
International Journal of Industrial Engineering, 15(1), 36-44, 2008.

ISSN 1072-4761 © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

Lower Bounds For Hierarchical Chinese Postman Problem

Purushothaman Damodaran1, Murali Krishnamurthi2, and Krishnaswami Srihari3

1Department of Industrial and Systems Engineering
Florida International University

Miami, FL 33174

2Department of Industrial Engineering
Northern Illinois University

DeKalb, IL 60115

3Department of Systems Science and Industrial Engineering
State University of New York

Binghamton, NY 13902

Arc routing problems aim at finding a least cost traversal on a network with or without additional constraints. The
Hierarchical Chinese Postman Problem (HCPP) is an arc routing problem. HCPP is NP-hard and several heuristics have
been developed to solve this problem. The Chinese Postman Problem (CPP) tour solution is a known lower bound for the
HCPP. This paper presents a heuristic that will prescribe improved lower bounds for the HCPP when compared to the CPP
solutions. Better lower bounds aid exact search methods, such as branch-and-bound, to find an optimal solution in a shorter
run time. It can also be used to determine the quality of a heuristic solution. Several problem instances were generated to
evaluate the proposed heuristic. Experimental results indicate that our lower bounds are better than the CPP solution for all
the sample problems chosen.

Significance: The itinerary for a snow plow truck to follow during a snowfall is determined by solving a HCPP. A

good lower bound can aid decision makers to effectively serve the taxpayers. Proper planning can
reduce the number of accidents and property damage during a snow storm.

Keywords: Arc routing problems; Chinese Postman Problem; Hierarchical Chinese Postman Problem; Snow

removal planning; Lower bounds

(Received 27 February 2006; Accepted in revised form 5 March 2007)

1. INTRODUCTION

The Vehicle Routing Problem (VRP) can be described as the problem of designing optimal delivery or collection routes
from one or several depots to a number of geographically scattered cities or customers subject to side constraints (Laporte,
1992). The VRP covers activities such as retail distribution, school bus scheduling, mail delivery, street sweeping, snow
removal, waste collection, and communication distribution management. The VRP can be broadly divided into the arc-
covering problem and the node-covering problem. In an arc-covering problem, the demand for service is along any arc in a
given network. Examples of the arc-covering problem are the Chinese Postman Problem (CPP), the Rural Postman Problem
(RPP), and the Hierarchical Chinese Postman Problem (HCPP). The objective in the CPP is to determine a shortest tour on
a network such that each arc on the network is covered at least once. Unlike the CPP, the objective of a RPP is to determine
a minimum cost traversal on only a subset of arcs in a network. Whereas, in HCPP, the objective is to determine least cost
traversal in a hierarchical network such that the higher priority arcs are serviced before lower priority arcs and each arc in
the network is serviced at least once. An example for HCPP is the snow removal problem; Section 2 discusses this real-life
application in detail. In a node-covering problem, the demand for service is at the nodes in a given network. Examples for
node-covering problems are the Traveling Salesman Problem and the Transportation Problem.

A hierarchical network is a network that contains arcs with different priority levels and each level constitutes one
hierarchy of the network. Consider a network G(N,A) with a set of nodes N and a set of arcs A. G(N,A) is a hierarchical
network if it can be broken into k different sub-networks such that each sub-network represents a hierarchical level. That
is, G(N,A) = G1(N1,A1) ∪ G2(N2,A2) ∪ …∪ Gk(Nk,Ak), where Gk is the kth sub-network induced by all arcs with priority k
and corresponding nodes of these arcs. If arcs with priority p (Ap) have higher priority over arcs with priority q (Aq) in the
hierarchical network, then the objective of the HCPP is to determine a minimum cost traversal such that arcs with priority p

Lower Bounds for Hierarchical Chinese Postman Problem

37

are included in the tour before arcs with priority q. However, if the sub-network Gp is not connected, then in order to
connect Gp, arcs from other priority levels may be used. For example, the network shown in Figure 1 has two hierarchy
levels, and therefore, has two sub-networks, Gp and Gq as shown in Figure 2.

The sub-networks induced by priority p arcs and priority q arcs are not connected. The sub-network Gp has two
connected components; Arcs (1,2), (2,3), and (3,1) are connected and form a component and arcs (4,5), (5,6), and (6,4) are
connected and form another component. Some arcs with priority q, dotted lines shown in Figure 3, have to be used to
connect these two components in order to make the sub-network Gp connected. As arcs with priority p have to be served
before serving the arcs with priority q, the arcs with priority q that are used for connecting Gp will be traversed, but will not
be serviced until all priority p arcs are served. While serving priority p arcs, any priority q arc traversed will not be served.
This travel along priority q arcs, when serving priority p arcs is called “deadhead travel”. If any arc in Ap that has already
been served is traversed for the purpose of serving other priority p arcs, then they too will be used only for the purpose of
traversing, and no service will be provided. Since deadhead travel does not accomplish any useful work, it should be
minimized.

Dror, Stern, & Trudeau (1987) showed that the HCPP is NP-hard. Consequently, Lemieux & Campagna (1984), Alfa &

Liu (1988), Dror, Stern, & Trudeau (1987), and Krishnamurthi & Damodaran (1998) proposed heuristics for the HCPP. The
HCPP is a variation of the CPP. The optimum solution to the CPP is the least cost tour that is obtained when each arc in the
network is traversed exactly once (Christofides, 1975). If such a tour exists in a network, then the network is an Eulerian
network and the tour is an Euler tour. If a given network consist of only even degree nodes (in an undirected network, the
degree of a node v is the number of arcs incident to v), then it is possible to trace an Euler tour. However, if a network has
odd degree nodes (the number of odd degree nodes in a network is even), then it is not possible to trace an Euler tour. In
such a network, some of the arcs have to be traversed more than once and hence, deadhead travel is inevitable.

In the HCPP, if the sub-network induced for any hierarchical level has some disconnected components then deadhead
travel is inevitable. However, if the sub-network induced for each hierarchical level is connected and each node in the sub-
network is of even degree then it is possible to trace an Euler tour. In this case, the HCPP tour is obtained by concatenating
the Euler tours obtained for each hierarchy level in the order of their hierarchy. Even in this situation, deadhead travel
cannot be avoided if there is no arc directly connecting two successive hierarchy levels. For example, if each node in the

p

p

p

q

p
p p

4

5

3 2

1

q
6

Figure 1. A hierarchical network with two hierarchy levels

p

p

p

p

p p

4

5

3 2

1

6

Figure 2. Sub-networks induced by priority p and priority q arcs

q

4

5

3

1

q

Gp Gq

p

p

p

q

p
p p

4

5

3 2

1

q
6

Figure 3. Sub-network Gp after connecting the disconnected components

Gp

Damodaran et al.

38

sub-network induced by priority 1 and priority 2 arcs is of even degree and if there is no node common to both these sub-
networks then arcs from other priority have to be used for concatenating the Euler tours obtained for G1 and G2.

Edmonds and Johnson (1973) have shown that the lower bound for the CPP is the Euler tour traced on the network. As
HCPP is a variation of CPP, the lower bound for HCPP is the CPP tour traced on the network. The primary objective of this
paper is to propose a heuristic to find better lower bounds for the HCPP. The secondary objective is to compare the lower
bounds obtained from the proposed heuristic with the CPP solution and show the improvements that can be achieved by
adopting the proposed heuristic. The benefits of this research are (1) a better lower bound for the HCPP will reduce the
computational effort when a branch-and-bound procedure is adopted to solve HCPP or its applications and (2) to test the
performance of the heuristics proposed to solve the HCPP more accurately.
 The rest of the paper is organized into six sections. Section 2 gives a practical example for the HCPP. Section 3 presents
the literature reviewed. Section 4 presents our heuristic to determine the lower bound for the HCPP. Section 5 presents our
experimental results and Section 6 presents our conclusions.

2. SNOW REMOVAL PROBLEM AS HCPP

For the purpose of providing road service during a snowfall, a city or county is usually divided into several zones, and the
equipment and crew necessary for handling the task are located in one or several zones to provide the best service possible.
Each zone is composed of a network of roads and public places, which are prioritized for the purpose of snow removal.
The highest priority during snow removal is given to main roads (business districts), schools, and hospital areas. Second
priority is given to snow removal routes that lead to main roads, schools, and hospitals. Third priority is given to residential
streets, and fourth priority to public parking lots, sidewalks, etc. Snow on higher priority roads should be cleared before
lower priority roads in the zone.

 Since roads with the same priority are not necessarily located adjacent to each other, while serving the higher priority
roads some of the lower priority roads may have to be traversed for reaching the higher priority roads. Though the lower
priority roads are traversed to reach higher priority roads, the snow removal team will not serve the lower priority roads.
The distance traversed along a road when the road is not served is referred to as “Deadhead” travel. Deadhead travel can
considerably slow down the completion of the snow removal process and hence, should be minimized. Deadhead travel
increases the cost of road maintenance as it includes the cost of labor, delay in delivery of service, etc. Hence, there is an
opportunity to reduce the cost of road maintenance by reducing the deadhead travel distance. By reducing the deadhead
travel, it is obvious that the damage caused to the property, public, and the cost of snow removal process can be reduced.

By treating each street as an arc and each street intersection as a node, each zone can be represented by a network. As
the streets are prioritized, the network is actually a hierarchical network. By minimizing the deadhead travel, the time taken
to plow or spray salt can be minimized. Thus, the problem of determining optimal routes for the snow removal team is a
HCPP.

3. LITERATURE REVIEW

Edmonds and Johnson (1973) developed an algorithm for finding an optimum solution to the CPP. As a first step in the
algorithm, all odd degree nodes in the network are converted into even degree nodes by applying the minimum-matching
algorithm. Artificial arcs are added to the original network in order to connect the odd degree nodes. In the second step, an
Euler tour is traced on the modified network that would be the optimal solution to the CPP. This optimal solution to the
CPP can be used as a lower bound for the HCPP. The total length of an optimal postman problem route is the same for
every starting node (Minieka, 1978).

 Edmonds & Johnson (1973) described the necessary and sufficient condition for the existence of an Euler tour and the
solution procedure to the CPP using matching theory (we refer to Gondran & Minoux (1984) for a detailed discussion on
matching algorithms). They presented solutions for the postman problem when the graph is undirected, directed, or mixed.
Minieka (1979) solved this case of the CPP as an “integer minimum flow with gains” problem using integer linear
programming. This method is not elegant but it at least suggests a method to find feasible solutions. Papadimitriou (1976)
has shown that the solution for the postman problem on mixed graphs with some odd degree nodes is NP-complete. A
detailed survey of arc routing problems (ARP) and main algorithm results for the undirected CPP, the directed CPP, the
windy postman problem (determining a least cost traversal of all arcs in an undirected graph in which the cost of traversing
an arc depends on the direction of travel), the mixed CPP, and the hierarchical CPP can be found in Eiselt, Gendreau &
Laporte (1995). We refer to Dror (2000) for state-of-the-art exposition of arc routing problems; it presents a number of
solution methodologies in a variety of application settings.

Dror, Stern & Trudeau (1987) developed an algorithm to determine an optimal postman tour on a graph in which the
arcs are partitioned and a precedence relation is defined. The drawback of this algorithm is that all arcs of the same priority
level should be connected. If the arcs are not connected, and if there exists two or more components, the procedure to move
between the components is not addressed. In reality, arcs of the same priority level may not always be connected.

Lower Bounds for Hierarchical Chinese Postman Problem

39

 Alfa and Liu (1988) presented a technique to arrive at a very good solution to the CPP in a directed, hierarchical
network. Their work also presents a procedure for selecting arcs from another hierarchy to include in the unconnected
hierarchy in order to make it connected. The postman route obtained in this procedure may not be the global optimum
since the problem of connection and evenness were treated independently. To ensure that the route obtained is the global
optimum, the problem of connecting the components of the network and making the network even should be combined and
analyzed simultaneously. Damodaran (1997) developed a heuristic for the HCPP that handles the problem of connecting
the components and making the network even simultaneously. The heuristic was shown to perform better that Alfa and
Liu’s heuristic when the sub-network induced by each hierarchy level is disconnected.

Ghiani & Improta (2000) proposed an exact algorithm to solve a HCPP with some special properties. In general, HCPP
is NP-hard, however polynomial-time algorithms (Dror, Stern & Trudeau, 1987) are available to solve special cases. One
such special case is when all the components are connected and the precedence relationship is linear. Cabral, Gendreau,
Ghiani, & Laporte (2003) proposed a method to transform the HCPP to RPP and use branch-and-cut exact procedures to
solve the HCPP when the precedence relationships are linear.

After making suitable modifications to the basic ARP, CPP or RPP, a number of practical problems such as street
sweeping (Bodin & Kursh, 1978), garbage collection (Beltrami & Bodin, 1974), snow plowing (Lemieux & Campagna,
1984; Alfa & Liu, 1988; Haslam & Wright, 1991; Damodaran & Krishnamurthi, 2005), meter reading (Stern & Dror,
1979), police patrol scheduling, routing of road crews, school bus scheduling (Swersey & Ballard, 1984), etc. have been
addressed. Udi & Israni (1984) have developed an algorithm that finds a sequence of torch paths to cut a nested stock sheet
with a minimum number of pierce points. Stern & Dror (1979) developed a heuristic to solve a special type of edge
oriented multiple open tour routing problem. This heuristic was developed to reduce the cost incurred in routing the
electric meter readers in Israel.

 Though the CPP solution obtained for a network is the lower bound for the HCPP, this lower bound is not tight. Hence,
this paper prescribes a heuristic to determine a better lower bound for the HCPP. HCPP is NP-hard. Therefore, in order to
evaluate any new and/or existing heuristic’s performance, our lower bound results can be very useful. One another
important reason to have a good lower bound is to quicken the search process in any branch-and-bound procedure. If
branch-and-bound is used to find optimal solutions for various applications (such as snow plowing, street sweeping, etc.) of
the HCPP, a good lower bound will aid in reducing the search process.

4. A HEURISTIC TO FIND A LOWER BOUND FOR THE HCPP

In HCPP higher priority arcs have to be included before lower priority arcs in the tour, and if the sub-network generated by
a particular hierarchy is not connected, then deadhead travel is inevitable. Hence, when the sub-network induced by any
level in the hierarchy is disconnected, the total distance traversed to serve each arc at least once is always greater in HCPP
than the total distance traversed to serve each arc at least once in CPP. Even when the sub-network induced by all
hierarchical levels is connected, the total distance traversed in HCPP is at least same as the total distance traversed in CPP.
Hence, an exact (optimal) CPP solution can always be the lower bound for the HCPP. Damodaran (1997) proposed a
heuristic for the HCPP and showed that it performed better than Alfa and Liu’s heuristic when the sub-network induced by
each hierarchy level is disconnected. By relaxing the arc priorities and suitably modifying Damodaran’s heuristic, a better
lower bound for the HCPP can be obtained. The heuristic to determine the lower bound for the HCPP is discussed in this
section.

 The starting node is the node from which a postman tour has to begin. Since, the heuristic is aimed at determining a
closed postman tour, the starting node is also the final node in the tour. If a node is incident to several arcs, then it is
always possible to choose an arc which does not divide the network because it has been proven that there can be at most
one arc incident to a node which divides the network into components (Gibbons, 1985). Whenever an arc is included in a
tour, that arc can be assumed to be removed from the original network to check if this arc removal leads to disconnected
components or not. The proposed heuristic makes use of the above fact and strives to include arcs that will not divide the
network into components. However, if there is only one arc incident to a node then that arc is included into the tour, which
divides the network. In order to proceed further with the remaining arcs, a node that is incident to one or more arcs and
closer to the current node is searched and the shortest path connecting them is included in the tour.

 The inputs required for the proposed heuristic are the distance between two nodes, number of nodes in the network, and
the starting and end node for the closed postman tour. The notation used in the heuristic are:

S* Starting and end node for the closed postman tour
S Starting node
CV Current node
EC List of nodes ordered according to the sequence in which they are visited
E’ Set of arcs already traced
A(v) List of all nodes which are directly adjacent to node v

Damodaran et al.

40

The pseudo code for the proposed heuristic is:
1. S ← S*, EC ← [S], CV← S, v ← S, E’ ← ∅
2. Find the shortest path and distance between any two nodes in the network using Floyd’s algorithm
3. Find the Adj(v) for all nodes v in G
4. While | Adj(v) | > 0 for any v do begin
5. While | Adj(S) | > 0 do begin

5a. if | Adj(CV) | > 1 then
find a node v ∈ Adj(CV) such that | Adj(v) | > 1, if there is no such v then
choose any v from Adj(CV) arbitrarily

5b. else if | Adj(CV) | == 1 then
let the node in Adj(CV) be denoted by v

5c. else
find a node v in G such that | Adj(v) | > 0 and the distance between CV and v is the minimum S
← v, CV ← S, add the shortest path sequence from CV to v to the end of EC list, go to step 7

 endif
6. Delete v in Adj(CV) and CV in Adj(v), E’ ← E’ ∪ {(CV,v)}, CV ← v, add v to the end of EC list

 end
7. Find a node with | Adj(v) | > 0 such that the distance between CV and v is the minimum

7a. if no such v then
 go to step 4

7b. else
CV ← v, S ← v, add the shortest path sequence from CV to v to the end of EC list

 endif
end

8. If CV == S* then
 go to step 9
 else
 add the shortest path sequence from CV to S* to the end of the EC list
 endif
9. Print EC

Step 1 initializes all the variables. In step 2, the shortest distance and shortest path between any two nodes in a given

network is determined using Floyd’s algorithm (Foulds, 1984). In step 3, a list of adjacent matrices for all the nodes in the
network G is determined. The adjacency matrix list gives the set of all arcs incident to a node. A node can be incident to
one, more than one, or no arcs. If the number of arcs incident to a node is more than one then in step 5a, an arc that does
not divide the network into components is searched and is included in the tour. But if the number of arcs incident is exactly
one, then in step 5b, that particular arc is included in the tour and this inclusion will divide the network into components. If
there is no arc incident to a node, then in step 5c, a node that is incident to one or more arcs is selected and the shortest path
connecting them is included in the tour. The arcs that are included in the tour are deleted from G in step 6. Steps 5 and 6
are repeated until all the arcs incident to S are included in the tour.

Step 4 checks if all the arcs in G are included in the tour. If there are some arcs yet to be covered and if there is no arc
incident to S, then in step 7 a node, say v, which is incident to one or more arcs and close to CV is searched. The shortest
path connecting these two nodes is included in the tour and CV and S are set to v. Steps 4 through 7 are repeated until all
arcs are included in the tour at least once. Once all the arcs are included, if the node incident to the last arc in the tour is not
S*, then the shortest path connecting the current node and S* is included in the postman tour. Step 9 prints the postman
tour (lower bound) for the entire network. The postman tour obtained by applying the heuristic is a lower bound because
the heuristic does not construct the tour following arc priorities.

5. EXPERIMENTATION

In order to evaluate the performance of the proposed heuristic, the lower bounds for 31 sample problems were determined
by applying the proposed heuristic and compared with the CPP solution. The sample problems were generated from six
different networks (networks 1-6). Keeping in mind the page limitations, all the networks and their corresponding arc
parameters are not included in this paper. Any interested reader can find this information in Damodaran (1997). Table 1
indicates the network from which a sample problem was generated. The cost or distance associated with the arcs for all the
sample problems generated from a network will be the same. However, the sample problems generated from a network
differ in their priorities along the arcs. For example, the sample problems 1-7 and 29 are generated for network 1. The cost
or distance associated with the arcs will remain the same, but their priority differs between sample problems.

Lower Bounds for Hierarchical Chinese Postman Problem

41

Table 1. Sample problem information

Network Sample Problems
Network 1 1-7 and 29
Network 2 8-13 and 30
Network 3 14-17 and 31
Network 4 18-21 and 25
Network 5 22-24
Network 6 26-28

Table 2 gives the lower bounds obtained from the proposed heuristic, CPP solution, and the improvements in

percentage. The results reported in Table 2 clearly indicate that the proposed heuristic prescribes a better lower bound for
all the sample problems. Since, the heuristic and CPP ignore the priorities along the arc while tracing the postman tours, the
lower bound from both the heuristic and CPP are the same for all the sample problems generated from a network. For
example, the lower bounds obtained from the heuristic are the same for sample problems 1-7 and 29 that were generated
from network 1.

Table 3 presents the lower bounds and the HCPP tour distances obtained by applying two heuristics for all the 31
sample problems. It is evident from these results that our heuristic prescribed better and valid lower bounds. The GAP
indicates the performance of the HCPP heuristics and gives an idea which heuristic is better. On the average, the GAP is
14.35% and 16.67% for Damodaran (1997) and Alfa and Liu (1988) heuristics, respectively. Figure 4 shows the GAP1 and
GAP2 values for all the sample problems.

The comparisons indicate that our lower bounds are valid. The GAP values help to measure the performance of any
heuristic proposed for the HCPP. If the solution from a heuristic were to be compared with the CPP solution to measure its
quality, the measures would be quite off. For example, the HCPP solution for sample problem 22 by applying Alfa and Liu
heuristic is 11000, the CPP solution is 7400, and, hence, the GAP is 48.65%. When the improved lower bounds are used,
the GAP is only 30.95%. Our lower bound calculations also help us to conclude that the solutions obtained by Damodaran
for sample problems 4, 7, 22 and 23 is optimum (GAP1 = 0%). Without these lower bound results, it is difficult to prove
optimality. A comparison of GAP1 and GAP2 helps us to decide which heuristic performs better.

6. CONCLUSIONS

HCPP is NP-hard and therefore several heuristics are available to solve these arc routing problems. Although CPP solution
may be treated as a lower bound for the HCPP, we have demonstrated that our heuristic can be used to find improved lower
bounds. Our heuristic was applied to a set of 31 sample problems and the results were compared with the CPP solution.
The results indicate that our heuristic finds a better lower bound for all the sample problems. Another important
contribution is that our lower bounds will be very useful to limit the search in a search tree, when a researcher resolves to
use a branch-and-bound approach to solve the HCPP or any applications that fall under the umbrella of HCPP. It can also
be used to compare the performance of different heuristics proposed to solve HCPP. It is evident from our experimental
study that the lower bounds can help us to confirm optimality. With the improved lower bounds, four sample problems
solved using Damodaran’s heuristic have been confirmed to be optimal.

Table 2. Lower bounds from the heuristic and CPP

Sample
Problem

Heuristic
(1)

CPP
(2)

% Improvement
(1)-(2)/(2)

1 314 294 6.80
2 314 294 6.80
3 314 294 6.80
4 314 294 6.80
5 314 294 6.80
6 314 294 6.80
7 314 294 6.80

Damodaran et al.

42

8 87 87 0.00
9 87 87 0.00

10 87 87 0.00
11 87 87 0.00
12 87 87 0.00
13 87 87 0.00
14 118 118 0.00
15 118 118 0.00
16 118 118 0.00
17 118 118 0.00
18 150 128 17.19
19 150 128 17.19
20 150 128 17.19
21 150 128 17.19
22 8400 7400 13.51
23 8400 7400 13.51
24 8400 7400 13.51
25 118 118 0.00
26 134 122 9.84
27 134 122 9.84
28 134 122 9.84
29 314 294 6.80
30 87 87 0.00
31 118 118 0.00

Table 3. Comparing lower bounds to HCPP heuristics

Sample
Problem

Heuristic
(1)

CPP
(2)

Damodaran
(3)

%GAP1
(3)-(1)/(3)

Alfa & Liu
(4)

%GAP2
(4)-(1)/(4)

1 314 294 322 2.55 321 2.23
2 314 294 328 4.46 354 12.74
3 314 294 343 9.24 318 1.27
4 314 294 314 0.00 320 1.91
5 314 294 351 11.78 333 6.05
6 314 294 322 2.55 334 6.37
7 314 294 314 0.00 361 14.97
8 87 87 101 16.09 92 5.75
9 87 87 102 17.24 105 20.69

10 87 87 100 14.94 100 14.94
11 87 87 101 16.09 91 4.60
12 87 87 95 9.20 96 10.34
13 87 87 91 4.60 92 5.75
14 118 118 163 38.14 135 14.41
15 118 118 164 38.98 151 27.97
16 118 118 155 31.36 142 20.34
17 118 118 158 33.90 158 33.90
18 150 128 184 22.67 172 14.67
19 150 128 152 1.33 166 10.67
20 150 128 156 4.00 156 4.00
21 150 128 174 16.00 164 9.33
22 8400 7400 8400 0.00 11000 30.95

Lower Bounds for Hierarchical Chinese Postman Problem

43

23 8400 7400 8400 0.00 12800 52.38
24 8400 7400 11800 40.48 12200 45.24
25 118 118 132 11.86 165 39.83
26 134 122 162 20.90 191 42.54
27 134 122 156 16.42 192 43.28
28 134 122 137 2.24 135 0.75
29 314 294 336 7.01 354 12.74
30 87 87 95 9.20 98 12.64
31 118 118 167 41.53 147 24.58

Figure 4. GAP comparisons

7. REFERENCES

1. Alfa, A.S. and Liu, D.Q. (1988). Postman routing problem in a hierarchical network. Engineering Optimization, 14:

127-138.
2. Beltrami, E. and Bodin, L. (1974). Networks and vehicle routing for municipal waste collection. Networks, 4: 65-94.
3. Bodin, L.D. and Kursh, S.J. (1978). A computer-assisted system for the routing and scheduling of street sweepers.

Operations Research, 26 (4): 525-537.
4. Cabral, E.A., Gendreau, M., Ghiani, G. and Laporte, G. (2004). Solving the hierarchical Chinese postman problem as a

rural postman problem. European Journal of Operational Research, 155(2): 44-50.
5. Christofides, N. (1975). Graph Theory: An Algorithmic Approach. Academic Press, New York.
6. Damodaran, P. (1997). A methodology for dynamic planning of road service during a snow fall. M.S. Thesis, Northern

Illinois University, DeKalb, IL.
7. Damodaran, P. and Krishnamurthi, M. (2005). A continuous simulation model for snow removal. International Journal

of Industrial Engineering, 12(2): 188-197.
8. Dror, M., Stern, H. and Trudeau, P. (1987). Postman tour on a graph with precedence relation on arcs. Networks, 17:

283-294.
9. Dror, M. (ed.) (2000). Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers, Boston.
10. Edmonds, J. and Johnson, E.L. (1973). Matching, Euler tours and the Chinese postman problem. Mathematical

Programming, 5: 88-124.
11. Eiselt, H.A., Gendreau M. and Laporte, G. (1995). Arc routing problems, part I: The Chinese Postman Problem.

Operations Research, 43 (2): 231-242.
12. Foulds, L.R. (1984). Combinatorial Optimization for Undergraduates. Springer-Verlag, Inc., New York.
13. Ghiani, G. and Improta, G., (2000). An algorithm for the hierarchical Chinese postman problem. Operations Research

Letters, 26: 27-32.
14. Gibbons, A. (1985). Algorithmic Graph Theory. Cambridge University Press, New York.
15. Gondran, M. and Minoux, M. (1984). Graphs and Algorithms. John Wiley & Sons, New York.
16. Haslam, E. and Wright, J.R. (1991). Application of routing technologies to rural snow and ice control. Transportation

Research Record, 1304, 202-211.
17. Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal

of Operations Research, 59: 345-358.

Damodaran et al.

44

18. Lemieux, P.F. and Campagna, L. (1984). The snow ploughing problem solved by a graph theory algorithm. Civil
Engineering Systems, 1: 337-341.

19. Krishnamurthi, M. and Damodaran, P. (1998). A modified postman tour heuristic for efficient snow removal planning.
Proceedings of 7th Industrial Engineering Research Conference, Banff, Canada.

20. Minieka, E. (1979). The Chinese Postman Problem for mixed networks. Management Science, 25 (7): 643-648.
21. Minieka, E. (1978). Optimization Algorithms for Networks and Graphs. Marcel Dekker, Inc, New York.
22. Papadimitriou, C. (1976). On the complexity of edge traversing. Journal of the Association of Computing Machinery

23: 544- 554.
23. Stern, H. and Dror, M. (1979). Routing electric meter readers. Computers and Operations Research, 6: 209-223.
24. Swersey, J.A. and Ballard, W. (1984). Scheduling school buses. Management Science, 30 (7): 844-853.
25. Udi, M. and Israni, S. (1984). Pierce point minimization, and optimal torch path determination in flame cutting.

Journal of Manufacturing Systems, 3 (1): 81-89.

BIOGRAPHICAL SKETCH
Purushothaman Damodaran is an Assistant Professor in the Department of Industrial & Systems
Engineering at Florida International University, Miami, FL. His current research interests include
large-scale optimization, scheduling, simulation, logistics, and electronics manufacturing. He
received his Ph.D. from Texas A&M University in Industrial Engineering. He is a member of
INFORMS and IIE. Dr. Damodaran has worked and continues to work closely with companies such
as IBM, Motorola, Sanmina-SCI, Jabil Circuits, Maines Paper & Food Services, and Innovative
Scheduling, Inc., on sponsored research projects which are critical to their needs.

Murali Krishnamurthi is Associate Professor of Industrial and Systems Engineering at Northern
Illinois University. He received his B.E. in Mechanical Engineering from University of Madras
(India), M.S. in Industrial and Systems Engineering from Ohio University and Ph.D. in Industrial
Engineering from Texas A&M University. His teaching and research interests include optimization
techniques, system simulation, information systems, project management, engineering ethics,
environmental management systems, and expert systems. He has received more than $2 million in
sponsored project funding from federal, state, industry and professional society sources. He
currently serves also as the Director of Faculty Development and Instructional Design Center at
Northern Illinois University.

Krishnaswami (Hari) Srihari joined the State University of New York at Binghamton, New York in
August 1988. He received his M.S. (1985) and Ph.D. (1988) in Industrial Engineering and
Operations Research from Virginia Polytechnic and State University, Blacksburg, Virginia.
Dr.Srihari's research is focused on the electronics manufacturing domain. A recent review of his
group indicated that he had received over 16 million dollars in external research funding for the past
few years, has published over 325 research papers, and authored over 950 technical reports.Dr.
Srihari is the Director of Watson Institute for Systems Excellence (WISE).

