and Herroelen (2002) 

can be examined for the explanations of the creation of these schedules. 

Considering the previously mentioned schedules, let us define the points of the map that is used for clustering generation. 

Note that dummy start and end nodes do not have any point reference as they do not affect the critical area. So, let 𝑃𝑖𝑡  be the 

point in the map that represents activity 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1. Then the 𝑡 represents the dimensions such that 1 ≤ 𝑡 ≤ 1 + 𝑀. Per 

this definition, each activity, except the dummy ones, is represented in a point system with the dimension amount of one plus 

the resource amount. The first dimension represents the midpoint of the activity's scheduled duration (mid-time). Depending 

on the early or late schedule type usage 𝑃𝑖1 can be defined as 𝑃𝑖1 =  𝐸𝑆𝑇𝑖 + 𝐸𝐹𝑇𝑖/ 2 or as 𝑃𝑖1 =  𝐿𝑆𝑇𝑖 + 𝐿𝐹𝑇𝑖/ 2. The rest of 

the dimensions for the points are then calculated based on the resource consumption of the activity. However, as the project 
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networks can require more than one resource type, the varied consumption in multiple resource availability requires 

normalization. Otherwise, the clusters would diverge from the resource consumption condensed critical areas. As such 

resource-related dimensions are defined as 𝑃𝑖𝑡 =  𝑅𝑖𝑘/ 𝑅_𝑎𝑣𝑎𝑖𝑙𝑘 , {2 ≤ 𝑡 ≤ 𝑀 + 1, 1 ≤ 𝑘 ≤ 𝑀} for each activity 𝑖, 2 ≤ 𝑖 ≤
𝑛 − 1.  

 

3.1.3. Cluster Creation 

 

Since the definition of the points 𝑃𝑖𝑡  is completed, the Affinity Propagation (AP) method for the clustering of the activities 

can be applied easily. The variable that requires declaration for the AP method is the maximum number of iterations for the 

algorithm to stop if the convergence is not reached. The iteration amount can be decided intuitively depending on the number 

of activities in the network. For example, 500 iterations are used for the numerical experiment conducted in this paper. Now, 

let us define the results and attributes used in the priority list creation step from AP clustering. Let 𝐶𝑞 be the clusters that 

contain the set of activity 𝑗s that are clustered. Such that |𝐶|  =  𝑢, 𝑢 becomes the number of clusters obtained from the 

algorithm, such that 1 ≤ 𝑞 ≤ 𝑢. Then let 𝐶_𝑐𝑒𝑛𝑡𝑒𝑟𝑞𝑡  be the center point of these clusters, 1 ≤ 𝑞 ≤ 𝑢, 1 ≤ 𝑡 ≤ 1 + 𝑀. After 

this definition, a priority is given to the clusters closer to the starting point of the initial schedule used for cluster generation. 

Therefore, let 𝐶𝑜𝑞 be ordered clusters containing the set of activities for cluster 𝑞 such that clusters are ordered increasingly 

according to the initial dimension (mid-time dimension, 𝐶_𝑐𝑒𝑛𝑡𝑒𝑟𝑞1) of 𝐶_𝑐𝑒𝑛𝑡𝑒𝑟𝑞𝑡 . The ordering scheme allows us to use 

𝐶𝑜𝑞 for forward and backward priority lists creations as the reverse of the 𝐶𝑜𝑞 prioritizes the clusters that are close to the end 

dummy node. Finally, the dummy start and end nodes are added as initial and final clusters for the easiness of the method 

applied to the 𝐶𝑜𝑞, such that 0 ≤ 𝑞 ≤ 𝑢 + 1. Note that the clusters for the dummy nodes only include one node, which is 

themselves. 

 

3.1.4 Cluster-Based Priority List Creation 

 

The regular priority lists creation takes the selected priority rule and the successor/predecessor relationship into account. 

Also, whether the list type is forward or backward, activity relationships are considered according to the start or end dummy 

node. However, the CB-PL method gives a higher priority to the clusters according to their order. Therefore, the cluster-based 

priority list method uses defined 𝐶𝑜𝑞 with the selected priority rule to create the priority list. The activity clusters in 𝐶𝑜𝑞 are 

not definite to be schedulable in the cluster. So, the activities might not be scheduled in clusters according to the priority rule. 

Consequently, the combination of clusters by their priorities might not be schedulable either. Also, the highest prioritized 

cluster might not include all of the successors from the start dummy node for the forward priority list creation in CB-PL. The 

schedulability issue is also valid for the backward priority list as the predecessors from the initial cluster might have the same 

circumstances. As such, another scheme for creating the priority lists is required. 

Let 𝐶𝐵𝑃𝐿 be the final priority list according to the selected priority rule with the clustering method. Initially, 𝐶𝐵𝑃𝐿 

only includes the starting dummy node. Then let 𝐴𝐴𝐶 be a list of available activities for the clusters in their order of priority 

list addition. Initialization of the 𝐴𝐴𝐶 would take either 𝐶𝑜1 or 𝐶𝑜𝑢 depending on forward or backward list creation as the 

clusters from one of the dummy nodes would be already scheduled. Also, let 𝑃𝐴𝐴 be the list of physically available activities. 

The set 𝑃𝐴𝐴 is meant only to include activities in which all of the given activity's predecessors for the forward priority list 

(successors for the backward priority list) are listed in the list 𝐶𝐵𝑃𝐿. Initialization of the 𝑃𝐴𝐴 would include the successors 

of the start dummy node or predecessors of the end dummy node according to priority list type. Finally, let 𝐴𝑃𝐶 be the 

intersection of lists 𝐴𝐴𝐶 and 𝑃𝐴𝐴, the set of activities available for addition to the list 𝐶𝐵𝑃𝐿 according to the priority rule.  

A priority list creation scheme would be as follows; At each activity selection point for the 𝐶𝐵𝑃𝐿, decision point, 

according to the priority rule selection, the activity 𝑖 from the newly calculated 𝐴𝑃𝐶 list would be added to 𝐶𝐵𝑃𝐿 and deleted 

from the 𝑃𝐴𝐴 and 𝐴𝐴𝐶 lists. After the addition of 𝑖, each successor 𝑗 of 𝑖 is checked if their predecessors are in the 𝐶𝐵𝑃𝐿 

list. If so, the 𝑗 is added to PAA as it would be physically possible to add activity 𝑗 to 𝐶𝐵𝑃𝐿. However, if the 𝐴𝑃𝐶 list is 

empty at the decision point, the activities from the cluster set in order are added to the 𝐴𝐴𝐶 list. For example, the first time 

the 𝐴𝑃𝐶 list is empty, the activities from clusters 𝐶𝑜2 (for the forward list) or 𝐶𝑜𝑛−1 (for backward list) would be added to 

the 𝐴𝐴𝐶. However, if the 𝐴𝑃𝐶 list is empty and all of the clusters were added to the 𝐴𝐴𝐶 list, then all of the activities are 

added to 𝐶𝐵𝑃𝐿, and the priority list is created. The created list is called CB-PL and can be used in the constructive heuristics 

of the RCPSPs. An example pseudo-code for the forward priority list of the scheme can be seen in Algorithm 1. The summary 

of the notations that have been used throughout this section is presented in Table 1. 
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Algorithm 1. Pythonic priority list creation scheme pseudo-code for the forward priority list 

 

1: 𝐶𝐵𝑃𝐿 = [1] 
2: 𝐴𝐴𝐶 = [𝑗 for 𝑗 in 𝐶𝑜1] 
3: 𝑃𝐴𝐴 = [𝑖 for 𝑖 in 𝑆1] 
4: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 =  [2 to 𝑢 + 1] 
5: 𝐟𝐨𝐫 𝑖 = 1 to 𝑛: 
6: 𝐴𝑃𝐶 =  𝐴𝐴𝐶 ∩  𝑃𝐴𝐴 

7: 𝐰𝐡𝐢𝐥𝐞 𝐴𝑃𝐶 is 𝐸𝑚𝑝𝑡𝑦: 
8: 𝐢𝐟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is 𝐸𝑚𝑝𝑡𝑦: 
9: STOP (all activities are added to 𝐶𝐵𝑃𝐿) 

10: 𝐞𝐧𝐝 𝐢𝐟 

11: 𝐴𝐴𝐶 = 𝐴𝐴𝐶. 𝑒𝑥𝑡𝑒𝑛𝑑([𝑗 for 𝑗 in 𝐶𝑜𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[0]]) 

12: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠. 𝑝𝑜𝑝(0) 

13: 𝐴𝑃𝐶 =  𝐴𝐴𝐶 ∩  𝑃𝐴𝐴 

14: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞    
15: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  Select according to priority rule from 𝐴𝑃𝐶 

16: 𝐶𝐵𝑃𝐿 =  𝐶𝐵𝑃𝐿. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

17: 𝑃𝐴𝐴 =  𝑃𝐴𝐴. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

18: 𝐴𝐴𝐶  =  𝐴𝐴𝐶. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)    
19: Add successors of activity to 𝑃𝐴𝐴 if their predecessors are in 𝐶𝐵𝑃𝐿 

20: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

Table 1. Summary of the notations for the method 

 

Notation Definition 

V Set of nodes in the project network, 𝑖 ∈ 𝑉 

𝑑𝑖 Duration required for node i to be completed 

M Amount of available renewable resource type, such that 𝑘 = 1, . . . , 𝑀 

𝑅_𝑎𝑣𝑎𝑖𝑙𝑘  Availability of the renewable resource k 

𝑅𝑖𝑘 Consumed resource k for the node i 

𝑆𝑖 Set of immediate successors of node i 

𝑃𝑖  Set of immediate predecessors of node i 

𝐸𝑆𝑇𝑖  Earliest start time of node i for the early schedule 

𝐸𝐹𝑇𝑖 Earliest finish time of node i for the early schedule 

𝐿𝑆𝑇𝑖  Late start time of node i for late schedule 

𝐿𝐹𝑇𝑖  Late finish time of node i for late schedule 

t The dimensions of points in the map, such that  𝑡 =  1, . . . , 𝑀 + 1 

𝑃𝑖𝑡  Map point representation of activity i with t dimension (Start and dummy nodes are not included) 

C Set of clusters that contain a group of activities, 𝑞 ∈ 𝐶 

𝐶_𝑐𝑒𝑛𝑡𝑒𝑟𝑞𝑡 Center point of cluster q with t dimension 

𝐶𝑜𝑞 
Set of clusters that are increasingly ordered according to cluster centers (Start and dummy nodes are added 

as clusters) 

𝐶𝐵𝑃𝐿 The priority list obtained by the method 

𝐴𝐴𝐶 List of activities that are available by clusters for priority list addition 

𝑃𝐴𝐴 List of activities that are physically available for priority list addition 

𝐴𝑃𝐶 List of activities that are available both physically and cluster wise for priority list addition 

 

3.2 Illustrative Example 

 

In this part, the cluster-based priority list method is applied to the example from Demeulemeester et al. (1994) using the 

longest processing time (LPT) priority rule (Graham, 1969) with a forward priority list type. The example has seven activities 

with nine nodes, including the starting and ending dummy nodes. The activities only require one renewable resource type 

with an availability of 5. The graph of the project network example can be examined in Figure 1. In the project network graph, 

the 𝑑 values represent the required duration for the activity, while the 𝑟 values indicate the resource requirement.  
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The initial step in the CB-PL method is to create early and late schedules used to generate the maps. So, the schedules 

are generated according to the method presented in Demeulemeester and Herroelen (2002). Figure 2a represents the early 

schedule obtained, while Figure 2b represents the late schedule. Then, the early and late maps are generated accordingly. In 

the map generation part, the essential aspect is the creation of points from the schedules. The points' first dimension is based 

on the schedule start-finish midpoints, while the rest are based on resource consumption. 

For example, for node 8, the resource dimension is calculated by normalizing the value. The value is obtained by 

dividing the resource requirement of the node by the resource availability for both early and late maps. So, it becomes 0.4 

(2/5). If there had been more than one resource, each would have been processed similarly. Then the time (duration) 

dimension, the first dimension, for the early schedule is calculated by dividing the summation of its EST and EFT by 2. The 

time dimension then becomes 4.5 ([3+6]/2). The final point of node 8 in the map becomes (4.5, 0.4) for the early schedule. 

Later for the late schedule, the dimension is calculated using LST and LFT. The time dimension then becomes 5.5 ([4+7]/2) 

while the point in the map becomes (5.5, 0.4).  

 

 
 

Figure 1. The project network example for the CB-PL method application 

 

 
 

Figure 2. Early and late schedules of the example 

 

After the generation of maps is completed, the clusters are generated using the Affinity Propagation method. Figure 3 

shows the clustered nodes for the early map, while Figure 4 shows them for the late map. Note that generated clusters are 

Figure 2a. Early Schedule Figure 2b. Late Schedule 
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numbered increasingly according to their center point's time dimension. So, regardless of the clusters' order generated by the 

AP method, the clusters need to be ordered.  

 

 
 

Figure 3. Early map with ordered clusters 

 

Now that the clusters are generated, let us create the CB-PL for them with the LPT rule. Note that the original forward 

priority list (PL) using the LPT rule for the example is 𝑃𝐿 =  {1, 4, 5, 8, 3, 2, 6, 7, 9}. For the early map-based CB-PL 

initialization, the CB-PL priority list is 𝐶𝐵𝑃𝐿 = {1} and the physically available activities (PAA) are 𝑃𝐴𝐴 =  {2, 3, 4, 5}. On 

the other hand, the available activities for cluster priority (AAC) are 𝐴𝐴𝐶 =  {2} as only the first cluster is added to the list. 

Then a node for addition to 𝐶𝐵𝑃𝐿 is selected, which can only be chosen from nodes that are both available physically and 

with their cluster orders (APC). In this state, 𝐴𝑃𝐶 =  {2} as the only node available for both lists is node 2. As node 2 is the 

only node that can be ordered, the list is updated to 𝐶𝐵𝑃𝐿 =  {1, 2}. Then the other lists are updated. The 𝑃𝐴𝐴 is updated by 

adding newly physically available nodes and removing node 2. The 𝐴𝐴𝐶 is updated by removing node 2. The lists become 

as follows 𝑃𝐴𝐴 =  {3, 4, 5, 6} and  𝐴𝐴𝐶 =  {}.  

 

 
 

Figure 4. Late map with ordered clusters 

 

At this stage, the intersection 𝐴𝑃𝐶 becomes empty. Therefore, the next cluster (Cluster 2) is added to the 𝐴𝐴𝐶, which 

becomes 𝐴𝐴𝐶 =  {3, 4, 5, 6}. Now, since both 𝑃𝐴𝐴 and 𝐴𝐴𝐶 are the same, all of the activities in 𝐴𝑃𝐶 =  {3, 4, 5, 6}  can be 
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ordered. According to the LPT rule, the nodes are added to 𝐶𝐵𝑃𝐿, which updates to 𝐶𝐵𝑃𝐿 =  {1, 2, 4, 5, 3, 6}. Note that, if 

necessary, ties are broken by selecting the lower numbered node. Then finally, the last cluster (Cluster 3) is added and ordered. 

The priority list for early CB-PL becomes as follows {1, 2 ,4 ,5 ,3 ,6, 7, 8, 9}. A final note for the method application is that 

starting node and ending nodes are declared as single clusters for a smooth application named Cluster 0 for the start dummy 

node and Cluster 4 for the end dummy node in this case. 

Similarly, the late map-based CB-PL can be constructed. The list then becomes as follows {1, 5, 2, 6, 7, 4, 8, 3, 9}. Then 

if constructed lists are used with the forward planning serial algorithm, the makespans of the project network example become 

12 for the original priority lists, while it becomes 10 and 8 for the early map-based CB-PL and the late map-based CB-PL. 

The schedules of obtained makespans can be examined in Figures 5, 6, and 7. 

 

 
 

Figure 5. Normal priority list serial schedule 

 

 
 

Figure 6. Early map-based CB-PL serial schedule. 

 

 
 

Figure 7. Late map-based CB-PL serial schedule 
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4. NUMERICAL EXPERIMENT 
 

The Cluster-Based Priority List method that is presented in this paper is an improvement to the existing priority lists' literature. 

The method can be applied to numerous priority lists. Therefore, a comparative experiment of performance is required to 

highlight its effectiveness. The benchmark dataset used for this purpose is the RCPSP instances of the PSBLIB, a project 

scheduling problem library (Kolisch et al., 1999). The library was first introduced by Kolisch and Sprecher (1997). Even 

though it does not have many activity instances, the initial library covers various types of problems in project scheduling. 

The Resource Constraint Project Scheduling, which focused on this paper, is one of them. Later, Kolisch et al. (1999) enhance 

this library. The initial library had two sets of instances with an activity amount of 30 and 60 activities for the RCPSP. The 

instance sets are called J30 and J60 sets. With the additions from Kolisch et al. (1999), sets with 90 and 120 activities are 

also introduced to the library, namely J90 and J120. All of the mentioned instances from the PSPLIB are widely used as 

benchmark instances in the literature (Merkle et al., 2002; Möhring et al., 2003; Gonçalves et al., 2008). The conducted 

numerical experiment also uses the enchanted library's RCPSP project network instances from Kolisch et al. (1999). All of 

the sets of the library J30, J60, J90, each with 480 instances and J120 with 600 instances, are included in the experiment. 

Also, using these sets allows us to compare the CB-PL method on a varied number of activities for the project networks. 

Through this variety, the effectiveness of clustering for a different number of activities can be compared. The comparison is 

significant because the clustering methods' efficiency is dependent on the number of points in the given map.  

The number of constructive heuristics limits the solution procedure set generating the makespans. Note that the 

constructive heuristics are performed through scheduling schemes and priority rules. Therefore, the set definition comprises 

some schemes with different priority rules for the experiment. The scheduling schemes used are two, base serial (Kelley, 

1963) and parallel (Brooks and White, 1965) heuristics. The base ones are counted for the forward planning type, as the 

backward planning is categorized separately (Demeulemeester and Herroelen, 2002). Also, the ties for selecting activities are 

broken by choosing the lower numbered nodes while applying the heuristics.  

 

Table 2. Literature review for priority rules used in the experiment 

 

Priority Rule Category Name Abbreviation Literature 

Activity-Based 
Shortest Processing Time SPT Olaguíbel and Goerlich (1989) 

Longest Processing Time LPT Graham (1969) 

Critical Path-Based 

Earliest Start Time EST Demeulemeester and Herroelen (2002) 

Earliest Finish Time EFT Demeulemeester and Herroelen (2002) 

Latest Start Time LST Kolisch (1995) 

Latest Finish Time LFT Davis and Patterson (1975) 

Minimum Slack MSLK Davis and Patterson (1975) 

 

Then, the selection is made from the static priority rules for priority rules. Seven priority rules are used with the two of 

the scheduling schemes. Four of the rules out of the seven relate to their forward and backward list types. Only the forward 

priority lists generation is experimented with to prevent replication. The chosen priority rules with their categories from 

Lawrence (1985) and works of literature can be examined in Table 2. Combining the single schemes with the single priority 

rules defines the solution procedure set. Therefore, the set includes a total of fourteen procedures such that each scheme has 

seven procedures. By these definitions, each defined solution procedure becomes a single-pass method. 

Eventually, the comparative analysis is made with this solution procedure set. First and foremost, the makespans with 

the original priority list generation way are calculated. Then the makespans from the early map and late map cluster prioritized 

cluster-based priority lists are calculated. Applying the CB-PL method for both maps is required as neither of the maps can 

be preferred without comparing the makespans obtained through these maps in any respected solution procedure. Also, the 

Affinity Propagation method has a stopping condition for cluster generation. The maps that do not converge with the given 

iteration amount of the AP method cannot be used for creating CB-PL. As they do not converge, the final total number of 

clusters is not found. Convergence not being reached means that there were activities that were not clustered meaningfully. 

These clusters would not have an affinity relationship in the system. Therefore, they would cause meaningless clusters, which 

are against the critical area creation of the CB-PL method. So, the makespans for the project network instances, either for the 

early or late map, which was not clustered, are matched with makespans of the original priority lists. 

Finally, by comparing the makespans of the original priority lists and the CB-PLs, the performance of the CB-PL method 

is measured. The primary comparison method is the improvements on the makespan of the project networks. The results 

showed varied responses for maps and the applied priority rules. The makespans of the project network instances showed 

both improvement and depreciation compared to the makespans of the original priority lists. Still, notable makespans 

improvements are observed on average depending on the cluster map type and the priority rule applied. In the early map-
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based CB-PLs, the average makespans change is dependent on the priority rule as both improvements and depreciation are 

available. However, the late map-based CB-PLs show significant improvement as there is no depreciation for the makespans 

on average for any priority rules. The detailed analysis of the numerical experiment results can be observed in the following 

section. 

 

5. ANALYSIS 
 

The analysis of the experiment is presented under five categories. Initially, the network instances that are not clustered by the 

Affinity Propagation clustering method are examined. Then the average makespan reductions from the original priority rules 

are presented for all set instances. After that, the clustering method's effect on the number of activities is examined for the 

preferred map type. Finally, the best-found makespan and computational time analysis are presented. 

 

5.1 Clustering Analysis 

 

First, let us analyze the effect of the Affinity Propagation clustering on the project networks for the clusters that do not 

converge. As the convergence has not been reached, the clusters are not generated. The number of early and late maps that 

do not get clustered is significantly less. Non-clustered ones only amount to 1.3% of network instances for the early map-

based clusters and 1.8% for the late map-based clusters (Tables 3 and 4). The interesting finding is that the percentage of the 

project networks that do not get clustered increases per the number of activities in the networks. 

 

Table 3. Convergence analysis for convergence not reached count per sets 

 

 All Sets J30 J60 J90 J120 

Total Instances 2040 480 480 480 600 

Early Map 27 0 1 4 22 

Late Map 36 0 1 7 28 

Both Maps 2 0 0 0 2 

 

It can be seen in the increase in not clustered maps from J90 set to the J120 set (Table 4). The J120 set shows the highest 

percentage of not clustered networks for both maps. Also, it is the only set that shows a non-clustered network for both of the 

maps simultaneously with two networks out of 600. The project network instances in which clusters could not be generated 

are counted with instances that gave the same makespan as the original rule application. 

 

Table 4. Convergence analysis for convergence not reached count percentage per sets 

 

 All Sets J30 J60 J90 J120 

Early Map 1.3% 0.0% 0.2% 0.8% 3.7% 

Late Map 1.8% 0.0% 0.2% 1.5% 4.7% 

Both Mapseeee 0.1% 0.0% 0.0% 0.0% 0.3% 

 

5.2 Makespan Reduction Analysis 

 

5.2.1 Definitions 

 

Let us define the analytical values that are used in the makespan analysis. The values can be grouped under two distinct 

categories, average makespan reductions percentage and makespan change-direction count percentages. Also, the definitions 

of the categories are presented in combination with the dataset indicators. Therefore, the combinations are created with Total, 

J30, J60, J90, and J120 sets in which Total set values include all the instances from the other sets. For the average values, as 

the performance is measured based on the makespan reduction, the calculations are made so that a positive percentage would 

decrease the makespan. The values are as follows; Average%, the average of the percentage of makespans changes for the 

set, PositiveAvg%, the average of the percentage of only positive makespans changes for the set, NegativeAvg%, the average 

of the percentage of only negative makespans changes for the set, and finally, NonZeroAvg%, the average of the percentage 

of positive and negative makespans changes for the set. Then for the count values, NoChange%, the percentage of the number 

of makespans that did not change in the set, Positive%, the percentage of the number of makespans that improved in the set, 

and Negative%, the percentage of the number of makespans that deteriorated in the set. 
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5.2.2 General Analysis 

 

The makespan reduction analysis for the CB-PL method of the whole dataset can be examined in Tables 5 and 6. Table 5 

includes the forward planning serial algorithm (FP-SA), while Table 6 is for the forward planning parallel algorithm (FP-

PA). The early map-based (EMB) cluster for the FP-SA shows an Average% makespan reduction change between -4% and 

%3 for the priority rules that have been used. On the other hand, late map-based (LMB) clusters show makespan reduction 

improvement between 0% and 10%. The FP-PA analysis also shows similar changes for the applied map types. Like FP-SA 

cluster map bases, there is a significant improvement increase between EMB and LMB cluster application of CB-PLs for the 

FP-PA. 

An important result from these heuristic applications is that EST and EFT rules and LST and LFT rules show no 

improvement in makespan if the CB-PL is based on the early or late map, respectively. It is because the cluster priorities give 

a similar priority to the nodes as the EST and EFT priority rules. For example, if the CB-PL is constructed with the early 

map, the nodes with the early start and finish times are given priority with the clustering method. Then applying EST and 

EFT rules to these clusters is expected to generate the same results as the original EST and EFT priority rules. The cases are 

the same for late map-based CB-PL with LST and LFT rules. Therefore, using the CB-PL method with LST and LFT priority 

rules is not suggested for both forward serial and parallel heuristics with any map types. However, the EST and EFT priority 

rules can still be preferred with the method for the late map-based applications. 

 

Table 5. Forward planning serial algorithm makespan reduction analysis 

 

Cluster Map Type Earl Map Based Late Map Based 

Priority Rule Type Average% 
Positive 

Avg% 

Negative 

Avg% 

NonZero 

Avg % 
Average% 

Positive  

Avg% 

Negative 

Avg% 

NonZero 

Avg% 

SPT 3% 7% -5% 4% 10% 13% -5% 13% 

LPT 2% 7% -5% 2% 7% 11% -5% 10% 

EST 0% 2% -2% 0% 5% 7% -3% 6% 

EFT 0% 2% -2% 0% 6% 9% -4% 8% 

LST -4% 4% -8% -6% 0% 2% -2% 0% 

LFT -4% 4% -7% -6% 0% 2% -2% 0% 

MSLK 0% 6% -6% 0% 3% 6% -4% 5% 

 

Table 6. Forward planning parallel algorithm makespan reduction analysis 

 

Cluster Map Type Earl Map Based Late Map Based 

Priority Rule Type Average% 
Positive  

Avg% 

Negative 

Avg% 

NonZero 

Avg% 
Average% 

Positive  

Avg% 

Negative 

Avg% 

NonZero 

Avg% 

SPT 0% 5% -4% 1% 5% 8% -3% 7% 

LPT 1% 5% -4% 1% 5% 8% -3% 7% 

EST 0% 2% -2% 0% 4% 7% -3% 6% 

EFT 0% 2% -2% 0% 4% 7% -3% 6% 

LST -3% 3% -6% -5% 0% 2% -2% 0% 

LFT -3% 3% -6% -5% 0% 2% -2% 0% 

MSLK -1% 4% -5% -1% 2% 5% -3% 3% 

 

Other good indicators for the performance of the CB-PL method are the PositiveAvg% and NegativeAvg% values for 

EMB and LMB clusters. For both algorithm cases, the Average% shows significant makespan improvement at the LMB 

cluster application. However, it would have been a bad case if the NegativeAvg% values decreased significantly compared 

to the increase in PositiveAvg%. Such is not the case for the conducted experiment. Except for the LST and LFT priority 

rules, other rules show an increase in PositiveAvg%. On the other hand, NegativeAvg% shows a varied response of small 

increases and decreases. However, NegativeAvg% still shows increases for most of the tested priority rules. 

There is a clear makespan performance difference between EMB and LMB clusters. Therefore, another major 

explanatory point for the makespan reduction difference between EMB and LMB clusters is the change in the number of 

instances' makespan shift direction. Tables 7 and 8 show the analysis of this change. The difference can be explained by the 

decrease from the Negative%, which is way more significant and decreases from NoChange% sliding to the Positive%. Again, 

it is essential to note that the LST and LFT priority rules are an exception in the CB-PL method.  
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Table 7. Count analysis of forward planning serial algorithm makespan change direction  

 

Cluster 

Map Type 
Earl Map Based Late Map Based 

Priority 

Rule Type 
Negative% NoChange% Positive% Negative% NoChange% Positive% 

SPT 20% 28% 52% 2% 22% 75% 

LPT 28% 26% 46% 3% 27% 70% 

EST 16% 70% 14% 6% 26% 68% 

EFT 9% 76% 15% 3% 23% 73% 

LST 61% 31% 7% 9% 83% 8% 

LFT 59% 33% 9% 8% 83% 10% 

MSLK 36% 29% 35% 8% 40% 51% 

 

Table 8. Count analysis of forward planning parallel algorithm makespan change direction  

 

Cluster 

Map Type 
Earl Map Based Late Map Based 

Priority 

Rule Type 
Negative% NoChange% Positive% Negative% NoChange% Positive% 

SPT 27% 41% 32% 5% 30% 65% 

LPT 27% 35% 38% 5% 31% 64% 

EST 13% 74% 13% 5% 32% 63% 

EFT 9% 82% 9% 6% 30% 65% 

LST 51% 40% 9% 6% 86% 8% 

LFT 50% 41% 10% 6% 87% 7% 

MSLK 36% 37% 27% 11% 49% 41% 

 

A similar change can also be examined for count analysis of LST and LFT priority rules. Compared to the other rules, 

their shift is towards NoChange% than the Positive%. Therefore, their results from the average values are exempted for the 

values that are presented in the following. The values show an average increase of 35% in Positive% for late map-based FP-

SA cases for the priority rules. The increase indicates the number of project network instances improving with late map-based 

CB-PLs. The FP-PA cases also show a 36% increase in this aspect. However, it is important to note that even with the 

increase, the FP-SA application's instances with positive makespan reduction change are on average higher than the FP-PA 

applications. On average, FP-SA has 68% Positive% while the FP-PA has 59% throughout the priority rules. 

 

5.2.3 Activity Amount Effect Analysis 

 

The experiment results also highlighted the effect of CB-PL per activity amount. The EMB results of different sets do not 

show much difference. The average makespan reduction percentage nearly stays the same per activity number. However, 

there is a gradual increase in the average makespan reduction percentage (Average%) and the number of positive change 

percentages in makespan (Positive%) in the data sets for the late map-based CB-PL. Therefore, the activity amount 

relationship with the late map-based CB-PL requires explanation. 

Tables 9a and 9b show these for the FP-SA application, while Tables 10a and 10b do the same for the FP-PA application. 

One important aspect is that the gradual increase becomes more horizontal in the transaction from J60 to the J90 set. Such an 

observation holds for both the Average% and Positive% values of both applications. Then the performance indicators peak 

at the J120 set.  
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Table 9. Forward Planning Serial Algorithm analysis 

 

Table 9a. Average makespan reduction  

(Average%) 

 Table 9b. Makespan positive change count % 

(Positive%) 

Priority 

Rule 

Type 

All Sets J30 J60 J90 J120 

 Priority 

Rule 

Type 

All Sets J30 J60 J90 J120 

SPT 10.0% 6.9% 9.3% 8.9% 14.0%  SPT 75% 61% 71% 70% 95% 

LPT 7.3% 4.8% 6.2% 6.4% 10.8%  LPT 70% 55% 64% 63% 93% 

EST 4.8% 2.5% 4.0% 4.6% 7.3%  EST 68% 49% 63% 66% 90% 

EFT 6.5% 4.2% 5.6% 6.0% 9.4%  EFT 73% 59% 68% 70% 93% 

LST 0.0% 0.0% 0.0% 0.0% 0.0%  LST 8% 2% 5% 7% 17% 

LFT 0.0% 0.1% 0.0% 0.0% 0.0%  LFT 10% 3% 6% 7% 20% 

MSLK 3.0% 1.9% 2.4% 2.7% 4.5%  MSLK 51% 34% 43% 42% 78% 

 

Table 10. Forward Planning Parallel Algorithm analysis 

 

Table 10a. Average makespan reduction  

(Average%) 

 Table 10b. Makespan positive change count % 

(Positive%) 

Priority 

Rule 

Type 

All Sets J30 J60 J90 J120 

 Priority 

Rule 

Type 

All Sets J30 J60 J90 J120 

SPT 5.1% 3.4% 3.8% 4.5% 7.9%  SPT 65% 46% 56% 62% 91% 

LPT 5.1% 3.4% 3.9% 4.3% 8.2%  LPT 64% 45% 55% 59% 89% 

EST 4.0% 2.3% 2.8% 3.8% 6.5%  EST 63% 39% 53% 63% 89% 

EFT 4.3% 2.5% 3.3% 4.1% 6.7%  EFT 65% 44% 57% 64% 88% 

LST 0.1% 0.0% 0.0% 0.1% 0.1%  LST 8% 1% 4% 7% 19% 

LFT 0.0% 0.0% 0.0% 0.0% 0.0%  LFT 7% 2% 4% 5% 16% 

MSLK 1.6% 1.0% 1.1% 1.2% 2.7%  MSLK 41% 21% 32% 35% 68% 

 

Another aspect is the way Positive% values increase throughout the sets. The observed improvement in Positive% for 

set type is obtained differently than it was in cluster map type selection. The LMB cluster type selection allowed a significant 

decrease from Negative% instances to slide to Positive%. However, the major slide to Positive% comes from the 

NoChange%, while Negative% stays similar for all sets throughout the dataset. In this prospect, the J120 set can be examined. 

Table 11 shows the J120 set's count percentage of the project instance's makespan direction. The Negative% for the J120 set 

is under 5% for SPT, LPT, EST, and EFT priority rules in both heuristics. The NoChange% values for the same rules also 

nearly reach to limit. For the late map, 4.7% of project network instances in the dataset were not clustered because of the 

clustering method (Table 4). Therefore, the real NoChange% for these rules varies between 0%~2% for the FP-SA and 

1%~4% for the FP-PA. However, the MSLK priority rule does not show similar remarkable performance compared to the 

other four rules for the J120 set.  

 

Table 11. Count analysis of makespan change direction for J120 set 

 

Heuristic Type Forward Planning Serial Algorithm Forward Planning Parallel Algorithm 

Priority Rule Type Negative% NoChange% Positive% Negative% NoChange% Positive% 

SPT 0.3% 4.8% 94.8% 2.7% 6.3% 91.0% 

LPT 1.0% 6.2% 92.8% 3.0% 7.8% 89.2% 

EST 3.8% 6.5% 89.7% 2.7% 8.0% 89.3% 

EFT 1.2% 6.2% 92.7% 4.8% 7.3% 87.8% 

LST 19.2% 63.7% 17.2% 13.2% 68.0% 18.8% 

LFT 18.0% 62.2% 19.8% 15.0% 69.0% 16.0% 

MSLK 7.7% 14.0% 78.3% 14.8% 17.5% 67.7% 

 

Nonetheless, it still shows nearly 4.5% and 2.7% makespan reduction, with more than 75% and 65% of instances having 

a positive makespan reduction for FP-SA and FP-PA, respectively. As such, the analyses made so far imply that the CB-PL 

method performs better as the number of activities in the project network increases. 
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5.3 Best Found Makespan Distribution Analysis 

 

Best found makespans (BFM) for the dataset are analyzed under four groups. Group 1 only contains the original results of 

the algorithm with seven priority rules used in the experiment. Group 2 and 3 combine actual results with EMB and LMB 

results of the CB-PL method, respectively. Finally, Group 4 contains all three of the result types. The minimum makespan 

available in each group is taken as a base. Later, the count of priority rules matching with their minimum makespans is 

analyzed. The results of the analyses can be observed in Tables 12 and 13 for serial and parallel algorithms. For example, in 

group 3 of Table 12, the value for the LPT rule under the LMB application means 51.4% of the networks gave the same value 

as the BFM of the group. 

 

Table 12. Best found makespan distribution for serial algorithm results 

 

 
Cluster Map Type 

Priority Rule Type 

SPT LPT EST EFT LST LFT MSLK 

Group 1 Original 20.1% 24.4% 23.5% 20.5% 79.2% 63.3% 36.8% 

Group 2 
Original 20.0% 23.8% 22.4% 19.9% 76.0% 61.0% 36.2% 

EMB 19.3% 21.8% 22.2% 19.9% 32.3% 31.0% 28.7% 

Group 3 
Original 20.0% 23.8% 22.1% 19.7% 64.2% 54.2% 35.7% 

LMB 41.3% 51.4% 47.2% 45.4% 64.6% 55.0% 45.3% 

Group 4 

Original 19.9% 23.6% 21.6% 19.6% 63.2% 53.4% 35.5% 

EMB 19.2% 21.4% 21.6% 19.6% 30.0% 29.2% 27.9% 

LMB 40.9% 50.4% 46.3% 44.8% 63.5% 54.2% 44.7% 

 

Table 13. Best found makespan distribution for parallel algorithm results 

 

 
Cluster Map Type 

Priority Rule Type 

SPT LPT EST EFT LST LFT MSLK 

Group 1 Original 26.3% 28.0% 27.4% 26.1% 68.0% 65.8% 43.3% 

Group 2 
Original 25.4% 27.3% 26.5% 25.3% 64.8% 62.9% 42.2% 

EMB 25.5% 26.4% 26.3% 25.2% 37.4% 37.7% 35.6% 

Group 3 
Original 25.2% 27.0% 26.4% 25.0% 55.5% 53.5% 40.0% 

LMB 44.0% 45.5% 44.1% 42.0% 56.3% 53.7% 48.0% 

Group 4 

Original 25.0% 26.7% 25.9% 24.7% 54.5% 52.5% 39.4% 

EMB 25.0% 25.8% 25.7% 24.6% 35.2% 35.9% 34.0% 

LMB 43.2% 44.4% 43.3% 41.2% 55.2% 52.8% 47.0% 

 

The values obtained in Tables 12 and 13 show similar changes to the average makespan reduction analysis. In Group 2, 

the EMB application of the CB-PL method does not increase the percentage of best results for the rules similar to makespan 

reduction analysis. However, in Group 3, the rules except for LST and LFT show a significant increase compared to the bench 

values in Group 1. The important outcome from tables 12 and 13 is that around 10~15% decrease of original results from 

LST and LFT values in Group 3 compared to Group 1. The decrease holds for both serial and parallel algorithm results. The 

decrease implies that the LMB application of the method generated lower makespans in the other rules than the LST and 

LFT. Therefore, this shows that the CB-PL method improved the results obtained from rules and lowered the makespans 

obtained compared to the original results of priority rules. 22~23% of the best-found makespans in the original results had 

decreased with the application of LMB for both serial and parallel algorithm approaches. 

The downside of the CB-PL method in this experiment is that the method does not help other rules to overshadow the 

LST and LFT rules. However, the CB-PL method's contribution to decreasing overall makespans compared to the original 

application becomes notable with the emergence of machine learning applications for the priority rules selection in RCPSPs 

(Guo et al., 2021). 

 

5.4 Computational Time Analysis  

 

The additional steps' effect on computational time is reported in Table 14 as the average percentage time increases for the 

serial algorithm. The parallel algorithm time complexity is the same as the serial algorithm, so it is skipped. The calculations 

are completed on a computer with an Intel Core i5-6600 CPU with a clock speed of 3.30GHz processor on a Windows OS.  
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Table 14. The average percentage of completion CPU time changes of the serial algorithm by dataset 

 

Data 

Type 

Cluster 

Map Type 

Priority Rule Type 

SPT LPT EST EFT LST LFT MSLK 

All 
EMB 18.3% 13.0% 14.5% 14.8% 15.6% 16.0% 16.3% 

LMB 17.9% 12.2% 13.3% 12.6% 12.0% 13.2% 13.8% 

J30 
EMB 24% 21% 22% 21% 30% 25% 26% 

LMB 28% 26% 26% 18% 21% 18% 17% 

J60 
EMB 21% 3% 14% 14% 7% 10% 9% 

LMB 15% 0% 12% 12% 3% 6% 7% 

J90 
EMB 14% 13% 10% 10% 9% 13% 14% 

LMB 14% 11% 7% 6% 8% 13% 14% 

J120 
EMB 16% 14% 12% 15% 16% 16% 16% 

LMB 16% 13% 10% 14% 15% 15% 16% 

 

The CB-PL method, on average, increases the time needed for algorithms to generate results between 12~19%. Table 

14 can also be examined for each data types' time increase analysis. Depending on the rule and the network properties, the 

method's time increase effect can be minimal, as seen in the J60 sets' LMB application. Therefore, the computational time 

effect of the CB-PL method is also observed as feasible as it does not increase the time requirement exponentially. 

The analysis of the experiment shows that the CB-PL method application on the selected priority rules presents a 

significant makespan reduction on average for the late map-based CB-PL applications with a reasonable time increase. The 

only exception is the Latest Start Time (LST) and Latest Finish Time (LFT) priority rules, which show no deterioration but 

are still not significant, as the late map-based clustering uses a similar approach. However, the CB-PL method application 

increases the other rules' reliance, as they generate overall lower makespans than the original applications of LFT and LST 

rules. Further, the CB-PL method's performance increases as the number of activities in the project network increases. 

 

6. SUMMARY AND CONCLUSION 
 

This paper presents the cluster-based priority lists method for the Resource Constraint Project Scheduling Problems. The 

method uses a task clustering approach to project network activities to create a new type of priority list. The new list is built 

on the existing priority rules. The CB-PL method aims to improve the priority lists obtained from these rules. The 

improvements are observed by either decreasing the obtained result or by the way the method generates new lower bound 

values for the given RCPSP. To the best of our knowledge, there has been no research on activity cluster and priority list 

combination for the RCPSP, even though task clustering is an effective method in other scheduling problems. The task 

clustering for other scheduling problems was observed, but they were either case-specific or not identical. 

Therefore, the CB-PL method was based on related study areas in which similar studies were covered. The base of the 

proposed method was integrated from the study of Jedari and Dehghan (2009) on multiprocessor scheduling problems. Their 

method was adjusted with a new proposition for applying to the RCPSPs. To that extent, two types of maps to generate CB-

PLs were proposed. Namely, early map-based CB-PL and late map-based CB-PL. Then, the method's effectiveness was 

demonstrated by comparing original priority lists using seven different priority rules with two types of constructive heuristics. 

The numerical experiment results show that the CB-PL method outperforms original priority lists with the late map-based 

application of the method. Therefore, our results suggest that using the CB-PL method with a late map-based clustering 

approach can increase the performance of constructive heuristics applications in resource-constrained project scheduling 

problems. 

The goal of the CB-PL method is to improve makespans obtained by the original lists as heuristics are preferred for 

projects with a large number of activities in RCPSP. The proposed method results show that, on top of its overall performance, 

the method performs exceptionally well with many activity instances compared to low ones. The performance improvement 

in large project instances is not just with the makespan improvement but also with the number of instances improved. So, the 

reliability of the method for improving the makespan becomes consistent. Such that, the addition of the CB-PL option before 

running a commercial program to solve an RCPSP would be practical. Another practical implication of the CB-PL method is 

how priority rule types are levelized at their heuristic performance. The levelized performance would result in decreasing 

changes to obtain worse results by less knowledgeable individuals responsible for the schedule creation. In other words, the 

selection of priority rule is relaxed on its significance. In favor of these implications, the experimental results in this paper 

show that the CB-PL method application in heuristics is effective compared to original priority list applications. Also, a recent 

study combines a machine learning approach to select priority rules in project networks for the RCPSP (Guo et al., 2021). As 

machine learning approaches become more popular in recent years, the best-found makespan increase observed in the analysis 
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section gains more significance. Hence, we think that our method will provide more to improve managerial applications of the 

resource-constrained project scheduling problems. 
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