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Due to the importance of lead time demand in the design of inventory management systems, researchers and practitioners
have paid continuous attention to it and a few analytic models using the compound distribution approach have been
reported. However, since the nature of compound distributions arises a heavy analytic burden, the analytic models have
been developed by non-recognition of the compound nature of some components to reduce the analytic task. Through the
theoretic examination of the analytic model approach, this paper clarifies the assumptions implicitly made by the analytic
models and provides some precautions in using the analytic models. An illustrative example is also presented.

Significance: To researchers and practitioners who attempt to use the analytic models in the design of inventory

management systems, this paper provides some precautions through the theoretical investigation of the
analytic model approach.
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1. INTRODUCTION

Lead time demand (LTD) has received continuous attention from researchers and practitioners, because the knowledge of
the distribution of LTD is essential in the design of inventory management systems. Modeling the distribution of LTD
involves taking into account the distributions of both demand and lead time, which is very difficult to obtain. Hence the
research on inventory problems is often made under the assumption that LTD follows certain convenient distributions such
as the Poisson, Normal, Gamma, Weibull, and so forth (Kumaran and Achary, 1996).

However, some researchers such as Bagchi et al. (1984), Carlson (1982), McFadden (1972), and others explicitly treated
the distribution of LTD as a compound distribution. As Bagchi et al. (1984) mentioned, the compound distribution approach
has some advantages: (1) the components of the compound distribution can be modeled individually and their parameters
estimated; and (2) this is more constructive than attempis to model the compound distribution directly since a single
component typically has a simpler structure, and better use can be made of the data.

After reviewing the analytically most satisfying studies, in which successive realizations of period demand and lead time
are assumed to be independently and identically distributed random variables and the distribution of LTD is considered as a
compound distribution, Bagchi et al. (1984) formalized the approach of obtaining the distribution of LTD (we call it the
0S-OI-LT approach and explain in detail the OS-OI-LT approach in section 2). The 0S-OI-LT approach first considers
order intensity, order size, and lead time as primary components. Then it coalesces two of the primary components into the
intermediate component (e.g., demand per unit time, see Figure 2 in section 2), in order to reduce the analytic task in the
characterization of LTD.

1t is not surprising that the analytically most satisfying studies follow this approach, because, even with only two
stochastic components, the analytic determination of the compound distribution is a challenging analytic task. We are now
faced with the dilemma that modeling realistic distributions of LTD often causes severe computational difficulties and,
more often than not, is analytically intractable, whereas modeling rather simpler distributions of LTD may be inadequate as
representations of reality.

Usually we accept, frequently without argument, the derivation of rather simpler distributions as an approximation of
reality. However, we need to investigate under what situations the derivation of rather simpler distributions is appropriately
performed. The aim of this paper is not to criticize the OS-OI-LT approach, but to assist researchers and practitioners using
the OS-OI-LT approach in practice by providing some precautions. First, we define the problem situation considered by this
paper and consider possible two approaches of deriving the distribution of LTD as a compound distribution: the OS-OI-LT
approach and the OS-IT-LT approach. Then we theoretically examine and compare the two approaches. Based on the
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examination and comparison, we scrutinize the characteristics of the OS-OI-LT approach and figure out under what
situations the OS-OI-LT approach is appropriately performed. Lastly, we show shows an illustrative example.

2. THE COMPOUND DISTRIBUTION APPROACH TO LEAD TIME DEMAND

The situation we consider can be depicted as Figure 1. Customer orders randomly arrive and we assume that the inter-
arrival times between customer orders are independent each other. The size of a customer order measured by the number of
units is also randomly varied and we assume that the customer order sizes are independent each other. Then LTD is the total
number of units demanded by customers during a lead time (LT). For instance, Figure 1 shows that LTD is 19.
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Figure 1. Realization of lead time demand.

If we define D(#) as the cumulative demand during the time interval (0, #), 0 < ¢, then LTD can be described as D(LT),
where LT or replenishment time, as related to inventory management systems, is the time interval between placing a
replenishment order and receiving it from the supplier and LT > 0.

Approaches to generating LTD can be depicted as Figure 2. It shows two approaches to deriving LTD. The one approach
on the left hand side is the OS-OI-LT approach formalized by Bagchi et al. (1984). It first derives demand per unit time
(DPUT), which is the total demand in a period, by combining order intensity (OI), the number of orders per period, and
order size (OS), the size of each order. Then LTD is generated by joining DPUT and LT. (Bagchi et al. (1984) formalized
another approach of using the concept of lead time order intensity (LTOI), the total number of orders during a lead time,
which is derived by combining OI and LT. However, we omit this approach in this paper because this approach is basically
same as the OS-OI-LT approach and is not much known in the literature.)

The other approach on the right hand side is the OS-IT-LT approach. The OS-IT-LT approach first derives D(?) using
information of OS and inter-arrival time (IT), the time duration between consecutive customer orders. Then LTD is
generated by joining D(¢) and LT, The OS-IT-LT approach is more appropriate to the situation we consider than the OS-Ol-
LT approach. However, the OS-IT-LT approach requires some computational efforts in deriving LTD. We utilize the OS-1T-
LT approach to investigate the characteristics of the OS-OI-LT approach.

2.1. The OS-IT-LT Approach

This approach derives the total demand during a time interval (0, 7), D(z), using information of OS and IT. Suppose a
sequence of order size, {OS, i=0, 1, 2, ...}, in which each OS; is independent and follows an identical probability mass
function of A(.) and cumulative distribution function of H(.) having mean, s and variance, o”os. Then the total demand
during a time interval (0, 7) can be defined as follows. For 120,
N@)
- . . .+0S = OS. (1)
D(t) 05, + 0S; + +0 N iEO S,

where N({) is the number of customer orders during a time interval (0, £), N(0) = 0, and D(0)=0.
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Figure 2. Approaches to lead time demand.
Let F(d; t) be a cuamulative distribution function of D(¢), given the time ¢. Then for d, 20,
N@)
F(d;t) = Pr{D(t) < d} = Pr{ 'ZO 0S; <d}
=

© N(t)
= Y Pr{ 'ZO 0S; <d|N(@)= n}Pr{N(t) = n}

n=0 i=
0 n
=3 Pr{X OSl- <d}Pr{N(t) =n} 2)
n=0 =0

Here, suppose the successive occurrence times between customer orders, {IT, i =0, 1, 2, ...}, in which each IT; is
independent and follows an identical probability density function of g(.) and cumulative distribution function of G(.) having
mean, iy and variance, o’sr. Then a nonnegative integer-valued stochastic process {N(), ¢ = 0} is a renewal process that
registers the successive occurrences of a customer order during the time interval (0, ?).

Let ¥, be a waiting time until the occurrence of the nth customer order. Then for n = 0,

n
Wy =2 IT; . 3)
i=0
where W, = 0 and IT, = 0. The fundamental connecting link between the waiting time process {W,,n=0,1,2,...}and the

renewal process {N(f), ¢ > 0} is the observation that N(?) 2 n if and only if W, < ¢ (Taylor and Karlin, 1984). It follows that
forn,t20,

n
Pr{N(t) = n} =Pr{W,, <1t} = Pr{.Z0 IT, <t} = Gy (1) T “)
1=
where G,(?) is the n-fold convolution of G(?), such that for ¢ > 0,
o t
G (1) = [Gy 4 (1= 3)ACV) = [Ty (1= 2)dG0) w22 )

Here, Go(f) = 1 and G,(¢) = G(¥).
Consequently, from the equation (4), for n, 2 0,

z(nyt) = Pr{N(t) = n} =Pr{N(t) 2 n} —Pr{N(®) 2 n + }=G,)-G,1 () ©)
By substituting the equation (6) into the equation (2), ford, t >0,
F(d;t) = §0Hn (d)z(n;t) ™
n=

where H,(d) is the n-fold convolution of H(d), such that ford > 0,
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o0 d
H"(d):'yZ::OHn—l(d_y)h(y)=y§0Hn—1(d_y)h(y) nz2 ®)

Here, Hy(d) = 1 and Hy(d) = H(d).
The cumulative distribution function of D(?) described as equation (7) is determined, in principle, by equations (5) and

(8). A more detailed characterization of D(2) can be obtained by transform methods, We present Lemmas 1 and 2 for general
discrete and continuous distributions, respectively.

Lemma 1. If h(x) is a (discrete) probability mass function for x = 0,1,2,..., then H,(x) is defined as,forn>1,

X .
H,(x)= kEO hy, (k) )
where
~ ! j]
hy (k) = b) 7 [T A7)
I=0

q+2 ) +...+kjk =k
and j; is a nonnegative integer.

o0
Proof. Using the discrete Laplace operator Llu]= kz u(k)s k, we obtain
=0

LiH,)=LH, | *h=LH,_ L] = L1)L[A]"

n
o0 k 1 o k 0 1 k
h(k =— 3 h (ks = S ok (11)
1-s(k§o (k) ) 1—sk§o n(K)s k‘z“o n )l—ss

where * is the discrete finite convolution and ;;n (k) defined as equation (10) is the coefficient of the term ¢ in

k Byt
h(j)s’
(150 v )

Defining &x = 0) as an indicator function, that is, 1 if x =0, and 0, otherwise, and applying the inverse Laplace operator L
to the equation (11), we obtain

s 57 -1 s 5 -1« =
Hy(x) = RO {LmLsx -k = oy} = 0L {1*60x-k = 0))x)

®©

X X ~
. KBS 6(l-k=0)= 5 i (k 12
kéoh"( )li\:o ( ) kéo n (k) (12)

a
Lemma 2. If g(¢) is a (continuous) probability density function for 7 > 0 and Jg(t)dt =1.0 then G.(9) is approximately
defined as, for0<r<q 0

Gy =" % () —— % (13)
" k=0 " (k + m)!
where / is the number of equal interval dividing the time period of 0 < # < ¢ and
n k J
by (k) = s —— I (1a))!
Jottiy=n 1l jl!l=0 (14)
1=0

jl+2j2+...+kjk=k N
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Jiis a nonnegative integer

2 T
2 ! ‘
wltn g ) | EW
b b g t
a; 1 4 tf == g(ty)
ti=i% 0<i<g)

Proof. We approximate g(?) by a Lagrange interpolating polynomial pA?) at points (¢, g(t)) with ¢; = i% (0<ig!).
Then G,(f) in the equation (5) is redefined as

t
Gp (1) = (I) G,_1(t=»p;(»dy (15)
o0}
Applying the continuous Laplace operator L{u] = (I) u (t)e_St dt to the equation (15), we obtain

LiG,1= LG, * pj1= LG, )lp;1 = LILL[p))"

n n n
1f® —st 1(°l ks 1L Pk st
=—| | (t)esdr] =—(IZat e dt| == X a,Jt"e Tt
s(op" s\ 0k=0 ¥ s\k=0 ¥ 9
n

1 4 Kk 1 l k! 1 nl |
L sa—o | sl Sa | 2w 2 b
s[k=0 ksk—l-l] S1+n (k=0 ksk) s1+n k=0 n( )sk

nl 1 nl k+n
= kEObn (k):k—+r—1:-T = kEO by, (K)L[t ] i (16)

NI

where b,(k) defined as equation (14) is the coefficient of the term —1- in [ \E a; L) . Finally, applying the inverse
s =0 7 s/

Laplace operator L™ to the equation (16), we obtain the equation (13).

Lastly, LTD is generated by joining D(f) and LT. Let L(d) be a cumulative distribution function of LTD and LT follow a
probability density function of &(.) having mean, ;7 and variance, o1r. Then, for d > 0,

d © d ©
Ld)= X |Pr{D(t) = xYk()dt = X [[F(d;t)-F(d -1, Hk()dt a7
x=00 x=00

2.2. The OS-OI-LT Approach

This approach reduces the burden of analytic task in determining LTD by implicitly dealing with the compound nature of
DPUT, resulted from coalescing two components of OS and OI. Suppose that the order intensity, OI, follows a probability
mass function of p(.) having mean, o, and variance, &’ o;. Then the demand per unit time can be defined as

o1
DPUT =0Sy +0S +- - +0S¢r = iEOOSi (18)
and an associated probability distribution can be described as follows. For d=0,

oI
Pr{DPUT < d} = Pr{_ZO 0S; < d}
=

> ol 0 n
=2 Pr{Z OSI- <d |0l =n}Pr{Ol =n} = Y Pr{X OSl- < d}p(n)
n=0 =0 n=0 =0

=0 H,(d)p(n) (19)
n=0

In order to derive LTD, the OS-OI-LT approach combines DPUT and LT. However, the equation (19) does not contain
the parameter of time. Hence, in the OS-OI-LT approach, the total demand during a time interval (0, £), D(f), is implicitly
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derived from DPUT by proportionally including a time duration. In other words, since DPUT is a demand per unit time, the

OS-OI-LT approach assumes that D(f) is formulated by involving a time proportionally on DPUT. Thus it follows that, for d
20andz>0,

Pr{D(t) < d} = Pt{DPUT *t < d} = Pr{DPUT < 1} = §0 H, (i) p(n) (20)
t n= t

Compared to equation (7), the equation (20) shows that the OS-OI-LT approach reduces the burden of analytic task by not
recognizing the compound nature of DPUT. Lastly, LTD is similarly derived as equation (17).

3. COMPARISON OF TWO APPROACHES

Bagchi et al. (1984) said that non-recognition of the compound nature of the intermediate component in the OS-OI-LT
approach is a price that may have to be paid in order to obtain an analytic solution. If, however, the price is unaffordable,
we think, it would be better to consider alternative approaches. By comparing the two approaches presented in section 2,
this section examines the characteristics of demand processes and figures out under what situations the OS-OI-LT approach
is appropriately performed.

In the OS-IT-LT approach, the total demand during a time interval (0, #), D(?), is a random sum of random variables since

OS; and M) in the equation (1) are random variables. Mean and variance of D(f) can be derived as (see Taylor and Karlin
(1984))

E[D()] = npgEIN(1)]
Var[D(t)] = EIN()]o g + udgVarlN ()] @1)

In the same token, from the equation (18), DPUT is also a random sum of random variables. Mean and variance of DPUT
can be derived as

E[DPUT] = poyg 1o

Var[DPUT) = p o + udgod, (22)

Since the OS-OI-LT approach assumes that D(f) is formulated by involving a time proportionally on DPUT, mean and
variance of D(f) for the OS-OI-LT approach can be derived as

E[D(t)] = HosHort
VarlD()] = (oo g + HEso oy )t (23)

We use the variance-to-mean ratio (VMR) to measure demand variability. The VMR (also called the index of dispersion),
though less well known than the often-used coefficient of variation, is of value in providing the discrimination for discrete
distributions (Ord, 1973). According to equation (23), the OS-OI-LT approach is based on the assumption that the VMR of
the cumulative demand is constant. In other words, mean and variance of the cumulative demand increase proportionally to
the period of time with the same rate. This assumption can be justified when the renewal process {M(1), t 2 0} in the
equation (21) is the Poisson process. In order words, the OS-OI-LT approach is compatible with the OS-IT-LT approach
only when IT follows the exponential distribution.

However, according to the asymptotic behaviors of N(?) such that (see Taylor and Karlin (1984))

E[N()] 1
lim s ——

. Var[N(n)] © %T
tl—u;c}o T3

g HIT

the asymptotic mean and variance of N(z) in the equation (21) are approximately #/y;r and 10’ 1447, respectively. This

means that the two approaches generate the similar results for D(1), no matter whatever distribution IT follows, provided the
considered period of time is large enough.

Based on the theoretical examination described so far, we can see that the OS-OI-LT approach is mostly suitable for the

situation that the demand process is a compound Poisson process. We can also speculate that, even for the other situations,

24
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the OS-OI-LT approach is applicable when mean of LT, 1 is sufficiently large to permit use of the asymptote. We
demonstrate this speculation with an illustrative example in the next section.

4. AN ILLUSTRATIVE EXAMPLE

In order to avoid the impact of special distributions in an illustrative example, we consider the situation that customer
orders are randomly arrived between 1.0 and 9.0 (that is, g7 = 5.0) and the customer order sizes are also randomly varied
between 15 and 25. In order to see how the OS-OI-LT approach is affected by the time period of LT, we consider
exponential distributions with - = 3.0 (< 47) and gy = 10.0 (= gy) as distributions of LT. Using equation (21), mean,

variance, and VMR of D(?) are calculated as shown in Figure 3. We can see that the VMR of D(¢) approaches some constant
value as the period of time increases.

1200 . - 20.00
. 1000 \ Vanfmce & 1667
5 s00 \4/ e \. .-""M 1333 E
~
B 600 ”f'r 10.00
a

400

6.67

200 3.33

0 —  0.00

Time

Figure 3. Mean, variance, and VMR of D(2).

The cumulative distribution function of LTD, L(d), which we concern, can be obtained from the equation (17) for the OS-
IT-LT approach. However, in order to obtain L(d) (resulted from D(?) in equation (20)) for the OS-OI-LT approach, we need
information about OI, p(n) which is hardly determined analytically. Thus, we used Gamma distribution as an asymptotic
approximation for D(f) because our separated experiment results showed that given the time z, D(f) was skewed to the right
and that data plotting visually confirmed it. Here Gamma distribution has the parameter a depending on the time / since the
OS-OI-LT approach is based on the assumption that the VMR of the cumulative demand is constant (see equation (23)).

Figures 4 and 5 show comparisons of L(d) from the two approaches for 7= 3.0 and g4 r=10.0, respectively. From these
comparisons, we can see that the results around an asymptotic mean of 12 (= uos™® s/ 7) generated by the OS-OI-LT
approach when .- < g7 are worse than the results around an asymptotic mean of 40 when yr> fyr. We can expect that the
0S-OI-LT approach will show better result as g >> gr.

5. CONCLUSION

The derivation of lead time demand distribution involves the consideration of both demand and lead time, resulted in the
compound distribution, which is a challenging analytic task. In order to rcducc the analytic task, thc analytically most
successful studies were done by non-recognition of the compound nature of some components. This paper theoretically
investigated the mostly used approach, i.e., the 0S-OI-LT approach formalized Bagchi et al. (1984) and clarified the
assumption implicitly made by the OS-OI-LT approach.

Comparing the OS-OI-LT approach with the OS-IT-LT approach, we could figure out that (1) the 0OS-OI-LT approach is
mostly suitable for the situation that the demand process is a compound Poisson process; and (2) even for the other
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situations, the OS-OI-LT approach is applicable when the mean of lead time is sufficiently large to permit use of the
asymptote. However, as shown by an illustrative example, if the mean lead time is not large, the result of the OS-OI-LT
approach are truly questionable. Researchers and practitioners who attempt to use the OS-OL-LT approach in practice
should be warned on this situation, and the future study is required on this theme.
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Figure 4. The cumulative distribution of LTD Figure 5. The cumulative distribution of LTD
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APPENDIX

In section 2, we presented Lemmas 1 and 2 for general discrete and continuous distributions, respectively. However, these
Lemmas require heavy computational efforts since they are formulated to cover any arbitrary distributions. In order to
reduce computational efforts in an illustrative example described in section 4, we used Lemmas A1 and A2 for discrete and
continuous uniform distributions, respectively.

Lemma Al. If h(x) follows a discrete uniform distribution with (a+1 <x < b), then H,(x) is defined as, for n > 1,

1 n j(n)x n-l1 )
Hy@)=——7— X D)7| || 1 (x-1-%) S -an—(b-a)j=0) (A1)
(b-a)"nj=0 JJI=0\i=0
where &x = 0) is an indicator function, that is, 1 if x =0, and 0, otherwise.
Proof. Note that
2 b-
L[H1]=( sa+l+ sa+2+---+ asb)+sb+1+---
b-a b-a b-a
1
= (1+s+s2 +s° +---)b—(sa+l 132 +---+sb)
-a

= IL L{h) = L{1]L[h] 7 (A2)
-5
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Applying the discrete Laplace operator L and using equation (A2), we obtain
L(H,]=L{H,_; *k)=L{H, 1Lk = L{JL{A]"

1 (@ "ogf B 1 "
- (z h(k)sk) = ) sk
1-5\k=0 1-s\k=a+l1b~a

= ! s(a+l)n (l_sb—a)n _ 1 s" an 4 b-a.n
TN n+l T AP nel ® (-5
(b-a) (1-5) (b-a)” (1-5)
b-a)" j=0 i)a-sm™t
1 n i(n)1
~-a = n!
n-1 _
where j Py = jI:IO(k — 7). Finally, applying the inverse Laplace operator L™ to the equation (A3), we obtain the equation
(A1) -

Lemma A2. If g(¢) follows a continuous uniform distribution with (0 < a < t < b), then G,,(9) is defined as, forn 2 1,
1 n n=1[ 7 \|x
Gul=———2 (-] ) G
" (@ -b)" =0 1)
where
~ 0 t<(b-a)l+an
G ()= n
(t-(b-a)l-an) (b-a)l+an<t
Proof. Using the continuous Laplace operator L, we obtain

L[Gy]= LG,y * g = IG,,_;1Lig] = LlIIL[g]"

1(® g Y 1(b 1 gy §
[gt)ye™dt| ==|[——e " at
0 s\ab-a

= 1 _ _l_ E (n)(e—sb)l(_e—sa)n—l
- s

—s{(b—a)l+an}
- %(—1)”'1(';)9—-——— (A5)

n+l
K

Finally, applying the inverse Laplace operator L™ to the equation (AS5), we obtain the equation (A4).
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