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Discrete particle swarm optimization (DPSO) is gaining popularity in the area of combinatorial optimization in the 
recent past due to its simplicity in coding and consistency in performance.  A DPSO algorithm has been developed for 
orienteering problem (OP) which has been shown to have many practical applications.  It uses reduced variable 
neighborhood search as a local search tool.  The DPSO algorithm was compared with ten heuristic models from the 
literature using benchmark problems.  The results show that the DPSO algorithm is a robust algorithm that can 
optimally solve the well known OP test problems.  
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1. INTRODUCTION 
 
Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm that is inspired by nature.  PSO has been 
widely used to optimize several continuous nonlinear functions as well as combinatorial problems.  Many researchers 
are using PSO as a tool for solving combinatorial problems due to its simplicity in structure, ease of implementation 
and performance robustness (Pan et al., 2008). Orienteering Problem (OP), which is also called the generalized 
traveling salesman problem, is a combinatorial optimization problem.  OP has been proved to be a NP-hard problem 
(Golden et al., 1987).  A limited number of exact methods have been developed to solve smaller problem instances of 
the OP.  Many heuristic approaches have been implemented for larger sized OPs. Various adaptive optimization 
heuristics such as tabu search, genetic algorithm, and ant colony optimization algorithms (discussed in section 2) have 
been developed for the OP.  In this paper a DPSO algorithm has been designed for OP.  The performance of the DPSO 
heuristic was measured against other metaheuristic algorithms from the literature using benchmark problems.  
 
1.1 Particle Swarm Optimization 
Particle swarm optimization, inspired by the social behavior of bird flocking and fish schooling, is a population based 
metaheuristic introduced by Kennedy and Eberhart (1995).  In PSO, each particle represents a solution and the swarm 
of particles flies through the search space in an effort to reach the global optimum.  All members (particles) of the 
population are maintained throughout the search procedure and their information is socially shared among the 
individuals to direct the search toward the best position in the search space.  The particles fly through the multi-
dimensional problem space with specific velocities and follow the current best known particles.  During flight each 
particle adjusts its position according to its own experience and the experience of the neighboring particles.  The 
neighborhood could encompass either a local neighborhood or the global neighborhood which forms the two variation 
of the fundamental PSO algorithm.  The particle’s best solution is called the pibest, global best is called the gbest and the 
restricted neighborhood’s best particle is named the lbest (Kennedy and Eberhart, 2001).  In each iteration the particle 
flies to the next position with a certain velocity using the pibest and gbest values as shown in equations 1 and 2 (Shi and 
Eberhart, 1999).  Replace gbest with lbest for the restricted neighborhood version of the PSO.  PSO combines local search 
methods with global search techniques thus balancing between exploitation and exploration. 

vi
k+1 = w.v i

k+c1r1 pibest − xi
k( ) + c2r2 gbest − xi

k( )  ... (1) 

 
xi
k+1 = xi

k + vi
k+1  ... (2) 

where 
xi
k  is the position of the ith particle at iteration k, v i

k is the velocity of the ith particle at iteration k, w is the inertia 
parameter, c1 is the cognitive parameter, c2 is the social parameter, r1 and r2 are random numbers. 
 
1.2 Discrete Particle Swarm Optimization 
Discrete PSO (DPSO) is a modified version of PSO which applies discrete or qualitative distinction between variables.  
Kennedy and Eberhart (1997) developed the first DPSO with binary valued particles.  Since then several versions of 
DPSO have been developed.  DPSO will facilitate solving the combinatorial optimization problems due to its ease of 
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implementation, simple structure and its robustness (Pan et al., 2008; Tasgetiren, 2007).  DPSO algorithms that have 
been implemented so far can be broadly classified in to five categories namely (i) binary valued DPSO (Kennedy and 
Eberhart, 1997; Liao et al., 2007; Pan et al., 2008), (ii) DPSO with dummy variable to transition from combinatorial to 
discrete state and vice-versa (Jarboui et al., 2007; Jarboui et al., 2008a; Jarboui et al., 2008b), (iii) DPSO with crossover 
and mutation techniques (Lian et al., 2006; Lian et al., 2008; Pan et al., 2008), (iv) modified continuous PSO with 
smallest position value rule (Chen et al., 2006; Tasgetiren et al., 2007) and, (v) the miscellaneous DPSO models which 
includes the other versions of DPSO algorithm seen in the literature such as quantum particle version DPSO (Pang et 
al., 2004), fuzzy DPSO (Anghinolfi and Paolucci, 2009), DPSO with pseudo-insertion and extract-reinsert operators 
(Hu et al., 2004) to name a few.  
 
1.3 Industry Applications of PSO Algorithm 
Since 2002, research applying PSO has grown rapidly.  The number of papers using PSO as an optimization tool has 
totaled over 300 until 2004 (Venter and Sobieski, 2002) and is growing exponentially ever since.  Popularity of PSO is 
due to its several strengths namely (i) very few parameters to adjust, (ii) simple structure, (iii) ease of implementation, 
(iv) robustness, and (v) convergence speed.  Some of the PSO applications include communication satellite design 
(Abido, 2002), power and voltage control problem (Fukuyama et al., 1999; Yeh, 2003), supplier selection and ordering 
problem (Van den Bergh and Engelbecht 2000), neural network training (Brandstatter and Baumgartner, 2002), mass 
spring system (Allahverdi and Al-Anzi, 2006), Golinski speed reducer problem, and Rosenbrock function problem 
(Abido, 2002).  Combinatorial optimization problems that have been solved using DPSO include vehicle routing 
problem (Pang et al., 2004), traveling salesman problem (Venter and Sobieski, 2002), scheduling problem (Anghinolfi 
and Paolucci, 2009; Jarboui et al., 2008a; Jarboui et al., 2008b; Lian et al., 2006; Lian et al., 2008; Pan et al., 2008; 
Tasgetiren et al., 2007; Tseng and Liao, 2008; Jin et al., 2007), clustering problem (Jarboui et al., 2007), transmission 
network expansion problem (Jin et al., 2007), and orienteering problem (Dallard et al., 2006; Dallard et al., 2007; 
Sevkli et al., 2007). 
   This paper has been structured into the following sections: section 2 describes the problem under study (OP); section 
3 gives a detailed description of the DPSO algorithm; section 4 expands upon the parameter value selection process; 
section 5 discusses the results of the DPSO algorithm performance and section 6 provides the concluding remarks 
along with the future extension recommendations.  
 
2. PROBLEM DESCRIPTION 

 
The orienteering problem initiated from the sport of orienteering which involves cross-country running and navigation 
through a forest using a map and compass.  There are several control points or nodes to be visited and each node has a 
score tied to it.  Lower scores are usually allocated to nodes near the start and finish areas and larger scores to those 
further away.  The difficulty of reach and the distance of the node with respect of other nodes are also taken into 
consideration while allocating scores to control points.  The competitors start and end their tour at specified control 
points (which do not have any scores).  The term OP which was introduced by Tsiligirides (1984) is the score 
orienteering event version of the sport in which the competitors do not have to visit all the nodes.  The objective is to 
maximize the score within a certain prescribed time limit.  Competitors who arrive at the terminal point after the 
prescribed time limit are disqualified.   
 
2.1 Industry Applications of Orienteering Problem 
Literature reveals several applications of OP including routing oil tankers to service ships (Golden et al., 1987), 
customer vehicle assignment problem (Golden et al., 1981; Golden et al., 1984), inventory routing problem (Golden et 
al., 1981; Golden et al., 1984), production scheduling (Balas, 1989), bank/postal delivery and industrial refuse 
collection problems (Kantor and Rosenwein, 1992), and single ring design problem while constructing 
telecommunication networks (Thomadsen and Stidsen, 2003).  Recent applications of OP include mobile tourist guide 
application (Souffriau et al., 2008; Wang et al., 2008) to help tourists pick the most valuable attractions to visit within 
the given time span of their visit, and a military application (Wang et al., 2008) to aid surveillance aircrafts to choose a 
subset of places to photograph within the given amount of time or fuel constraint. 
   Since OP is a NP hard problem a few exact methods using branch and bound (Ramesh et al., 1992; Ramesh et al., 
1992b), branch and cut (Fischetti et al., 1998), Lagrangean relaxation (Balas, 1989), and minimum directed 1-subtree 
relaxation (Kataoka et al., 1998) have been developed in the past.  Several heuristic approaches have been developed in 
the last two decades.  Golden et al. (1987) implemented a heuristic with center of gravity technique. Golden et al. 
(1988) improved the center of gravity technique with learning capabilities. Keller (1989) altered his algorithm using 
Multi-Objective Vending Problem (MVP) to solve the OP. Ramesh and Brown (1992) created a four phase heuristic to 
solve the OP. Chao et al. (1996) developed a ‘fast and effective heuristic’ for OP.  Many metaheuristic algorithms such 
as Genetic Algorithm (GA) (Tasgetiren, 2002), Ant Colony Optimization (ACO) (Ke et al., 2008; Liang et al., 2002; 
Liang and Smith, 2006), Tabu Search (TS) (Kulturel-Konak et al., 2004; Liang et al., 2002), and PSO (Dallard et al., 
2006; Dallard et al., 2007; Sevki et al., 2007) have also been implemented to solve the OP.  In this paper a novel DPSO 
algorithm has been introduced which calculates the new position of the particle using pibest, gbest and the current position 
of the particle using a discrete representation as discussed in the following section.  
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3. DPSO ALGORITHM 
 

In the DPSO algorithm of OP each particle constitutes a tour encompassing the list of nodes visited such that Tmax, the 
distance constraint was obeyed.  The starting and the ending nodes are distinct and specified. In order to ensure a good 
starting solution in the population, the first particle was built using the s/d (score/distance) ratio. Starting from the first 
node, the feasible node with the highest s/d value was chosen as the next city to be visited.  Guided by the s/d values a 
feasible tour was constructed for the first particle.  The initial solutions for the remaining particles were constructed 
randomly. 
   The new position (new tour) for each particle was calculated as follows: For each node in the current particle a 
random number Λ is generated.  If Λ < w, the node is accepted as a part of a temporary array, Ω.  In a similar fashion 
nodes were included in the temporary array from the pibest particle if Λ < c1, and the gbest particle if Λ < c2. Duplicate 
nodes were removed from Ω.  If the temporary array was feasible it was accepted as the new position of the particle 
otherwise nodes were randomly deleted till a feasible solution was reached. In order to improve the efficacy of the 
algorithm so as to prevent it from being caught in local optima a Reduced Variable Neighborhood Search (RVNS) was 
used as a local search tool (Sevkli and Sevilgen, 2006).   In RVNS the solution space is searched by switching 
neighborhoods.  The two neighborhoods used in the algorithm include insert and exchange.  In the insert neighborhood 
a new node is inserted in the existing tour while in the exchange neighborhood a new node is exchanged for an existing 
node in the tour.  After the completion of the RVNS procedure a 2-opt operation is performed to optimize the tour.  If 
the tour length has been reduced by the 2-opt method, a node insert procedure is conducted in an attempt to increase the 
fitness value (total score) of the tour.  The flowchart for the DPSO algorithm is given in Figure 1 and the pseudo code 
for RVNS is shown in Figure 2 (Sevkli et al., 2007). 

 
 

Figure 1. DPSO algorithm flowchart 
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Initial solution, Sinit 
New solution, Snew 

Initial solution tour length, Sinit_len 
New solution tour length, Snew_len 

while stopping criterion not satisfied 
neighborhood ←1 
if neighborhood =1 
Snew ←Insert (Sinit) 

end if 
if neighborhood =2 

Snew ← Exchange (Sinit) 
end if 

if Fitness(Snew) > Fitness(Sinit) | Snew_len < Sinit_len 
Sinit ← Snew 

Sinit_len ← Snew_len 
neighborhood ←1 

else 
neighborhood ←2 

end if 
end while 

 
 

Figure 2. RVNS pseudo code 
 
 
   In order to better comprehend the DPSO algorithm the construction of the temporary array Ω is illustrated in Figure 
3(a).  Based on Λ(x i

n ), Λ(x p
n ) and Λ(x g

n ) values assume Ω to be Figure 3(b). Remove duplicates to get the updated 
value of Ω as shown in Figure 3(c).  Using the updated Ω the next position of the particle is constructed as shown in the 
flowchart (Figure 1). 
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Figure 3. DPSO particle (a) DPSO particle configuration (b) Temporary array Ω (c) Updated Ω 

 
 
4. PARAMETER VALUE SELECTION 

 
For the DPSO algorithm of OP, six parameters including the population size, number of generations, w, c1, c2, and the 
stopping criterion were chosen using Design of Experiments (DOE).  The stopping criterion was the number of 
generations for which the best solution found remains unchanged.  Based on preliminary experimentation two levels 
were chosen for the six factors as shown in Table 1. 
 
 
 
 

1 5 8 14 9 3 20 17 15 2 21 

1 5 8 15 6 3 20 19 11 7 4 21 
  

1 7 13 15 9 8 18 19 5 3 4 2 12 21 
 

[1 5 15 6 11 4 5 8 17 15 2 7 13 18 19 5 3 21] 

gbest 

 
pibest 

 
pcurrent 

pibest 

gbest 



Muthuswamy & Lam 
 

 96 

Table 1.  DOE Parameters and Levels 
 

Factor # Factors Level 1 Level 2 
1 Number of particles 30 40 
2 Number of generations 50 100 
3 w 0.4 0.8 
4 c1 0.4 0.8 
5 c2 0.9 1 
6 stopping criterion 25 40 

 
   The experimentation was carried out using a 26 full factorial design.  Each factor level combination was tested for 10 
replications.  The response variables used were the Relative Percentage Error (RPE) and the Average Relative 
Percentage Error (ARPE).  RPE is defined as the error between the best known solution and the best solution of all ten 
replications.  It shows if the algorithm can find the best known solution.  

RPE =
best  known  score − best  score

best  known  score
*100  ... (3) 

 
ARPE is defined as the average error of all replications.  It shows the robustness of the algorithm. 

ARPE =

best  known score − ithreplication score
best  known score

*100
⎛
⎝⎜

⎞
⎠⎟i=1

10

∑
10

 

... (4) 

 
Figure 4 shows the main effects plots of the Analysis of Variance (ANOVA) results. 
 

 

 

 

 

 

 

 

 
 
 
 

Figure 4. ANOVA main effects plots (a) For response variable RPE (b) For response variable ARPE 
 
 
   Figure 4(a) shows that the parameters, number of particles, number of generations, c2, and the stopping criterion 
significantly affect the response variable RPE.  Similarly Figure 4(b) shows that the parameters, number of particle, c2, 
and the stopping criterion influence the ARPE more than the other parameters.  The parameter values of the DPSO (see 
Table 2) were chosen such that the overall RPE and ARPE were minimized. 
 

Table 2. DPSO Parameters and their Values 
 

Factor # Factors Value 
1 Number of particles 40 
2 Number of generations 100 
3 w 0.4 
4 c1 0.4 
5 c2 0.9 
6 stopping criterion 40 
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5. RESULTS AND DISCUSSION 
 

The performance of the DPSO algorithm was validated using four benchmark problem sets from the literature totaling 
to 67 problems. Tsiligirides (1984) developed the three problem sets namely, dataset 1 with 32 nodes (18 problems), 
dataset 2 with 21 nodes (11 problems), and dataset 3 with 33 nodes (20 problems). Chao et al. (1996) corrected an error 
in Tsiligirides’s dataset 1 and named it dataset 4 (32 nodes with 18 problems).  The size of the entire search space 
(including feasible solutions, and infeasible solutions that violate the Tmax constraint) for these problems were 3.3 x 1017 
(21 node problem), 7.2 x 1032 (32 node problem), and 2.2 x 1034 (33 node problem). The results of the DPSO algorithm 
were compared with ten different heuristic models from the literature. Table 3 summarizes the acronym abbreviations 
of various heuristic models that were used for comparison.  The experiments were conducted on a windows XP 
environment on an Intel CPU T2400@1.83 GHz processor using 1 GB RAM.  The code was implemented using 
MATLAB 7.1.0.  
 

Table 3. Acronym Abbreviations for the Model Names 
 

Acronym abbreviations 
Tmax Maximum tour length allowed 
UB Upper bound on score (Leifer and Rosenwein,  1994) 
TS Tsiligirides’s heuristic (Tsiligirides, 1984) 
TC Tsiligirides’s heuristic implemented by Chao et al. (Chao et al., 1996) 
MVP Keller’s MVP heuristic (Keller, 1989) 
GLV Golden et al.’s heuristic (Golden et al., 1987) 
GWL Golden et al.’s heuristic (Golden et al., 1988) 
ANN Wang et al.’s artificial neural network model (Wang et al., 1995) 
CGW Chao et al.’s heurisitc (Chao et al., 1996) 
GA Tasgetiren’s genetic algorithm (Tasgetiren, 2002) 
ACO Liang and Smith’s ant colony optimization model (Liang and Smith, 2006) 
Tabu Kulturel-Konak et al.’s tabu model (Kulturel-Konak et al., 2004) 
PSO Sevkli et al.’s PSO algorithm (Sevkli et al., 2007) 
DPSO New DPSO algorithm proposed 

 
   Tables 4, 5, 6 and 7 provide the comparison of the best solution of 10 replications obtained by the DPSO algorithm 
against the best solution of various heuristic models for problem sets 1 through 4.  A ‘+’ symbol denotes that the DPSO 
algorithm found a superior solution than the heuristic model in comparison and vice-versa for the ‘-’ sign.  The results 
in the tables show that the DPSO algorithm is competitive.  It was able to reach the best known solutions for all of the 
67 problem instances.   
 

Table 4 . Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 1 
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Table 5. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 2 

 
 

Table 6. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 3 

 
Table 7. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 4 
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   Table 8 summarizes the total number of problems in which the DPSO algorithm outperforms the other heuristic 
models.  A ‘-’ symbol indicates the heuristic is not applicable to that dataset.  The DPSO algorithm was at par with the 
ACO (Liang and Smith, 2006) and TS (Kulturel-Konak et al., 2004) models for all the datasets.  It outperformed the 
GA (Tasgetiren, 2002), Tsiligirides’s heuristic implemented by Chao et al. (1996), and the Golden et al.’s heuristic 
(Golden et al., 1988) in one instance each.  In comparison to the other models the DPSO performed far better as shown 
in Table 8.   
 

Table 8. Summary of Problems in Which DPSO Outperformed Other Heuristics  
 

 
 
   Sevkli et al.’s PSO model (2007) contains two error metrics RPE and ARPE to measure the robustness of their model. 
The RPE and the ARPE were calculated for the 67 problems using the DPSO algorithm and compared with Sevkli et 
al.’s PSO model.  Table 9 shows that both the models reach the best known solutions with their RPE values of zero.  
However, the ARPE of the DPSO algorithm is 0.84% lower than the PSO algorithm indicating that the DPSO 
algorithm is more robust than the PSO model. 
 

Table 9.  DPSO vs. PSO Model Comparison 
 

  PSO DPSO 
RPE 0 0 
ARPE 1.05 0.21 

 
   On an average the DPSO algorithm took 21.66 seconds to solve an OP instance. The CPU time comparison between 
different models has not been done since it is a machine and language/tool dependent criterion. 
 
6. CONCLUSIONS 

 
In this paper a DPSO algorithm was presented for the OP. In order to enhance the efficacy of the algorithm RVNS 
technique was used as a local search tool and 2-opt was performed to further optimize the solution.  This algorithm was 
compared with ten different heuristic models from the literature using the benchmark datasets.  The DPSO algorithm 
was able to find the best known solutions for all the problems and outperformed seven of the heuristics in one or more 
problem instances.  In comparison to the PSO model from the literature the DPSO algorithm’s ARPE was 0.84% lower 
which exhibits the robustness of the DPSO algorithm. As a future extension this DPSO algorithm could be enhanced to 
represent the team orienteering problem and other routing problems. 
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