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This study examines the relative efficiency and the finite sample breakdown point of eight different estimators in Phase I of 

the control charting process when outliers occur in non-normal data. The performance of control charts based on these 

estimators is investigated by using average run lengths under four disturbances in three skewed distributions. The 

simulation result shows that control charts based on the modified biweight A estimator (D7) and the median of the absolute 

deviations (MAD) from the median are more robust than those in highly skewed distributions. In practice, in addition to 

robustness, computational simplicity is another important factor for practitioners when they are choosing control charts. It 

is thus suggested the control chart based on the MAD should be considered first due to its simplicity and robustness. 
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1. INTRODUCTION 
 

Control charts are constructed generally based on a normality assumption. However, Hogg (1974) argued that a few 

theoretical statisticians question the normality principle, and many applied statisticians have had qualms about the influence 

of basic assumptions. Janacek and Miekle (1997) also expressed that it is difficult to discover practical situations that the 

assumption is easily fulfilled, and non-normality situations are more observed in practice (Kao, 2012a; 2012b). 

Outliers are an important issue in statistical inference. Many studies have discussed the causes of outliers, such as 

mistakes in the data input, unusual values due to sporadic assignable causes, or atypical observations that subsequently 

result in a small proportion of the original distribution being contaminated by other distributions (Abu-Shawiesh and 

Abdullah, 1999, Beckman and Cook, 1983; Hampel et al., 1986; Rocke, 1992). Hence, Outliers need to be specially borne 

in mind since a small departure from the assumed distribution can give rise to serious negative impacts on the efficiency of 

classical estimators. Outliers are also tricky to practitioners engaged in monitoring a process as they will both increase the 

variability and decrease the monitoring effectiveness of control charts (Riaz, 2008; Rocke, 1992). 

Many control charts have used different estimators to strengthen their robustness in detecting outliers, including 

trimmed mean and standard deviation (Langenberg and Iglewicz, 1986), inter-quartile range (IR) (Rocke, 1989, 1992), 

Hodges-Lehmann and Shamos-Bickel-Lehmann’s estimators (Abu-Shawiesh and Abdullah, 1999), Downton’s estimators 

(Abu-Shawiesh and Abdullah, 2000), median absolute deviation (Abu-Shawiesh, 2009; Wu et al., 2002), Q estimators 

(Riaz, 2008), biweight A estimators (Tatum, 1997; Lax, 1985), M-estimate (Shahriari, Maddahi, and Shokouhi, 2009), 

screening method (Zwetsloot et al., 2015; Schoonhoven and Does, 2012), generalized likelihood ratio (GLR) test statistics 

(Zhang et al., 2017), randomness test (Shper and Adler, 2017), and coefficient of variation (Dawod et al., 2018). 

Rocke (1989, 1992) showed that the effectiveness of the range chart is not good in detecting outliers and argued that 

an IR chart is more robust. Langenberg and Iglewicz (1986) proposed a trimmed range chart based on a trimmed range, 

which used a 25% trimmed mean of the subgroup ranges. Riaz (2008) proposed a Q chart that is formed by releasing the 

integer restriction of IR (Rocke, 1989, 1992). Wu et al. (2002) constructed Shewhart 𝑋̅ control charts in accordance with 

seven estimators, including three proposed absolute deviations to the median.  

Lax (1985) indicated that the biweight A estimator is most robust compared to absolute deviations from the median 

and trimmed standard deviation. Tatum (1997) first removed the median value of each subsample from that subsample, 

mailto:t80132@cc.kyu.edu.tw


Ho et al. Robust Dispersion Chart 

 

373 

 

yielded a median-centered subsample, and applied the biweight A estimator to the pooled residual. Compared to other 

control charts based on various estimators, control charts using the modified biweight A estimator show superior robustness 

in four types of disturbances. Zwetsloot et al. (2015) and Schoonhoven and Does (2012) pointed out that control charts 

based on estimators with screening estimators are more robust than various robust dispersion estimators. Shahriari, 

Maddahi, and Shokouhi (2009) showed that a standard deviation control chart using M-estimate has better robustness than 

other estimators. All of the aforementioned studies analyze the efficiency of the estimators or the robustness of control 

charts in the normality assumption. Zhang et al. (2017) argued that a chart with the GLR statistics is able to detect the 

decrease in variability effectively. Shper and Adler (2017) showed that the order of points or data randomness could 

seriously impact the performance of phase I control charts performance. Therefore, the test (average of the moving range to 

standard deviation) is proposed to evaluate the randomness. Dawod et al. (2018) pointed out estimators based on the 

coefficient of variation (CV) have good efficiencies when the process mean or standard deviation is not constant. 

A few studies discussed the robustness of control charts in non-normality. Abu-Shawiesh and Abdullah (1999, 2000) 

and Abu-Shawiesh (2009) investigated the shift detection effectiveness of control charts based on Hodges-Lehmann and 

Shamos-Bickle-Lehmann, Downton’s estimator, and sample median and median absolute deviation, respectively in four 

distributions–uniform, normal, double exponential, and Cauthy, Nazir, Riaz, and Does (2014) discussed properties of the 

design structure of cumulative sum (CUSUM) control charts based on existing estimators in students’ t, logistic, and 

gamma distributions. Human et al. (2011) investigated the in-control robustness of an exponentially weighted moving 

average (EWMA) in accordance with the sample standard deviation and the moving range in these distributions–student’s t, 

uniform, right triangular, gamma, symmetric bi-modal, and asymmetric bi-modal as well as the contaminated normal. 

Maravelakis, Panaretos, and Psarakis (2005) tested the detection effectiveness of EWMA charts based on five schemes in 

students’ t, gamma, and normal distributions.  

The majority of the aforementioned studies investigate the influence of symmetric non-normal or contaminated 

normal distributions on control charts, and a gamma distribution is only considered to be asymmetric non-normal. Tatum 

(1997) thought that four types of disturbances could represent outlier statuses, diffuse symmetric, diffuse asymmetric 

variance, localized variance, and diffuse mean disturbances. However, all of the studies check the robustness of estimators 

in process shifts in the non-normal processes, not considering Tatum’s (1997) disturbances.  

Because of the lack of complete disturbance investigation in existing estimators, the aim of this study is to examine 

the efficiency of eight existing estimators under four disturbances in skewed distributions and to study the robustness 

performance of dispersion control charts using these estimators. Developing new control charts with new estimators is not 

the focus of this study. The remainder of this paper is organized as follows. Section 2 describes the estimators of process 

dispersion. Section 3 elaborates the evaluation of estimators in different circumstances. Section 4 analyzes the performance 

of Phase II control charts, and the last section concludes the findings of this study. 

 

2. DESCRIPTION OF ESTIMATORS OF PROCESS DISPERSION 

 

Eight estimators will be investigated in skewed distributions. Assume that the 𝑋𝑖𝑗 (𝑖 = 1, ⋯ , 𝑚; 𝑗 = 1, ⋯ , 𝑛) is the Phase I 

data with the subgroup size n and the number of subgroups m. 

 

1) Modified biweight A estimator with c=7 (D7)  

 

The modified biweight A estimator, which is robust to estimate the process standard deviation, was proposed by Tatum 

(1997). Define the residual as 𝑌𝑖𝑗 = 𝑋𝑖𝑗 − 𝑋̃𝑖. Here 𝑋̃𝑖 is the sample median. If n is odd, subtracting out the median will 

result in one zero value, which is dropped. When n is even, the total number of median-centered subsample values is 𝑚́ =
𝑚𝑛, and 𝑚́ = (𝑛 − 1)𝑚 when n is odd. Tatum’s (1997) estimator can be written as: 

 

 

where c is a tuning constant, 𝑢𝑖𝑗 = ℎ𝑖𝑌𝑖𝑗 (𝑐𝑀̃)⁄  and 𝑀̃ is the median of all residuals.  

Here ℎ𝑖 = {

1, 𝐸𝑖 < 4.5
𝐸𝑖 − 3.5,

𝑐, 𝐸𝑖 > 7.5
4.5 < 𝐸𝑖 ≤ 7.5, and 𝐸𝑖 = 𝐼𝑅𝑖  𝑀̃⁄ . 𝐼𝑅𝑖 , is the inter-quartile range of ith subgroup. An unbiased 

estimator of σ can be shown as 𝜎̂𝐼,1 = 𝑆𝑐
∗ 𝑑∗⁄ . 

𝑆𝑐
∗ =

𝑛𝑚́

(𝑚́−1)1 2⁄

(∑ ∑
𝑗:|𝑢𝑖𝑗|<1

𝑚
𝑖=1 𝑌𝑖𝑗

2(1−𝑢𝑖𝑗
2)

4
)

1 2⁄

|∑ ∑
𝑗:|𝑢𝑖𝑗|<1

𝑚
𝑖=1 (1−𝑢𝑖𝑗

2)(1−5𝑢𝑖𝑗
2)|

,  (1) 
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2) Inter-quartile range (IR) 

 

Let the ( )jiX  be the jth order observation in the subgroup i. According to Rocke (1989), the IR of the ith subgroup is 𝐼𝑅𝑖 =

𝑋𝑖(𝑢)−𝑋𝑖(𝑙), where 𝑙 = [𝑛 4⁄ ] + 1, and 𝑢 = 𝑛 − 𝑙 + 1. Here [∙] is the floor function. That is, [∙], is the greatest integer that is 

smaller than or equal to x.   

The mean of the sample interquartile ranges is expressed as  

 

 

Hence, the unbiased estimator (𝜎̂𝐼,2) of σ is equal to 𝐼𝑅̅̅ ̅ 𝑑2𝐼𝑅⁄ . 

 

3) 25% trimmed average of the IR (IR25) 

 

Rocke (1989) also considered the other IR version, the 25% trimmed average of the IR. The version is denoted as IR25. 

The mean-sample 25% trimmed average of the IR is given by. 

 

 

Therefore, IR25 can be written as 𝜎̂𝐼,3 = 𝐼𝑅̅̅ ̅
25 𝑑2𝐼𝑅25⁄ , where 𝑘 = [0.25𝑚] and [∙] is the floor function. 

 

4) Median of the absolute deviations from the median (MAD) 

 

Hampel (1974) proposed a robust estimator based on the median of the absolute deviations from the median. The estimator 

is defined as MAD𝑖 = 𝑀𝑒𝑑𝑖𝑎𝑛|𝑋𝑖𝑗 − 𝑋̃𝑖|. The mean MAD is given by 

 

 

Therefore, the unbiased estimator (𝜎̂𝐼,4) of σ is equal to 𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅ 𝑑2𝑀𝐴𝐷⁄ . 

 

5) Gini’s estimator (Gini) 

 

The estimator was proposed by Gini and is the same as the Downton estimator (Downton, 1966) and the probability-

weighted moment's estimator (Muhammad et al., 1993). The estimator is written as 𝐺𝑖 =
∑ ∑ |𝑋𝑖𝑗 − 𝑋𝑖𝑙| (𝑛 (𝑛 − 1) 2⁄ )⁄𝑛

𝑙=𝑗+1
𝑛−1
𝑗=1 . The unbiased estimator of σ can be shown as 𝜎̂𝐼,5 = 𝐺̅ 𝑑2𝐺𝑖𝑛𝑖⁄ . 

 

 

6) Range (R) 

 

Define the sample range as 𝑅𝑖 = 𝑋𝑖(𝑛)−𝑋𝑖(1) and the mean-sample range is  

 

 

The unbiased estimator of σ can be expressed as 𝜎̂𝐼,6 = 𝑅̅ 𝑑2⁄ . 

 

7) Sample standard deviation (S) 

 

The estimator based on the mean-sample standard deviation can be shown as: 

𝐼𝑅̅̅ ̅ = ∑ 𝐼𝑅𝑖

𝑚

𝑖=1

𝑚⁄  (2) 

𝐼𝑅̅̅ ̅
25 = ∑ 𝐼𝑅𝑖

𝑚−𝑘
𝑖=𝑘+1 [𝑚 2⁄ ]⁄ . (3) 

𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑀𝐴𝐷𝑖

𝑚

𝑖=1

𝑚⁄ . (4) 

Here 𝐺̅ = ∑ 𝐺𝑖
𝑚
𝑖=1 𝑚⁄ . 

 

(5) 

𝑅̅ = ∑ 𝑅𝑖
𝑚
𝑖=1 𝑚⁄ .

 

(6) 



Ho et al. Robust Dispersion Chart 

 

375 

 

 

where 𝑆𝑖 = [∑ (𝑋𝑖𝑗 − 𝑋̅𝑖)
2𝑛

𝑗=1 (𝑛 − 1)⁄ ]

1

2
 and 𝑋̅𝑖  is the average of the ith subgroup. The unbiased estimator of σ can be 

expressed as 𝜎̂𝐼,7 = 𝑆̅ 𝑐4⁄ . 

 

8) Standard deviation of trimmed mean (TR) 

 

Define the ζ as the trimmed rates and ζ ∈ [0, 1 2⁄ ). The variance of the trimmed mean is expressed as: 

 

𝑇𝑅𝑉𝑖 =
1

𝑛−2𝑘
(∑ (𝑋(𝑗) − 𝑋̅τ)

2
+ 𝑘(𝑋(𝑘) − 𝑋̅τ)

2𝑛−𝑘
𝑗=𝑘+1 + 𝑘(𝑋(𝑛−𝑘+1) − 𝑋̅τ)

2
),  

 

where 𝑘 = [ζ(𝑛 − 1)] and [𝑋] is the floor function. Here the ζ is fixed as 0.25. 

Here 𝑋̅ζ = ∑ 𝑋(𝑗)
𝑛−𝑘
𝑗=𝑘+1 (𝑛 − 2𝑘)⁄ . Therefore, the standard deviation of trimmed mean is 𝑇𝑅𝑆𝑖 =√𝑇𝑅𝑉𝑖 . The unbiased 

estimator of σ can be expressed as 𝜎̂𝐼,8 = 𝑇𝑅𝑆̅̅ ̅̅ ̅ 𝑑2𝑇𝑅⁄ , where 

 

 

Tatum (1997) expressed that when no disturbances exist, the estimator with c = 7 can lose some efficiency but can 

increase efficiency when disturbances are present. Hence, the c is given as 7 in this study.  

The values, 𝑑∗, 𝑑2𝐼𝑅, 𝑑2𝐼𝑅25, 𝑑2𝑀𝐴𝐷 , 𝑑2𝐺𝑖𝑛𝑖 , 𝑑2, 𝑐4, and 𝑑2𝑇𝑅, are calculated from 106 simulations for each grade of 

skewness (𝛼3) by Mathematica 7.0 software when the sample sizes are considered as 5 and 10. 

 

3. EVALUATION OF ESTIMATORS 

 

The efficiency of eight estimators will be investigated in four types of disturbances and three types of distributions, beta 

(BT), inverse Gaussian (IG), and Weibull (WB). The BT is negatively skewed, and the remainders are positively-skewed. 

Tatum (1997) pointed out that any observation that is equally likely upset is called a diffuse disturbance; all members 

of a particular subsample or subsamples are perturbed is a localized disturbance. This study considers the data scenarios by 

following Tatum’s four types of disturbances. These disturbances are depicted as follows (Tatum, 1997). 

 

3.1 Four Types of Disturbances 

 

1) A model for diffuse symmetric disturbances in which each observation has a 95% probability of being generated 

from the θ(α,β) distribution with mean (μ) and standard deviation (σ) and a remaining 5% probability of 

being generated from θ(τα,ωβ) distribution with μ and rσ. The θ(α,β) is the beta, inverse Gaussian, or 

Weibull distributions. Here r = 1, 1.25, ⋯ , 2 for beta distribution and r = 1, 2, ⋯ , 5 for the remainders. Since the 

beta random variates are limited between 0 and 1, the BT’s standard deviation cannot arbitrarily shift like the three 

positively skewed distributions; and so the r scales of both skewed kinds are different. For example, when 𝛼3 =
−1, the μ = 0.787 and σ = 0.171 for BT(3.7, 1). When the mean of contaminated data keeps the same values 

as μ, it is impossible to change drastically for rσ. The r-value cannot be larger than 2.92 because the maximum 

of contaminated σ is 0.5 if β is fixed as 1.  

2) A model for diffuse asymmetric variance disturbances in which each observation is generated from the θ(α,β) 

distribution with μ and σ and has a 5% probability of having a multiple of a gamma (τα,ωβ) variable with 

μ and γσ added to it, with r = 1, 1.25, ⋯ , 2 for beta distribution and r = 1, 2, ⋯ , 5 for the remainders. 

3) A model for localized variance disturbances in which all observations in two subgroups are generated from the 

θ(τα,ωβ) distribution with μ and rσ, and the remaining subgroups contain observations drawn from the 

θ(α,β ) distribution with μ  and σ . Here r = 1, 1.25, ⋯ , 2  for beta distribution and r = 1, 2, ⋯ , 5  for the 

remainders. 

4) A model for diffuse mean disturbances in which each observation has a 95% probability of being generated from 

the θ(α,β) distribution with μ and the σ and a remaining 5% probability of being generated from the θ(τα
,ωβ) distribution with δμ and σ. Here δ = 0.25, 1.25, ⋯ ,4.25 for beta distribution and δ = 0.5, 1.5, ⋯ , 4.5 

𝑆̅ = ∑ 𝑆𝑖
𝑚
𝑖=1 𝑚⁄ ,

 

(7) 

𝑇𝑅𝑆̅̅ ̅̅ ̅ = ∑ 𝑇𝑅𝑆𝑖
𝑚
𝑖=1 𝑚⁄ .

 

(8) 
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for the remainders. The δ scales of BT are as different as those of the positively skewed distributions. The 

consideration of setting a different δ scale is similar to that of setting a different r scale. 

5) In Models1-3, the mean (𝜇𝑐) of θ(τα, ωβ) and of gamma (τα, ωβ) is the same as the mean of θ(α, β), but their 

standard deviation (σ𝑐) is the r times of σ. For Model4, two kinds of distributions have the same σ, but 𝜇𝑐 = δμ. 

To generate the contaminating distributions of Models 1-4, the scale and shape parameters of a skewed distribution 

have to be reset after calculating the value of τ and ω. Given the α, β, μ, and σ, the τ and ω can be determined by 

σ𝑐 = rσ or 𝜇𝑐 = 𝜇. 

 
3.2 Relative Efficiency of Estimators 

 

Park and Wang (2020) point out that relative efficiency (RE) is one kind of good measurement for evaluating the 

performance of unbiased estimators. RE is defined as  

 

 

where 𝜎̂𝐼,1 is a reference estimator and is fixed as D7. For 𝑖 = 2, ⋯ ,8, 𝜎̂𝐼,𝑖 , are the other estimators in Section2. RE is 

evaluated by using 106 simulation runs. 

Figures 1-3 show the values (%) of RE (REs) of the eight estimators for BT, IG, and WB when n=5. They clearly 

show REs of D7, IR, IR25, and MAD are close regardless of the distributions and the disturbances, whereas the REs of 

Gini, R, S, and TR are near. The study defines the prior four estimators as the first type of index; the remainders are the 

second type of index. From the results presented in these Figures, a number of observations are made: 

 

1) Diffuse symmetric disturbances 

i. The REs of the first type of estimators are lower than those of the second type when r ≤ 2. On the contrary, the 

first type significantly has higher REs than the second type when r > 2. The result testifies that the second type is 

easy to be affected by diffuse symmetric disturbances. The first type adopts the trim-type method, so these 

estimators are more efficient. 

ii. In the negatively skewed distribution, Gini performs best; IR25 is the worst. It is worth noting that the second 

type performs better than the first type in the small values of r. The second type is merely suitable for small 

disturbances. 

iii. In positively skewed distributions, D7 has the best efficiency for 𝛼3 = 1 but is not best for 𝛼3 = 2.5, particularly 

for in WB. IR and MAD perform best in IG and WB for 𝛼3 = 2.5. The performance of TR is the worst among all 

of these estimators.  

2) Asymmetric variance disturbances 

i. When data is contaminated by the gamma distribution, the second type of index has superior efficiency in the 

disturbance compared to the first type of index. Because the mean of the gamma distribution is fixed as 0.64, the 

gamma (0.64τ, ωβ) is unlikely to generate very large data. It represents that the original distribution can be 

impacted slightly by this gamma distribution. For the first type of index, the estimators trim some smaller and 

larger data which could not be contaminated so could obtain less efficiency. The result points out the robust 

estimators that have been validated are not always robust. Their efficiency depends on contaminations that are 

generated by which type of distribution. 

ii. For all of the estimators, the performance of Gini is the best. Compared to the four first-type estimators, D7 has 

the best efficiency in BT but is almost the worst for 𝛼3 = 2.5 of WB. IR25 is almost the worst regardless of the 

distributions and disturbances.  

3) Localized variance disturbances 

i. In BT, Gini is the best; IR25 is the worst. 

ii. MAD is better in IG, particularly for 𝛼3 = 2.5. D7 is worst in the first type of index when 𝛼3 = 2.5, but it is best 

in WB when 𝛼3 = 1. Because the highly skewed IG and WB are easier to generate extreme values, particularly 

for WB, the weight (ℎ𝑗) of the contaminated subgroup will significantly increase. The result will result in the big 

values of D7 and increase its variance. TR performs worst in all of the positively skewed distributions. 

4) Diffuse mean disturbances 

i. The second type of index is better than the first when δ ≤ 2.25 in BT or when δ ≤ 1.5 in IG and WB, when 

δ>2.25 or δ > 1.5, the REs of the second type declined sharply.  

RE ((𝜎̂𝐼,𝑖|𝜎̂𝐼,1)) =
𝑉(𝜎̂𝐼,1)

𝑉(𝜎̂𝐼,𝑖)
,

 

(9) 
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ii. D7 is best in the first type of index in BT. MAD performs best for 𝛼3 = 1, followed by IR25 in IG; D7 is best in 

IG for 𝛼3 = 2.5. In WB, D7 has the best efficiency for 𝛼3 = 1; D7 performs better for δ ≥ 2.25  when 𝛼3 = 2.5. 

iii. Compared to all of the first-type estimators, D7 has the best efficiency for 𝛼3 = 1 but is not best for 𝛼3 = 2.5. 

MAD has better efficiency than D7 for 𝛼3 = 2.5. TR still obtains the worst performance for all of the positively 

skewed distributions. 

 

3.3 Finite Sample Breakdown Point (FBP) 

 

Hampel (1968) proposed the breakdown point and gave it an asymptotic definition. The term is the smallest amount of 

contamination that may make an estimator take on arbitrarily aberrant values (Huber and Ronchetti, 2009). To be of 

practical implementation, Donoho (1982), and Donoho and Huber (1983) coined a simplified version for finite samples.  

The IR is defined as the difference between the second smallest and the second-largest observations for 4 ≤ 𝑛 ≤ 7; 

the IR is the difference between the third smallest and the third largest for 8 ≤ 𝑛 ≤ 11. When 𝑛 ≤ 7, IR can resist the 

manipulation of a single observation. However, the manipulation of a second observation in the same subgroup can draw IR 

beyond any bound. Therefore, the FBP of IR is 1 (𝑚𝑛),⁄  for 𝑛 ≤ 7. For 8 ≤ 𝑛 ≤ 11, its FBP is 2 (𝑚𝑛)⁄ , because this 

estimator will not break down till a third observation in the same subsample is manipulated. Because TR uses the same 

25% trimmed method as IR in the same subgroup, the FBP of TR is the same as that of IR. 

When m = 30, n = 5, the 7 largest and the 7 smallest IR values are trimmed off for IR25. The manipulation of two 

observations in each of the eight subgroups can break down IR25. When k = 0.25m is an integer and 𝑛 ≤ 7, the FBP of 

IR25 is (2𝑘 − 1)/(𝑚𝑛) . When 8 ≤ 𝑛 ≤ 11 , the FBP is (3𝑘 − 1)/(𝑚𝑛) , because three observations are needed in k 

subgroups to break down the IR25.  

Because the modified biweight A uses the MAD of the subsample-centered observations, 𝑀̃.  D7 will receive the FBP 

of the 𝑀̃. The FBP of 𝑀̃, depends on the function of m and n. According to Tatum (1997), the FBP is 1 4⁄ − 1 (𝑚𝑛)⁄  when 

m and n are even; the point is  1 4⁄ + 1 4𝑛⁄ − 1 (𝑚𝑛),⁄  when m is even, and n is odd. The FBP of 𝐺̅, 𝑅̅, and  𝑆̅ are 0 since 

the use of just one data can be manipulated to drive these estimators beyond any given bound. 

Table 1 lists the FBP for m = 30 for D7, IR, IR25, MAD, Gini, R, S, and TR. The FBP of D7 and MAD is best, 

followed by IR25. 𝐺̅, 𝑅̅, and  𝑆̅ has the worst FBP. 
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(c) localized variance disturbances (d) diffuse mean disturbances 

Figure 1. RE of estimators (%) in beta distribution for n=5 

 

  
(a) diffuse symmetric disturbances (b) asymmetric variance disturbances 

  

  
(c) localized variance disturbances (d) diffuse mean disturbances 

Figure 2. RE of estimators (%) in inverse Gaussian distribution for n=5 
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(a) diffuse symmetric disturbances (b) asymmetric variance disturbances 

  

  
(c) localized variance disturbances (d) diffuse mean disturbances 

Figure 3. RE of estimators (%) in Weibull distribution for n=5 

 

Table 1. FBP of estimators (%) for m=30 

 

n D7 IR IR25 MAD Gini R S TR 

4 24.2 .8 10.8 24.2 .0 .0 .0 .8 

5 29.3 .7 8.7 29.3 .0 .0 .0 .7 

6 24.4 .6 7.2 24.4 .0 .0 .0 .6 

7 28.1 .5 6.2 28.1 .0 .0 .0 .5 

8 24.6 .8 8.3 24.6 .0 .0 .0 .8 

9 27.4 .7 7.4 27.4 .0 .0 .0 .7 

10 24.7 .7 6.7 24.7 .0 .0 .0 .7 
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4. PERFORMANCE OF PHASE II CONTROL CHARTS 

 

The effect of these estimators on the Phase II performance of standard deviation control charts will be evaluated in three 

kinds of skewed distributions. The same Phase I estimators (𝜎̂𝐼) are considered in constructing control charts, and the 

multipliers, r, and δ are fixed as 4 to simulate the contaminated cases. 

 

4.1 Simulation Procedure 

 

The study considers that the process standard deviation has different shifts when the process is out-of-control. The shift 

grade of process standard deviation is set as λσ, with λ= 0.6, 1, 1.2, and 1.4. Meanwhile, the robustness of control charts is 

examined in the four grades of skewness, 𝛼3 = −1.5, −1, 1, and 2.5. 

Let 𝐿𝐶𝐿̂ = 𝐿𝜎̂𝐼 and 𝑈𝐶𝐿̂ = 𝑈𝜎̂𝐼  be the lower control limits and upper control limits, respectively. L and U are the 

constants of the control chart. Meanwhile, define 𝜎̂𝑖
𝐼𝐼 as the value of the Phase II estimator on the ith subgroup and let 𝜎̂𝑖

𝐼𝐼 

estimate λσ. Denote that 𝐻𝑖  is the event that 𝜎̂𝑖
𝐼𝐼  falls outside the control limits. Therefore, the probability of 𝐻𝑖  can be 

expressed as 𝑃(𝐻𝑖|𝜎̂𝐼) = 𝑃(𝜎̂𝑖
𝐼𝐼 < 𝐿𝐶𝐿̂ 𝑜𝑟 𝜎̂𝑖

𝐼𝐼 > 𝑈𝐶𝐿̂ |𝜎̂𝐼). 

If the distribution of the run length (RL) is geometric with parameter 𝑃(𝐻𝑖|𝜎̂𝐼), the conditional ARL is written as 

E(RL|𝜎̂𝐼) =
1

𝑃(𝐻𝑖 |𝜎̂𝐼
)
. 

Compared with the conditional RL distribution, the unconditional RL distribution considers the random variability 

introduced into the charting through parameter estimation. The unconditional RL distribution can be acquired by averaging 

the conditional RL distribution of the reference sample ( 𝑋𝑖𝑗 ) over all possible parameter estimates.  Hence, the 

unconditional ARL and standard deviation of the run length (SDRL) can be expressed as (Schoonhoven and Does, 2012)  

 

 

and   

 

 

In order to acquire 𝑃(𝐻𝑖|𝜎̂𝐼), E(RL|𝜎̂𝐼) and sufficiently small estimated standard errors for ARL, the simulation runs 

are fixed as 106. The unconditional values of ARL and SDRL can be obtained by averaging these values. 

 

4.2 Simulation Results 

 

ARL and SDRL are determined in the in-control scenario (λ = 1) and in the out-of-control scenario (λ ≠ 1). Tables 2-6 list 

the ARL and SDRL values of BT, IG, and WB. Table 2 shows that ARL is close to their expected values of 370 when the 

process is in control. Tables 3-6 summarize the ARL of control charts in the four types of disturbances in the three 

distributions. From the results presented in these tables, a number of observations are made: 

 

1) Diffuse symmetric disturbances 

i. Regardless of sample sizes, skewed magnitudes, and the types of distributions, the control charts based on the 

first type of index are superior in ARL compared to those based on the second type of index. For the negatively 

skewed distribution, control charts based on MAD and D7 perform best. For the positively skewed distributions, 

the control chart based on D7 has the best performance, followed by IR or IR25. Compared to the studies of 

Tatum (1997) and Schoonhoven & Does (2012), the performance of D7 in skewed distributions is as well as in 

the normality assumption. Control charts based on Gini and R have the worst robustness. Barnett et al. (1967) 

argued that the Downton estimator owns high efficiency and robustness against outliers in a normal distribution. 

However, in this study, the ARL of control charts based on Gini is as easily affected by disturbances as those 

based on R and S.  

ii. Comparing 𝛼3 = −1 and 𝛼3 = −1.5, the out-of-control ARL (𝐴𝑅𝐿1) of all of the estimators in 𝛼3 = −1.5 is 

closer to the intended in-of-control ARL (𝐴𝑅𝐿0) than that in 𝛼3 = −1. The 𝐴𝑅𝐿1  to 𝐴𝑅𝐿0 in 𝛼3 = 2 is also 

ARL = E
1

𝑃(𝐻𝑖|𝜎̂
𝐼)

 (10) 

SDRL = √2E (
1

𝑝(𝐻𝑖 |𝜎̂𝐼
)
)

2

− (E (
1

𝑝(𝐻𝑖|𝜎̂𝐼
)
))

2

− E (
1

𝑝(𝐻𝑖 |𝜎̂𝐼
)
). (11) 
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nearer compared to that in 𝛼3 = 1. That is, they are easy to generate remarkably larger or smaller data in the 

highly skewed distributions. When the significant extreme values are contaminated, the changes of the values 

cannot be too drastic. In contrast to the highly skewed distributions, their values have a great change in the 

contaminated lowly-skewed distributions. Hence, the performances of control chars can be more affected by the 

disturbances in contaminated lowly skewed distributions.  

iii. Besides on WB, the value of ARL (ARLs) of the first type of index are larger than those of the second type of 

index when λ = 0.6. It is very clear that the ARLs of the control charts are significantly larger in WB than those 

in IG when 𝛼3 = 2 and λ = 0.6 . For example, for λ = 0.6 in Table 3, ARL ≥ 557  when n=10; ARL ≥ 830 

when n=5. Given 𝛼3  the contaminated WB(τα, ωβ)  has a larger standard deviation than the contaminated 

IG(τα, ωβ). It represents that the contaminated WB(τα, ωβ) will generate more extreme data than the others. 

Therefore, the tolerance of control limits will be broader after employing the contaminated data, so the control 

charts will result in larger ARLs in WB. 

iv. Tables 3-6 show that the control chart based on MAD has the best robustness than the others in the highly 

skewed distributions and the large variances. However, the performances of the control charts based on the first 

type of index are not significantly different in the lowly-skewed distributions.  

2) Asymmetric variance disturbances 

Regardless of the kinds of estimators, their ARLs are close to their 𝐴𝑅𝐿0. The control charts are slightly affected by 

the asymmetric variance disturbances, which are made from the gamma (0.64τ, ωβ) because the distribution is 

unlikely to generate extreme value. 

3) Localized variance disturbances 

i. For BT, the D7 chart performs best, followed by MAD. For the positively skewed distributions, the control 

charts based on IR or IR 25 have the best robustness. Nevertheless, the Gini, R, or S charts perform worst when 

a process presents localized variance disturbances.  

ii. The ARL performances of the estimators in the localized disturbances are similar to those in diffuse symmetric 

disturbances for the positively skewed distributions. Compared to Table 2, ARLs of D7 significantly increase in 

the disturbances when λ = 0.6; ARLs of D7 significantly decrease when λ ≥ 1. Regardless of sample sizes, the 

robustness of the control chart based on D7 is best among these control charts.  

4) Diffuse mean disturbances 

For the negatively skewed distribution, D7 and MAD chart performs best; for the positively skewed distributions, the 

robustness of the control chart based on D7 is best. But the Gini chart is as bad as R or S charts. Compared with Table 

2, Table 5 shows that the disturbances decline ARLs of control chars when λ = 0.6; ARLs increase when λ ≥ 1. 

Particularly, the phenomenon is very obvious in WB. 
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Table 2. ARL and SDRL of control charts when uncontaminated data in Phase I for m=30 

 
           n=5 n=10 

  ARL SDARL ARL SDARL 

 λ = 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 

𝛼3 = −1.5 

 D7 696 369 103 33.6 693 406 126 35.6 670 369 66.6 19.9 688 392 70.8 20.2 
 IR 565 370 112 41.5 578 410 141 48.6 280 369 88.0 29.6 300 386 101 31.8 
 IR25 595 371 124 44.9 642 411 163 55.0 279 370 96.2 30.5 327 394 110 33.8 
BT MAD 681 370 117 39.9 716 401 137 43.1 429 370 88.4 27.7 486 391 94.4 26.5 
 Gini 547 370 75.7 24.0 608 410 92.2 27.3 188 371 60.3 15.7 220 385 69.5 16.9 
 R 568 371 79.5 24.8 635 390 98.3 27.4 209 370 76.2 21.2 257 383 87.9 23.5 
 S 528 369 78.2 24.3 576 391 90.5 26.9 183 370 61.7 14.8 225 382 73.0 16.7 
 TR 561 372 81.9 24.9 635 397 92.1 28.0 221 371 73.5 20.7 261 382 83.0 22.3 

𝛼3 = −1.0 

 D7 551 369 90.5 22.5 557 410 111 24.2 420 370 42.9 10.0 416 406 50.3 9.9 
 IR 457 370 90.5 24.7 477 412 133 33.2 166 370 63.2 14.6 173 408 83.3 16.0 
 IR25 462 371 104 28.1 479 415 164 37.3 161 371 65.7 14.9 185 397 87.2 17.3 
BT MAD 555 369 96.7 26.4 564 417 121 28.8 234 371 64.6 15.9 266 397 71.4 16.0 
 Gini 326 371 60.8 14.6 351 420 87.7 19.3 73.5 370 41.7 8.2 83.0 410 57.7 8.8 
 R 345 369 69.7 16.4 360 425 119 27.1 80.1 369 68.9 14.4 90.7 419 129 36.2 
 S 314 372 63.7 13.4 333 416 94.2 19.0 71.5 370 39.0 6.9 79.9 416 53.0 8.1 
 TR 322 371 65.4 14.3 348 423 103 19.2 106 370 47.3 8.9 122 395 64.3 9.8 

𝛼3 = 1.0 

 D7 435 370 117 43.2 445 403 143 53.7 325 368 75.6 23.6 331 400 95.6 26.7 

 IR 415 370 137 58.8 428 408 179 76.4 137 371 108 34.8 153 390 133 43.3 

 IR25 416 369 146 64.0 423 414 203 88.8 136 367 112 37.0 151 381 146 46.3 
IG MAD 420 369 148 67.6 438 410 196 87.9 144 369 117 41.1 158 381 148 51.0 

 Gini 189 368 96.2 32.8 206 384 114 36.4 39.7 370 70.5 18.2 45.4 385 86.5 19.9 

 R 182 369 109 35.5 203 382 132 41.2 40.6 371 99.5 28.2 45.9 383 112 31.4 
 S 178 371 107 35.7 194 395 128 41.0 38.9 372 82.7 22.9 43.0 382 93.6 24.6 

 TR 181 370 119 39.7 194 375 139 45.8 72.3 370 89.4 27.3 79.3 380 107 29.7 

 D7 503 368 101 40.9 503 410 122 49.2 381 369 72.1 26.9 377 396 88.8 31.6 

 IR 471 369 115 48.9 485 415 150 60.8 181 368 90.9 33.4 199 387 110 40.0 

WB IR25 470 370 125 50.3 479 422 165 65.3 173 370 98.8 36.2 209 392 148 65.4 

 MAD 487 372 141 68.2 511 420 183 83.0 194 370 124 57.4 196 390 119 43.1 
 Gini 263 371 63.6 20.2 281 388 76.4 22.0 66.1 368 44.1 12.1 73.2 387 52.3 12.7 

 R 248 371 63.8 22.0 270 378 76.2 23.4 65.2 371 53.3 15.3 72.4 380 48.5 12.0 

 S 258 369 65.8 20.9 273 390 75.1 22.2 62.4 369 43.9 12.1 75.3 380 56.9 15.9 
 TR 259 370 64.0 21.4 281 387 74.1 22.4 103 369 63.6 20.4 115 381 71.5 21.5 

𝛼3 = 2 

 D7 572 371 165 89.2 619 409 202 103 505 368 138 68.0 524 401 167 81.2 
 IR 526 369 166 82.9 544 397 200 100 283 369 139 61.5 311 386 152 69.1 

 IR25 549 370 175 91.3 593 324 217 112 275 368 146 67.5 315 385 169 77.5 

IG MAD 583 372 188 110 596 405 216 129 308 370 158 86.9 340 390 176 95.6 
 Gini 380 368 120 49.5 403 387 136 54.0 142 368 94.8 33.3 179 381 104 36.5 

 R 384 370 135 55.2 428 386 149 62.9 146 369 120 45.0 195 382 128 47.5 

 S 376 371 129 53.0 436 385 145 58.4 136 370 110 39.3 175 387 116 42.0 
 TR 365 369 134 56.3 429 390 151 62.1 205 370 120 49.2 255 380 134 52.5 

 D7 1020 369 144 78.7 1059 410 169 88.1 1269 369 117 57.8 1327 405 128 59.6 

 IR 809 368 137 73.4 848 402 160 82.4 652 369 121 60.0 738 380 131 61.0 

WB IR25 821 368 146 74.0 889 400 169 84.9 656 368 122 59.2 1203 381 143 69.8 

 MAD 1053 370 167 93.6 1097 396 189 99.4 1095 370 137 72.4 1051 380 136 63.1 

 Gini 1232 369 82.7 32.8 1410 387 91.3 34.5 800 369 68.1 25.6 1059 382 72.3 26.2 
 R 1279 370 86.8 34.9 1441 386 94.1 36.8 870 370 74.7 27.7 1082 384 72.1 24.5 

 S 1184 369 85.0 34.2 1362 382 93.3 37.2 816 369 67.1 23.5 1229 380 78.6 27.9 

 TR 1209 368 83.6 34.2 1433 382 90.9 35.2 699 368 91.9 37.6 850 382 95.7 39.3 
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Table 3. ARL and SDRL of control charts when diffuse symmetric disturbances are present when m = 30 

 
  n=5 n=10 

  ARL                                   SDRL ARL                                   SDRL 

 λ = 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 

𝛼3 = −1.5 

 D7 685 381 109 35.8 703 420 131 38.8 646 379 69.0 19.8 668 423 74.5 20.2 
 IR 545 377 126 45.6 565 421 156 52.0 257 373 103 31.9 292 404 114 35.3 
 IR25 561 386 137 48.8 603 430 170 60.0 264 391 100 32.4 294 405 118 36.1 
BT MAD 691 377 122 42.3 704 434 140 43.4 411 371 96.5 27.9 482 390 97.9 27.3 
 Gini 494 396 96.1 27.0 555 433 112 30.7 147 394 76.0 20.1 178 405 86.8 22.7 
 R 510 399 99.2 28.7 564 425 113 32.8 158 375 97.4 27.5 199 399 109 32.3 
 S 460 387 95.1 28.0 535 413 112 30.7 143 398 82.7 19.8 173 404 95.5 24.2 
 TR 487 404 101 29.4 562 428 116 32.4 197 378 79.4 23.5 235 396 89.4 24.8 

𝛼3 = −1.0 

 D7 544 399 97.9 25.2 542 463 122 27.1 381 400 48.2 10.4 389 442 56.9 10.8 
 IR 441 408 109 28.7 460 463 152 36.3 141 411 76.3 16.2 150 433 94.8 17.8 
 IR25 449 404 124 31.4 457 494 181 42.9 143 390 80.9 17.8 160 432 104 20.4 
BT MAD 531 408 109 29.2 555 466 136 30.8 213 396 70.3 16.7 231 424 76.0 16.5 
 Gini 289 442 91.3 20.0 308 502 124 26.1 54.4 431 70.9 12.1 60.3 442 92.8 14.0 
 R 297 452 113 28.0 311 533 164 44.6 58.5 449 153 43.6 67.3 462 231 88.0 
 S 272 452 100 21.1 281 484 133 32.0 51.9 439 73.0 10.9 57.1 452 103 13.7 
 TR 274 441 100 21.8 299 489 143 31.5 91.4 399 60.5 10.9 102 417 80.3 12.9 

𝛼3 = 1.0 

 D7 398 457 171 63.8 414 495 205 80.9 293 469 123 33.2 295 494 149 40.2 
 IR 380 423 179 72.7 383 463 218 95.3 117 403 136 44.3 126 416 166 54.7 
 IR25 384 415 183 77.8 390 469 234 109 120 399 146 47.2 130 414 175 56.3 
IG MAD 361 445 202 96.8 380 464 255 127 119 411 163 59.3 127 420 201 75.7 
 Gini 120 419 197 73.7 136 416 230 99.9 19.7 323 167 49.8 21.8 360 193 68.4 
 R 109 390 216 82.8 127 402 245 109 15.4 240 205 79.7 19.6 287 208 94.1 
 S 111 382 199 79.8 128 403 219 106 16.8 268 168 63.3 20.7 307 183 78.2 
 TR 108 384 205 81.2 127 391 222 101 57.1 397 126 37.6 63.9 393 147 41.3 
 D7 491 368 101 40.7 503 405 125 46.7 379 367 69.1 27.8 386 409 87.5 31.8 
 IR 424 406 140 54.8 442 435 175 67.2 156 388 110 38.0 169 410 130 45.1 
 IR25 449 390 141 58.2 486 444 182 76.2 157 406 118 42.2 171 416 139 49.2 
WB MAD 460 407 167 82.5 475 450 211 99.5 173 399 151 66.9 189 421 178 76.0 
 Gini 198 396 96.1 30.3 226 419 121 39.1 42.2 361 80.2 20.4 49.9 374 94.6 25.2 
 R 192 387 105 31.6 224 407 128 39.4 38.8 313 81.7 24.7 50.8 338 93.3 28.9 
 S 192 383 93.8 31.1 225 409 112 39.4 38.2 330 72.7 20.3 50.2 368 86.8 25.1 
 TR 191 390 97.4 32.2 222 406 116 39.5 85.3 385 78.6 24.1 95.2 396 89.3 25.3 

𝛼3 = 2.0 

 D7 559 409 194 100 573 434 223 121 443 400 162 81.0 456 430 192 96.5 
 IR 501 376 172 91.4 518 412 204 109 254 361 154 70.6 287 375 165 77.5 
 IR25 520 395 188 98.8 561 436 231 122 248 386 161 75.8 285 385 179 85.6 
IG MAD 538 400 222 127 558 432 247 152 274 370 179 98.3 307 377 200 108 
 Gini 296 368 151 66.3 347 384 162 78.6 89.1 330 129 50.2 120 355 139 55.4 
 R 286 376 172 76.0 342 393 180 84.5 78.4 301 140 60.8 114 343 146 65.3 
 S 288 365 157 69.2 346 366 163 77.1 80.1 310 129 54.7 122 339 136 59.0 
 TR 275 370 160 72.0 336 373 171 81.9 166 364 137 55.3 201 374 150 59.9 
 D7 992 364 148 79.0 1029 415 180 90.2 1254 368 116 57.7 1354 403 125 58.9 
 IR 830 367 147 75.6 880 414 174 83.5 602 368 124 60.5 697 380 136 64.2 
 IR25 844 371 151 78.9 895 409 176 88.8 658 372 127 60.6 742 383 131 64.6 
WB MAD 1029 376 167 96.8 1083 408 191 103 1066 364 139 70.1 1202 386 140 69.5 
 Gini 1068 374 93.1 38.3 1270 384 102 41.1 604 359 77.6 29.8 853 374 82.8 30.8 
 R 1085 380 94.8 38.4 1321 390 103 41.0 625 340 83.3 31.7 1021 366 84.5 31.9 
 S 1010 363 95.4 39.4 1249 378 99.7 41.0 557 338 78.1 27.5 838 358 82.2 28.7 
 TR 1068 361 90.8 37.3 1336 374 96.6 40.1 651 368 96.5 39.5 806 388 97.0 41.5 

 

  



Ho et al. Robust Dispersion Chart 

 

384 

 

Table 4. ARL and SDRL of control charts when diffuse asymmetric variance disturbances are present when m = 30 

 
  n=5 n=10 

  ARL                                   SDRL ARL                                   SDRL 

 λ = 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 

𝛼3 = −1.5 

 D7 698 358 102 33.8 712 420 126 36.1 674 367 66.9 19.4 706 396 73.8 19.2 
 IR 577 361 116 41.8 575 402 142 49.2 282 364 89.8 30.9 314 403 103 33.9 
 IR25 579 373 130 43.9 620 442 173 52.8 292 369 94.3 30.0 327 385 112 33.6 
BT MAD 703 370 116 40.3 716 412 134 43.4 422 361 90.4 27.3 472 390 97.0 27.3 
 Gini 558 376 75.1 24.2 607 406 88.7 27.1 183 351 58.1 16.6 219 369 67.5 18.0 
 R 560 358 79.4 24.4 625 402 97.4 27.3 209 361 74.8 21.0 256 377 89.0 23.9 
 S 511 357 80.0 23.5 576 395 96.6 26.4 186 360 60.5 15.3 220 382 75.1 16.6 
 TR 566 358 84.2 24.1 646 393 100 27.3 224 358 71.3 20.6 251 384 80.8 22.2 

𝛼3 = −1.0 

 D7 554 379 85.8 22.6 564 437 109 25.0 422 352 44.5 9.6 422 402 52.7 9.7 
 IR 451 359 92.8 24.2 473 445 137 31.4 162 360 64.1 14.2 172 399 80.5 16.1 
 IR25 463 379 104 27.9 484 455 162 37.5 161 374 66.5 14.6 179 412 90.7 17.1 
BT MAD 544 367 96.6 26.9 560 446 116 28.2 242 353 65.8 16.2 266 394 75.3 16.5 
 Gini 326 376 62.1 14.4 355 440 91.4 18.8 71.7 371 40.7 8.3 80.0 418 54.8 9.0 
 R 341 348 69.4 16.7 363 447 117 27.6 82.1 364 70.4 14.1 90.8 430 128 32.3 
 S 331 375 63.5 13.5 349 440 96.5 19.4 74.6 368 38.6 6.9 82.7 393 55.3 7.8 
 TR 328 379 66.7 13.8 343 444 103 19.1 104 347 46.0 8.8 117 386 60.6 9.5 

𝛼3 = 1.0 

 D7 442 367 118 43.0 440 406 156 51.3 332 368 77.4 23.4 329 407 97.7 27.8 
 IR 407 375 138 58.0 431 421 180 71.7 138 359 104 36.0 152 385 126 44.2 
 IR25 404 359 150 62.8 424 406 211 85.4 135 368 109 36.9 147 382 141 45.8 
IG MAD 412 362 154 64.6 415 404 195 89.2 145 369 123 42.3 152 407 152 49.8 
 Gini 183 355 99 32.1 195 378 121 36.5 39.4 363 69.5 17.9 44.0 372 81.0 19.5 
 R 184 375 115 36.4 206 389 132 42.6 41.2 367 101 28.8 45.7 381 113 30.8 
 S 180 371 106 37.0 199 382 124 44.6 40.2 369 82.3 22.0 43.9 377 92.0 23.9 
 TR 181 376 113 39.8 194 376 134 45.3 74.4 358 88.8 27.6 79.9 374 106 30.2 
 D7 490 367 99.6 41.6 503 423 121 48.1 373 358 68.8 27.4 386 411 86.3 30.1 
 IR 455 358 121 48.3 482 402 151 60.0 179 360 89.3 33.2 200 387 109 38.9 
 IR25 471 360 117 51.2 506 422 159 69.4 167 367 99.1 37.0 185 402 125 43.8 
WB MAD 488 366 145 70.1 515 412 179 86.9 195 378 124 58.2 213 403 146 66.0 
 Gini 263 370 63.5 20.0 270 394 78.0 21.2 63.7 351 43.6 12.6 70.8 373 49.5 13.2 
 R 254 375 67.0 21.9 273 396 77.6 22.8 66.4 375 52.1 15.1 76.6 381 58.2 15.9 
 S 256 364 63.0 20.4 273 384 73.3 22.0 65.2 369 44.8 11.9 69.9 368 49.1 12.4 
 TR 250 362 67.0 21.8 271 381 73.2 23.0 100 372 65.3 20.2 112 380 74.0 21.8 

𝛼3 = 2.0 

 D7 576 372 164 87.4 593 406 201 108 513 360 137 68.7 527 399 171 80.2 
 IR 548 360 159 81.5 549 392 192 97.8 280 352 135 61.9 304 371 151 71.1 
 IR25 545 377 173 88.7 580 413 216 107 278 362 151 67.9 318 376 167 82.5 
IG MAD 600 369 190 108 608 401 228 125 309 348 158 83.9 341 360 171 94.7 
 Gini 372 346 119 48.0 426 359 136 52.7 143 361 97.1 33.1 167 372 110 36.6 
 R 368 374 135 55.4 418 394 152 60.9 148 364 123 45.5 198 367 129 46.9 
 S 377 348 126 52.0 431 377 136 58.9 130 357 114 41.0 163 364 118 44.5 
 TR 373 367 134 56.7 424 372 150 62.7 205 365 124 49.4 241 377 139 54.0 
 D7 1022 377 143 80.7 1066 426 169 89.2 1279 382 119 56.4 1350 411 130 58.0 
 IR 810 356 141 73.3 853 396 165 83.4 612 356 121 60.4 704 383 132 61.6 
 IR25 811 370 142 75.6 857 415 172 88.3 662 361 121 58.5 785 367 134 61.3 
WB MAD 1052 369 169 92.3 1080 404 181 98.9 1056 350 137 69.8 1234 368 145 70.3 
 Gini 1208 369 84.4 32.9 1374 375 90.9 35.0 782 362 69.6 24.7 1004 376 71.4 26.0 
 R 1195 361 89.8 35.5 1436 381 95.2 37.5 873 373 74.3 27.3 1191 369 78.8 28.4 
 S 1208 365 85.2 33.7 1365 378 91.9 35.4 793 365 67.2 24.3 1090 380 72.1 24.8 
 TR 1218 347 85.1 33.7 1400 369 92.3 35.2 699 351 90.0 38.2 866 360 95.7 38.7 
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Table 5. ARL and SDRL of control charts when localized variance disturbances are present for m = 30. 

 
  n=5 n=10 

  ARL                                   SDRL ARL                                   SDRL 

 λ = 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 

𝛼3 = −1.5 

 D7 696 346 100 34.2 724 404 123 36.1 699 349 63.9 18.7 735 392 72.6 18.8 
 IR 564 374 131 45.2 578 426 161 53.4 265 371 101 33.2 297 392 114 36.0 
 IR25 572 375 132 46.8 622 433 168 55.2 276 375 97.9 30.5 317 391 114 34.6 
BT MAD 697 359 113 40.6 734 405 135 42.9 465 350 84.7 26.3 527 371 92.9 26.0 
 Gini 485 396 92.3 28.0 534 428 114 31.6 149 390 77.8 19.8 176 405 89.3 22.3 
 R 443 388 93.5 28.3 585 435 113 33.2 159 388 100 27.3 205 379 113 32.2 
 S 504 391 94.3 29.7 523 412 109 32.7 141 388 84.8 20.4 181 397 100 23.3 
 TR 493 405 97.1 30.3 577 428 115 34.3 174 379 90.8 24.3 209 387 100 26.6 

𝛼3 = −1.0 

 D7 561 366 89.0 23.2 571 428 115 25.8 422 357 42.5 9.5 435 405 52.2 9.9 
 IR 447 395 116 29.5 464 474 174 39.6 141 392 86.1 17.6 166 420 111 21.5 
 IR25 462 389 116 28.9 475 477 172 41.7 152 374 72.8 16.1 169 417 101 19.0 
BT MAD 549 361 94.2 25.5 567 435 121 27.3 249 324 61.1 15.4 287 374 71.7 15.7 
 Gini 300 420 92.4 19.7 324 473 125 25.7 56.6 422 66.2 12.3 64.8 431 91.0 14.6 
 R 262 437 102 21.2 324 501 161 41.3 63.7 440 141 33.9 71.8 490 209 74.3 
 S 295 437 110 25.4 284 492 136 30.1 53.0 445 75.2 10.9 59.0 453 103 14.0 
 TR 272 466 102 21.5 293 504 140 31.2 80.1 410 73.3 12.7 91.5 427 95.6 15.3 

𝛼3 = 1.0 

 D7 432 356 119 44.9 439 398 150 54.5 334 350 75.2 22.6 340 397 96.8 26.9 

 IR 355 437 216 93.8 377 480 274 137 102 407 184 62.7 119 420 227 86.0 

 IR25 381 407 176 73.6 396 451 229 102 120 383 132 43.7 135 398 168 56.2 
IG MAD 394 402 196 95.6 402 453 256 136 121 409 170 61.5 132 405 207 81.5 

 Gini 127 410 198 68.6 150 416 236 99.9 19.7 308 174 47.2 23.5 340 196 64.4 

 R 121 382 199 77.9 140 401 224 103 19.0 274 187 70.4 23.9 300 200 86.2 
 S 118 379 187 80.4 143 387 215 105 17.1 271 169 59.2 21.6 310 184 77.8 

 TR 120 374 205 80.8 142 384 227 108 43.4 365 175 59.5 51.0 374 204 82.0 

 D7 520 340 88.1 37.5 532 391 114 42.6 399 295 58.1 23.0 412 348 74.1 26.0 

 IR 432 376 128 55.8 465 435 176 76.9 178 355 98.5 38.1 196 396 129 47.4 

 IR25 476 355 122 50.2 493 418 167 64.4 172 370 98.7 34.9 193 403 128 41.4 

WB MAD 517 333 133 64.7 519 404 182 79.3 222 316 105 50.1 246 367 131 59.6 
 Gini 214 391 94.1 30.1 245 420 117 42.0 45.4 352 75.2 20.4 55.6 373 94.1 26.8 

 R 204 380 99.7 33.0 244 411 122 41.6 39.5 316 82.3 24.9 53.7 346 92.8 29.1 

 S 198 367 97.1 31.5 240 393 122 40.7 37.4 320 75.9 22.0 51.9 360 89.6 26.6 
 TR 193 380 97.1 32.7 236 397 119 42.2 86.5 371 84.1 26.5 100 381 102 32.0 

𝛼3 = 2.0 

 D7 605 336 147 78.8 653 381 187 95.8 544 311 109 58.0 578 365 137 69.8 
 IR 534 362 173 90.7 550 403 205 119 275 355 140 66.6 315 381 162 78.5 

 IR25 582 373 170 89.4 606 409 210 112 293 356 146 68.9 327 379 171 79.2 

IG MAD 594 357 184 106 607 379 217 130 338 318 141 76.9 382 339 166 89.3 
 Gini 318 348 148 63.6 388 367 165 74.5 94.1 328 124 48.2 127 360 137 56.8 

 R 306 361 159 72.9 391 372 178 83.2 85.2 303 140 60.0 130 333 145 64.3 

 S 300 347 150 70.1 375 362 169 78.6 82.3 284 132 57.7 128 332 140 60.5 
 TR 282 352 159 72.5 353 365 169 80.8 166 343 142 61.7 211 357 155 69.1 

 D7 1090 310 125 68.6 1148 383 147 80.0 1491 298 96.3 51.5 1575 370 108 53.7 

 IR 825 332 138 70.7 874 381 160 83.5 717 325 111 54.8 825 364 123 59.3 

 IR25 887 333 132 70.0 962 389 164 83.2 741 330 112 56.0 859 364 128 61.8 

WB MAD 1078 331 149 86.6 1149 380 172 94.3 1315 313 123 65.4 1389 341 129 67.9 

 Gini 1135 362 91.2 37.0 1375 381 101 40.2 674 343 76.5 27.5 1002 369 82.1 29.3 
 R 1122 364 94.6 39.1 1367 376 100 41.1 625 331 80.7 31.3 1015 350 84.5 32.5 

 S 1092 362 94.7 37.5 1364 366 101 39.5 603 331 75.9 28.7 1006 354 80.4 29.9 

 TR 1085 337 92.5 37.6 1338 360 96.6 40.7 707 343 92.4 38.9 970 359 95.7 40.8 
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Table 6. ARL and SDRL of control charts when diffuse mean disturbances are present for m = 30. 

 
  n=5 n=10 

  ARL                                   SDRL ARL                                   SDRL 

 λ = 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 0.6 1 1.2 1.4 

𝛼3 = −1.5 

 D7 539 504 167 49.7 572 524 181 50.4 490 470 91.2 22.7 527 473 93.8 22.3 
 IR 435 480 202 70.0 447 492 224 77.5 156 419 157 47.5 175 416 162 48.5 
 IR25 449 467 202 69.5 484 492 240 80.2 165 416 151 49.7 179 424 157 51.4 
BT MAD 533 476 173 50.8 557 503 180 52.0 269 417 110 29.9 307 431 111 28.6 
 Gini 245 433 168 52.2 262 431 166 53.7 46.6 258 143 47.7 48.8 275 140 48.3 
 R 215 394 157 53.0 256 418 166 56.7 39.9 208 146 64.8 44.4 223 148 66.7 
 S 238 419 167 55.3 232 395 158 55.4 38.2 228 152 55.8 41.7 242 153 57.1 
 TR 237 393 169 55.2 247 402 161 55.9 82.3 328 140 40.8 93.3 351 141 41.9 

𝛼3 = −1.0 

 D7 442 549 164 35.6 468 554 184 38.3 316 494 74.1 13.8 324 491 81.6 13.7 
 IR 374 533 188 46.1 385 561 240 58.9 99.7 454 135 26.6 109 449 149 29.9 
 IR25 368 509 189 46.6 400 534 247 60.9 100 435 133 27.2 111 444 156 31.6 
BT MAD 446 502 159 35.1 448 531 180 36.3 153 438 96.1 19.0 167 447 99.7 18.8 
 Gini 155 449 213 59.3 162 466 209 62.2 20.3 277 197 49.8 20.8 287 201 56.6 
 R 142 417 214 67.3 159 448 232 91.3 17.3 199 191 133 18.2 215 196 133 
 S 146 444 233 88.3 144 432 216 70.5 17.1 225 216 64.3 17.7 242 213 72.5 
 TR 139 419 222 73.1 145 432 224 74.8 50.8 390 140 24.4 54.2 400 155 29.1 

𝛼3 = 1.0 

 D7 357 504 237 93.2 380 524 288 119 281 469 140 40.0 278 465 140 39.5 
 IR 315 487 259 111 327 503 302 147 89.9 434 217 73.5 95.2 430 248 91.9 
 IR25 336 489 244 104 351 513 298 142 88.8 422 212 73 96.3 432 247 90.9 
IG MAD 322 472 273 126 330 494 330 168 97.1 430 224 83.2 105 436 261 106 
 Gini 83.3 399 288 112 85.9 410 297 121 10.9 200 257 82.5 10.7 217 258 87.8 
 R 73.9 345 294 126 79.7 354 298 132 8.9 138 228 120 8.6 147 232 123 
 S 75.3 361 287 121 76.0 381 281 131 8.8 151 232 97 8.7 150 231 95.1 
 TR 73.1 341 296 123 74.6 353 287 130 33.8 331 230 73.7 32.8 332 226 71.4 
 D7 416 514 194 77.1 421 532 237 97.6 330 455 120 42.5 343 480 154 49.9 
 IR 357 491 205 87.9 367 519 243 104 112 432 173 62.4 124 440 198 70.3 
 IR25 369 477 205 84.2 389 511 258 112 108 437 175 65.0 120 427 198 74.3 
WB MAD 383 493 253 119 396 511 284 140 130 452 206 95.0 140 440 220 106 
 Gini 111 383 180 55.6 118 396 190 57.1 16.0 208 145 39.8 15.9 227 148 41.4 
 R 100 372 188 56.6 106 383 181 59.8 11.6 133 120 45.8 11.5 141 120 44.6 
 S 101 368 177 51.9 104 374 180 53.8 12.8 160 126 38.4 13.2 171 125 38.6 
 TR 100 352 181 55.0 103 354 175 56.5 44.1 348 147 43.6 48.3 368 153 47.3 

𝛼3 = 2.0 

 D7 496 424 233 132 527 463 283 165 450 410 168 85.5 453 398 170 85.3 
 IR 382 462 275 152 399 468 305 163 142 381 232 113 155 386 235 125 
 IR25 424 462 260 146 449 469 287 174 155 388 234 115 179 394 237 126 
IG MAD 442 464 286 180 468 473 314 196 193 390 241 139 212 390 245 146 
 Gini 150 328 218 110 155 334 221 109 30.4 183 170 82.5 33.1 200 167 81.2 
 R 139 326 228 118 150 343 226 122 23.9 140 143 88.9 25.5 157 141 86.1 
 S 136 323 214 107 148 326 214 107 23.5 145 142 81.6 23.3 143 140 82.2 
 TR 129 297 219 111 142 312 219 110 65.5 264 193 96.0 65.2 261 192 95.9 
 D7 886 416 188 95.5 938 450 215 106 1176 402 129 60.4 1280 436 141 60.0 
 IR 565 470 222 115 615 486 237 124 325 376 162 80.5 377 375 160 81.0 
 IR25 629 462 215 112 684 467 226 120 373 390 163 78.3 438 390 164 79.4 
WB MAD 786 472 225 125 805 492 233 124 674 404 158 71.7 761 415 152 70.0 
 Gini 444 369 140 56.7 482 376 139 54.8 130 220 106 45.0 144 232 105 44.7 
 R 453 339 134 56.7 479 344 133 56.4 104 172 91.2 42.3 115 187 93.5 42.4 
 S 418 336 134 55.3 448 350 135 54.3 101 196 97.8 41.1 116 207 94.0 40.1 
 TR 421 337 126 56.2 449 329 125 55.1 210 284 116 53.9 262 303 116 53.5 
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5. CONCLUSION 

 

Eight estimators of the standard deviation and three skewed distributions were considered in Phase I of the control charting 

process. We compared estimators, bearing in mind that a good estimator should be efficient against contaminations in the 

four types of disturbances. The results of the RE scenario simulations showed that Gini performs best, and IR25 is the worst 

in the first three kinds of small disturbances for the negatively skewed distribution.; D7 has the best efficiencies against the 

four disturbances in the lowly-skewed distributions, but the performance of TR is the worst compared to the other 

estimators. The study also discussed the FBP of the eight estimators for various sample sizes. The FBP of D7 and MAD is 

best, followed by IR25. G̅, R̅, and  S̅ have the worst FBP. The Phase II simulations pointed out that, in general, the control 

charts based on D7, and MAD are most robust, but the performances of those based on Gini, R, or S are the worst in the 

four disturbances.  

Although the study showed that the efficiency and robustness of control charts based on these estimators had been 

investigated, limitations should be considered in this study. The study only discussed the performance of the eight 

estimators, which are often used in practice, but some existing estimators of process standard deviation are not considered 

here, such as M-estimate estimators. Meanwhile, the study does not involve the utilization or comparison of other control 

charts, such as EWMA or CUSUM. Barring three distributions, BT, IG, and WB, other non-normal distributions such as 

inverse gamma or Burr still need to be discussed. The limitations should be investigated and eliminated for future research. 
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