
International Journal of Industrial Engineering, 15(1), 16-25, 2008. 

ISSN 1072-4761                                                                                                     ©INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING  

The Usage of Artificial Neural Networks For Finite Capacity Planning 
 

Ali Fuat Guneri and Alev Taskin Gumus 
 

Mechanical Faculty 
Industrial Engineering Department 

Yildiz Technical University 
Besiktas - Istanbul, Turkey 

Corresponding author’s e-mail: {Ali Fuat Guneri, guneri@yildiz.edu.tr} 
 
In this study finite scheduling and artificial neural networks are applied for finite capacity planning.  Utilisation of artificial 
neural networks on solving finite scheduling problems is examined. Also a model is developed by using multi layer 
perceptron (MLP) networks and carried out to solve a real world problem in a job shop scheduling system, in an automotive 
firm. 
 
Significance:  Finite capacity scheduling and its integration with the other functions of the companies is very important to 

manage planning activities in manufacturing. The usage of artificial neural networks in finite scheduling is 
studied in this paper.    
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1. INTRODUCTION 

 
Scheduling may be defined as ‘‘the allocation of resources over time to perform a collection of tasks’’ (Pongcharoen et al., 
2004). Also, scheduling has been defined as ‘the art of assigning resources to tasks in order to insure the termination of 
these tasks in a reasonable amount of time’ (Fonseca and Navaresse 2002). Production scheduling is one of the major issues 
in production planning and control of individual production units which lies on the heart of the performance of 
manufacturing organizations (Chan et al., 2006). Scheduling is a decision process about assigning resources in production 
cycles. The scheduling problem in manufacturing is sequencing and planning the operations under technological and 
physical constraints (Tardif and Spearman, 1997; Moon et al., 2002; Jansen and Mastrolilli, 2004). Scheduling problem is 
the allocation of resources to perform a set of activities in a period of time (Tavakkoli-Moghaddam et al. 2005). 

Scheduling problems exist almost everywhere in real-world situations (Gen and Cheng, 1997; Watanabe et al., 2005) 
Many real scheduling problems in the manufacturing industries are quite complex and very difficult to be solved by 
conventional optimization techniques. Usually, these difficult-to-solve problems are characterized as combinatorial 
optimization problems subject to highly complex constraints (Pongcharoen et al., 2004; Watanabe et al., 2005). The 
combinatorial process is a necessary part when preparing the production scheduling that many these related problems are 
classified as NP-hard problems (Artiba and Elmaghraby, 1997; Chan et al., 2006). 

The job shop scheduling is one of the most typical and complicated tasks in scheduling problems. The aim of job shop 
scheduling problem is to allocate n jobs to m machines in order to optimize a special factor. Recently, scheduling systems 
based on intelligence knowledge have been proposed and presented. Job shop is a production system with the capability of 
producing products with a number of jobs and different operation times for each job. Due to different operations on a 
product and machine requirements to process each step of production, it is so hard to find an efficient scheduling solution. 
Traditional approaches often consider small-sized problems with deterministic parameters. The real world of industry is 
deterministic free and production attributes are stochastic. Stochastic variables and constraints are not available in the 
application of traditional approaches (Tavakkoli-Moghaddam et al., 2005). 

Job shop scheduling problem (JSSP) is a class of combinational optimization problems known as NP-Hard one 
(Tavakkoli-Moghaddam et al., 2005). It is usually very hard to find its optimal solution. Practically researchers turn to 
search its near-optimal solutions with all kind of heuristic algorithms (Yang and Wang, 2001). In this study, we seek the 
solution of finite capacity scheduling problem in a job-shop environment.  

Capacity planning is the ‘class of the problems related to the prediction of when in the future the capacity of an existing 
system will become insufficient to process the installation’s workload with a given level of performance’ (Sia and Ho, 
1997).  The planning and utilisation of production capacity is a major strategic decision in manufacturing. The strategic 
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decisions of a company are concerned with acquiring the resources needed to survive and prosper over the long term 
(MirHassani et al., 2000). 

Several approaches to finite capacity scheduling (or Leitstands as they are sometimes called) have been proposed (for 
example, Kanet and Sridharan, 1990; Jain et al., 1990; McCarthy and Barber, 1990). Acknowledging the fact that capacity 
of certain resources is limited means that a manufacturing firm would not accept all demand and would be willing to reject 
some if the product cannot be delivered at the requested time without hurting the overall profitability of the firm (Akkan, 
1997). 

In this paper finite scheduling, which is the basis of finite capacity planning is considered, and artificial neural networks 
are applied for finite capacity planning. The ANNs are used in finite capacity planning to determine an effective planning 
strategy. Also a model is developed by using multi layer perceptron (MLP) networks and carried out to solve an application 
problem in a job shop scheduling system. 
 
2.  ARTIFICIAL NEURAL NETWORKS 

 
Artificial Neural Networks (ANNs) are built from intensive connections between basic calculation elements obtaining high 
performance by considering biological nervous system’s structure. The ANN models have a great potential in various areas 
with parallel and high computation speed, especially in speech and image recognizing. The ANN models are based on 
various hypotheses that prudence to connect several computation elements with variable weights and realize intensive 
parallel processes (Simpson, 1990). 

In general, an ANN model is formed from n layers, different numbers of computation elements that work like biological 
neurons and intensive connections between these computation elements along layers. The computation elements used in 
various ANN models are named as artificial neurons, knots, units or process elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

The neurons are very simple functioned processors if considered alone that form neural networks. There are three main 
parts in a neuron structure. These are synapsis, collector and activation function, consecutively (Haykin, 1999).  A neuron 
model is shown in Figure 1. As seen in this figure, the inputs of a neuron is multiplied by the weights on the synaptic 
connections and applied to the collector; and outputs are computated by using this total in the neuron activation function. 
Equation (1) computes the weighted total and equation (2) computes the output of neuron (Haykin, 1999): 
 

 
 

Figure 1. A neuron structure 
 

S = w1u1 + w2u2 + ... + wnun -  =                ...                      (1) 

= (S)                                                 ...                      (2) 
 

The change in every input causes a certain change in the output of neuron, and the amplitude of this change is dependent 
to the connection benefits that determine the input’s effect degree, the collector’s threshold value and neuron activation 
type. Here the benefits shown by wi are named as weight,  is named as threshold and function is named as neuron 
activation function. 
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2.1 Multi Layer Perceptron Neural Networks  
Multi Layer Perceptron (MLP) is the most common neural network model, consisting of successive linear transformations 
followed by processing with non-linear activation functions. MLP represents a generalisation of the single layer perceptron, 
which is only capable to construct linear decision boundaries and simple logic functions. However, by cascading perceptrons in 
layers complex decision boundaries and arbitrary Boolean expressions can be implemented. MLP is also capable to implement 
non-linear transformations for function approximations (Lippmann, 1987; Geva and Sitte, 1992; Hush and Horne, 1993; 
Haykin, 1999). 

The network consists of a set of sensory units (source nodes) that constitute the input layer, one or more hidden layers of 
computation nodes, and an output layer. Each layer computes the activation function of a weighted sum of the layer's inputs. The 
input signal propagates through the network in a forward direction, on a layer-by-layer basis. The learning algorithm for 
multilayer perceptrons can be expressed using generalised Delta Rule and gradient descent since they have non-linear activation 
functions (Zurada, 1985; Rumelhart, 1987; Jondarr, 1996; Riedmiller and Braun, 1997).  

In general form of an MLP network, the xi inputs are fed into the first layer of xh,1 hidden units. The input units are simply 
'fan-out' units: no processing takes place in these units. The activation of a hidden unit (neuron j) is a function fj of the weighted 
inputs plus a bias, as given in Eq.3. 

                                      …                                                (3) 

where wji is the weight of input i to neuron j, xpi is input i, that is, output i from the previous layer, for input pattern p and θj is the 
threshold value. The output of the hidden units is distributed over the next layer of xh,2 hidden units until the last layer of hidden 
units, of which the outputs are fed into a layer of xo output units (Kröse and Van der Smagt, 1993; Vysniauskas, 1993; Taskin 
and Guneri, 2005). 
   
3. FINITE CAPACITY PLANNING 

 
Scheduling may be defined as on resource sequencing of operations according to certain target criteria (such as minimizing the 
number of delayed works  or the number of preparations) and determining the start and ending times of the assigned operations. 
Taking the limitations into the account (such as resource limitations, delays in  material supply,  regular maintenance, failures 
etc.) turns the already formed Gantt scheme into a more applicable one, while this process performed in consideration of the 
system limitations is named as “finite capacity scheduling – FCS”(Zozom, 1998). Finite Capacity Planning (FCP) is defined as 
establishing the approximate start and ending times of the manufacturing works and capacity loads of the resources based on the 
outcome of the work scheduling. Medium and long term manufacturing needs should be taken into account for the product 
groups rather than the product itself. As a result, it is not necessary that the routes be detailed as is the case in the finite capacity 
scheduling.  

Finite planning can be defined as determining the manufacturing schedule in the resources so that the manufacturing can be 
applied and the functions supporting it can operate synchronously. This module consists of two sub-modules namely finite 
capacity scheduling and capacity planning. Finite capacity scheduling guides the manufacturing in the workshop by forming 
detailed schedules. Short term material requirements are determined using the output of this sub-module. Finite capacity 
planning issues this schedule making use of the approximate data and other schedules for the long term. It provides decision 
support for medium and long term capacity plans and constructs the material requirements which have a longer supply period 
than the FCS (Sen, 2000).  

In conclusion, this process is called as “Finite Capacity Planning” as it takes into account the real capacities of the entire 
resources, the time they end and the format of using such resources in each operation.  

 
4. DEVELOPING A FINITE CAPACITY SCHEDULING SYSTEM USING MULTI LAYER 
PERCEPTRON 
 
4.1 Job Shop Environment  
The specifications of the processed workshop level are as follows (Feng et al., 2003):  
There are m machines {M1, M2, ..., Mm} and  there are n jobs {J1, J2, ..., Jn}. There is a certain order that the jobs should follow. 
Each machine has a certain capacity {C1, C2, ..., Cm}. Furthermore, the amounts to be manufactured, i.e. the demands are 
definite {D1, D2, ..., Dn}. 

Each machine can process only and only one job at a certain time. Each job can be processed in a machine at a certain time. 
For the jobs and machines given, the processing orders of the machines and the jobs are independent from each other. 
When a job is processed in a machine, the operation is not interrupted. The transfer format of the jobs should be determined 
during the operation, because, a job should be forwarded to the following machine when the procedure is over.  
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4.2 Problem Solving Process  
FCS process is given in Figure 2. The manufacturing data first enters into the systems. The data are evaluated and the changes 
are made accordingly. Then training process runs. Before producing the last manufacturing schedule, first manufacturing 
schedule is provided and revised (Feng et al., 2003). 

Before running the multi layer perceptron networks, three technical problems should be solved:  
1. Data organization  
2. Control of the local minimum solution and  
3. Correction of mistakes in the first schedule.  
These problems are analyzed below:  
 

 
 

Figure 2. The production scheduling process 
 

4.2.1 The Sample Data  
One of the difficulties faced in application of the multiple layer perceptron method is related to organizing the sample data 

for training and choosing an algorithm suitable for a given problem. Because of this, the first problem to be overcome is 
deciding as to how to organize the sample data. After assessing the operations in the firm, it was determined that two types of 
resource data should be acquired (Feng et al., 2003): Corporate database and existing manufacturing data, and experiential data. 

After completion of the preliminary processing, the input resource data (database and existing manufacturing data or 
experimental data) can be used as training data (Feng et al., 2003). 

 
4.2.2 Data Encoding 

The input sample data set should include the processing time, processing order, demand and the machines’ capacity 
information of all jobs. The output schedule provides the processing order on each relevant machine for all the jobs. The 
processing time shows how long a specific process of a job will last on a machine, and the processing order shows the order that 
the job will move from one machine to another (Feng et al., 2003). The branching tree method is employed to encode this type 
of process. To improve the encoding process, the hybrid bit encoding method is employed. The hybrid bit encoding method 
represents the processing time and processing order simultaneously with a single bit. The details are as follows (Feng et al., 
2003): 

1. The format of sample data: Input: X (X1, X2, X3, X4, ..., X4n), where X4n-3 is the processing order of the ith job and X4n-2  
is the processing time of the ith job. Also X4n-1 is the demand information of the ith job and   X4n is the machine capacity of 
the ith job will be processed on, here i {1, 2, ..., n}, n is the number of jobs. 

2. Sample encoding: Assume that a job shop is equipped with three machines to work on 2 jobs. The processing order, 
processing time and demand information for each job are shown in Table 1, and the capacities for each machine are shown 
in Table 2. 
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The input sample can be represented as (1 2 3, 3 3 2, 50 75 100, 50 75 100; 2 3 1, 3 1 4, 75 100 50, 50 75 100). The 
input X1 = 1 2 3 means job 1 is processed orderly on machine 1, 2 and 3. X2 = 3 3 2 means the processing time for job 1 on 
machine 1, 2 and 3.  X3 = 50 75 100 states demand for job 1 on machine 1, 2 and 3. X4 =50 75 100 shows the capacities of 
machine 1, 2 and 3. The inputs for X5, X6, X7 and X8 show the processing order, processing time, demand and machine 
capacities for job 2. The output from a trained MLP is able to provide the required information regarding what load should 
be scheduled for each of the three machines for finite capacity scheduling. So, the output  Yj (Y1, Y2, ..., Ym) shows the 
processing order of a waiting job on machine j (j = 1, 2, ..., m). 

 
 Table 1. Processing order, processing time and demand                Table 2. Capacity information for three machines 
                         information for two jobs  
        

 
 
 
 
 
     

 
                                                                          
4.2.3 MLP Architecture And Implementation 
 

Parameters:  The relevant parameters used in the FCS algorithm are as follows (Feng et al., 2003): 
: learning rate, >0 
: momentum parameter, 0<  <1 
: oscillation parameter, 0<  <1 
: valve value 

w: matrix of weight values 
w(t): weight value between neurons after the tth change 
Δw: weight change 
y: ideal target output of object tier layer 
yi: ideal target output of unit i 

: real target output 

: real target output of unit i 
z: real output of hidden layer 
zi:: real output of unit i in hidden layer 
n: the number of neurons in the input layer 
h: the number of neurons in the hidden layer 
m: the number of neurons in the output layer 
s: training sample assemble 

: real constant 
(*): monotonically increasing real function that is independent of the mapping f(*) which it approaches  
: a positive constant 

gi(*): real continuous function 
 

System Structure:  The MLP has an input layer, a hidden layer and an output layer to implement the mapping y = f(x). 
The system structure is shown as Figure 3.  

 
In this structure, the input unit transfer each component of the input vector x to the computing units in the hidden layer. 

The disposal units in the hidden layer implement the following input/output relation (Feng et al., 2003): 

 Zk = ,    k = 1, 2, ..., h.          ...                                      (4) 

 
Here, Zk (6) is computed by (6), 

Jobs Processing Order-Processing Time (Day)-Demand 

J1 1-3-50 2-3-75 3-2-100 

J2 2-3-75 3-1-100 1-4-50 

Machine Capacity (Pieces/Day) 
M1 50 
M2 75 
M3 100 
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Zk =            ...                                              (5) 

 
 

Figure 3. MLP neural network 
  
 
where Wkj is the synaptic weight between the hidden unit k and the input unit j, k is the value of disposal unit k.  

The m output unites are provided with the following input/output function: 

 = ,    i = 1, 2, ..., m            ...                                             (6) 

generally, 
gi (zk) = WikZk               ...                                (7) 
 
(1) Learning Algorithm 

The error function is shown as below, 

e(w) = f(xk) – 2             ...                                               (8) 

 
For the output layer there is an equation shown by (10), 

) ]    i = 1, 2, ..., m; k = 1, 2, ..., h        ...                                 (9) 

where r is the sequence number of the sample in the sample assemble, the output of component i of the ideal value of 

the sample,  the output of component i of the actual value of sample r, and the output of component k of the actual 
hidden layer value of sample r (Haykin, 1999). For the hidden layer, 

,  

j = 1, 2, ..., n+1; wk(n+1)(t) = k(t),  =1           ...                   (10) 
 
 
 
(2) Strategy for Adjusting the Weights 
w(t) + (w(t*) – w(t))                                   
if w(t+1) = w(t*)              ...                  (11) 

w(t+1) = w(t) - ,           ...                               (12)            

where  is a random number (0,1).                                        
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5.  AN INDUSTRIAL IMPLEMENTATION 
 
5.1 The Data 
The data used in this study is gained from an international automotive firm’s Istanbul factory in Turkey. Here, six 
components from hood will be taken into consideration and the finite capacity scheduling of this six jobs on five machines 
will be the desired result. These five machines are as below: 

M1: Press of 60 tons for edge cutting, 
M2: Hydraulic press of 60 tons for U bending, 
M3: Eccentric press of 80 tons for notching, 
M4: Press of 80 tones for notching, 
M5: Eccentric press of 200 tones for sheet forming, 
There are some factors to be considered before scheduling. The first of these is the processing order defined for jobs. 

It means that the state of each job will be processed on which machine (from technological restrictions). The processing 
orders of the six jobs are shown in Table 3.  The another factor should be considered is the processing time, as seen from 
Table 4. 
 
    Table 3. The processing orders of the six jobs                      Table 4. The processing times of the six jobs on each machine 
 

JOB PROCESSING ORDER 
J1 M1 M2 M3 M4 M5 
J2 M2 M3 M1 M4 M5 
J3 M5 M4 M1 M3 M2 
J4 M2 M3 M4 M5 M1 
J5 M4 M1 M5 M2 M3 
J6 M3 M5 M2 M1 M4 

               
 

Also, the machine capacities and the demand for the jobs are factors to be considered in finite scheduling. The 
information about these factors shown in Table 5 and 6. As known, the existing capacity and demand must be evaluated for 
FCS. In this study, the machine capacities are evaluated by assuming that each product will use each source at the same 
amount.  
 

Table 5. Capacities for each machine                                             Table 6. Demand for each job 
 

                     
                     
 
 
 
 
 
 

 
5.2 The ANN Model for Implementation 
There is a finite scheduling problem with six jobs and five machines to find optimal processing orders for each job on each 
machine by considering capacity constraints. There are the meanings of the symbols that take part in the inputs and outputs 
of the ANN below: 
 
Input Layer: 

Processing Orders of the Jobs:  {J1, J2, J3, J4, J5, J6} 
Processing Times to Process the Jobs on the Machines: {MJ1, MJ2, MJ3, MJ4, MJ5, MJ6} 
Demand for the Jobs: {D1, D2, D3, D4, D5, D6} 
Capacities of the Machines: {C1, C2, C3, C4, C5} 

 
Output Layer: 

The Processing Orders for Each Machine After Finite Capacity Scheduling: {M1, M2, M3, M4, M5} 

  PROCESSING TIME (DAY) 
JOB M1 M2 M3 M4 M5 

J1 3 3 2 4 2 
J2 4 3 1 2 2 
J3 1 1 2 3 4 
J4 3 2 4 3 1 
J5 2 3 4 5 1 
J6 6 2 1 1 4 

JOB DEMAND (PIECES) 
J1 200 
J2 300 
J3 325 
J4 150 
J5 75 
J6 250 

MACHINE CAPACITY (PIECES/DAY) 
M1 300 
M2 300 
M3 300 
M4 300 
M5 200 
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The tangent hyperbolic function is used in the hidden layers of the modeled ANN. The output layer has linear activation 
function. The network has 23 inputs, 2 hidden layers with 12 neurons and 5 outputs. The mathematical function that the 
network has offered can be obtained as below. 
 
The mathematical function that the network has offered: 

The mathematical function that obtained has shown by (14), (15) and (16). Here x means input, u means the output of 
the first layer, z means the output of the second layer and z means the last output. Furthermore w1, w2, w3 are the weight 
matrixes of the first, second and output layers’, and  b1, b2, b3 are the threshold matrixes of the first, second and output 
layers’. 

u =             ...                                (13) 

z =  

   =           ...                  (14) 

 
y = w3  z + b3 

y  =           ...                  (15) 

 
Figure 4 gives the training graph of the network developed. 

 

 
Figure 4. The training graph of developed ANN model 

 
The training data were applied to MLP in Matlab 6.0 Neural Network Toolbox. To structure the ANN model for the 

FCS problem the parameters below are used: 
 

Maximum training number  : 20000 
Sample number   : 20 
Training coefficient   : 0.1 
Minimum error   : 0 
Network structure   : 23-12-12-5 
Training number   : 14 
Training time   : 15 s 
As a result, the processing orders of the jobs on machines are obtained by using ANNs in FCS: 
M1: J1, J4, J3, J6, J5, J2; 
M2: J2, J3, J1, J5, J4, J6; 
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M3: J5, J3, J1, J6, J2, J4; 
M4: J4, J6, J1, J3, J2, J5; 
M5: J6, J5, J4, J2, J3, J1. 

where the term M1: J1, J4, J3, J6, J5, J2 means that machine 1 is firstly occupied by job 1, then jobs 4, 3, 6, 5, 2.  
 
6.  CONCLUSION 

 
In this paper, the usage of ANNs is examined to realize finite capacity planning. The ANNs are used in finite capacity 
planning to determine an effective planning strategy.  

The results obtained from the network are as an optimal order for FCS. The multi layer perceptron neural networks are 
used and the weights for each layer obtained by the least squares method in this study. There is a finite scheduling problem 
with six jobs and five machines to find optimal processing orders for each job on each machine by considering capacity 
constraints. The tangent hyperbolic function is used in the hidden layers of the modeled ANN. The output layer has linear 
activation function. The network has 23 inputs, 2 hidden layers with 12 neurons and 5 outputs. As a result, the processing 
orders of the six jobs and five machines are obtained by using multi layer perceptron neural networks in FCS. The 
implementation of this study can be adapted to each sector. 

As a further work, the inputs applied for the neural network can be expanded for more detailed FCS procedures. For 
example; some additional inputs can be used as waiting times, tardiness and earliness, transportation, etc., and also it can be 
assumed that all jobs use different amount of all sources.       
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