
International Journal of Industrial Engineering, 18(2), 92-102, 2011.

ISSN 1943-670X © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

DISCRETE PARTICLE SWARM OPTIMIZATION FOR THE
ORIENTEERING PROBLEM

Shanthi Muthuswamya, and Sarah Lamb

aDepartment of Technology, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.

bSystems Science and Industrial Engineering Department, Binghamton University, Binghamton, New York 13902,
U.S.A.

Corresponding author: Shanthi Muthuswamy, smuthuswamy@ niu.edu

Discrete particle swarm optimization (DPSO) is gaining popularity in the area of combinatorial optimization in the
recent past due to its simplicity in coding and consistency in performance. A DPSO algorithm has been developed for
orienteering problem (OP) which has been shown to have many practical applications. It uses reduced variable
neighborhood search as a local search tool. The DPSO algorithm was compared with ten heuristic models from the
literature using benchmark problems. The results show that the DPSO algorithm is a robust algorithm that can
optimally solve the well known OP test problems.

Keywords: Discrete particle swarm optimization, reduced variable neighborhood search, orienteering problem.

(Received 1 Jul 2010; Accepted in revised form 6 Feb 2011)

1. INTRODUCTION

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm that is inspired by nature. PSO has been
widely used to optimize several continuous nonlinear functions as well as combinatorial problems. Many researchers
are using PSO as a tool for solving combinatorial problems due to its simplicity in structure, ease of implementation
and performance robustness (Pan et al., 2008). Orienteering Problem (OP), which is also called the generalized
traveling salesman problem, is a combinatorial optimization problem. OP has been proved to be a NP-hard problem
(Golden et al., 1987). A limited number of exact methods have been developed to solve smaller problem instances of
the OP. Many heuristic approaches have been implemented for larger sized OPs. Various adaptive optimization
heuristics such as tabu search, genetic algorithm, and ant colony optimization algorithms (discussed in section 2) have
been developed for the OP. In this paper a DPSO algorithm has been designed for OP. The performance of the DPSO
heuristic was measured against other metaheuristic algorithms from the literature using benchmark problems.

1.1 Particle Swarm Optimization
Particle swarm optimization, inspired by the social behavior of bird flocking and fish schooling, is a population based
metaheuristic introduced by Kennedy and Eberhart (1995). In PSO, each particle represents a solution and the swarm
of particles flies through the search space in an effort to reach the global optimum. All members (particles) of the
population are maintained throughout the search procedure and their information is socially shared among the
individuals to direct the search toward the best position in the search space. The particles fly through the multi-
dimensional problem space with specific velocities and follow the current best known particles. During flight each
particle adjusts its position according to its own experience and the experience of the neighboring particles. The
neighborhood could encompass either a local neighborhood or the global neighborhood which forms the two variation
of the fundamental PSO algorithm. The particle’s best solution is called the pibest, global best is called the gbest and the
restricted neighborhood’s best particle is named the lbest (Kennedy and Eberhart, 2001). In each iteration the particle
flies to the next position with a certain velocity using the pibest and gbest values as shown in equations 1 and 2 (Shi and
Eberhart, 1999). Replace gbest with lbest for the restricted neighborhood version of the PSO. PSO combines local search
methods with global search techniques thus balancing between exploitation and exploration.

vi
k+1 = w.v i

k+c1r1 pibest − xi
k() + c2r2 gbest − xi

k() ... (1)

xi
k+1 = xi

k + vi
k+1 ... (2)

where
xi
k is the position of the ith particle at iteration k, v i

k is the velocity of the ith particle at iteration k, w is the inertia
parameter, c1 is the cognitive parameter, c2 is the social parameter, r1 and r2 are random numbers.

1.2 Discrete Particle Swarm Optimization
Discrete PSO (DPSO) is a modified version of PSO which applies discrete or qualitative distinction between variables.
Kennedy and Eberhart (1997) developed the first DPSO with binary valued particles. Since then several versions of
DPSO have been developed. DPSO will facilitate solving the combinatorial optimization problems due to its ease of

Discrete Particle Swarm Optimization

 93

implementation, simple structure and its robustness (Pan et al., 2008; Tasgetiren, 2007). DPSO algorithms that have
been implemented so far can be broadly classified in to five categories namely (i) binary valued DPSO (Kennedy and
Eberhart, 1997; Liao et al., 2007; Pan et al., 2008), (ii) DPSO with dummy variable to transition from combinatorial to
discrete state and vice-versa (Jarboui et al., 2007; Jarboui et al., 2008a; Jarboui et al., 2008b), (iii) DPSO with crossover
and mutation techniques (Lian et al., 2006; Lian et al., 2008; Pan et al., 2008), (iv) modified continuous PSO with
smallest position value rule (Chen et al., 2006; Tasgetiren et al., 2007) and, (v) the miscellaneous DPSO models which
includes the other versions of DPSO algorithm seen in the literature such as quantum particle version DPSO (Pang et
al., 2004), fuzzy DPSO (Anghinolfi and Paolucci, 2009), DPSO with pseudo-insertion and extract-reinsert operators
(Hu et al., 2004) to name a few.

1.3 Industry Applications of PSO Algorithm
Since 2002, research applying PSO has grown rapidly. The number of papers using PSO as an optimization tool has
totaled over 300 until 2004 (Venter and Sobieski, 2002) and is growing exponentially ever since. Popularity of PSO is
due to its several strengths namely (i) very few parameters to adjust, (ii) simple structure, (iii) ease of implementation,
(iv) robustness, and (v) convergence speed. Some of the PSO applications include communication satellite design
(Abido, 2002), power and voltage control problem (Fukuyama et al., 1999; Yeh, 2003), supplier selection and ordering
problem (Van den Bergh and Engelbecht 2000), neural network training (Brandstatter and Baumgartner, 2002), mass
spring system (Allahverdi and Al-Anzi, 2006), Golinski speed reducer problem, and Rosenbrock function problem
(Abido, 2002). Combinatorial optimization problems that have been solved using DPSO include vehicle routing
problem (Pang et al., 2004), traveling salesman problem (Venter and Sobieski, 2002), scheduling problem (Anghinolfi
and Paolucci, 2009; Jarboui et al., 2008a; Jarboui et al., 2008b; Lian et al., 2006; Lian et al., 2008; Pan et al., 2008;
Tasgetiren et al., 2007; Tseng and Liao, 2008; Jin et al., 2007), clustering problem (Jarboui et al., 2007), transmission
network expansion problem (Jin et al., 2007), and orienteering problem (Dallard et al., 2006; Dallard et al., 2007;
Sevkli et al., 2007).
 This paper has been structured into the following sections: section 2 describes the problem under study (OP); section
3 gives a detailed description of the DPSO algorithm; section 4 expands upon the parameter value selection process;
section 5 discusses the results of the DPSO algorithm performance and section 6 provides the concluding remarks
along with the future extension recommendations.

2. PROBLEM DESCRIPTION

The orienteering problem initiated from the sport of orienteering which involves cross-country running and navigation
through a forest using a map and compass. There are several control points or nodes to be visited and each node has a
score tied to it. Lower scores are usually allocated to nodes near the start and finish areas and larger scores to those
further away. The difficulty of reach and the distance of the node with respect of other nodes are also taken into
consideration while allocating scores to control points. The competitors start and end their tour at specified control
points (which do not have any scores). The term OP which was introduced by Tsiligirides (1984) is the score
orienteering event version of the sport in which the competitors do not have to visit all the nodes. The objective is to
maximize the score within a certain prescribed time limit. Competitors who arrive at the terminal point after the
prescribed time limit are disqualified.

2.1 Industry Applications of Orienteering Problem
Literature reveals several applications of OP including routing oil tankers to service ships (Golden et al., 1987),
customer vehicle assignment problem (Golden et al., 1981; Golden et al., 1984), inventory routing problem (Golden et
al., 1981; Golden et al., 1984), production scheduling (Balas, 1989), bank/postal delivery and industrial refuse
collection problems (Kantor and Rosenwein, 1992), and single ring design problem while constructing
telecommunication networks (Thomadsen and Stidsen, 2003). Recent applications of OP include mobile tourist guide
application (Souffriau et al., 2008; Wang et al., 2008) to help tourists pick the most valuable attractions to visit within
the given time span of their visit, and a military application (Wang et al., 2008) to aid surveillance aircrafts to choose a
subset of places to photograph within the given amount of time or fuel constraint.
 Since OP is a NP hard problem a few exact methods using branch and bound (Ramesh et al., 1992; Ramesh et al.,
1992b), branch and cut (Fischetti et al., 1998), Lagrangean relaxation (Balas, 1989), and minimum directed 1-subtree
relaxation (Kataoka et al., 1998) have been developed in the past. Several heuristic approaches have been developed in
the last two decades. Golden et al. (1987) implemented a heuristic with center of gravity technique. Golden et al.
(1988) improved the center of gravity technique with learning capabilities. Keller (1989) altered his algorithm using
Multi-Objective Vending Problem (MVP) to solve the OP. Ramesh and Brown (1992) created a four phase heuristic to
solve the OP. Chao et al. (1996) developed a ‘fast and effective heuristic’ for OP. Many metaheuristic algorithms such
as Genetic Algorithm (GA) (Tasgetiren, 2002), Ant Colony Optimization (ACO) (Ke et al., 2008; Liang et al., 2002;
Liang and Smith, 2006), Tabu Search (TS) (Kulturel-Konak et al., 2004; Liang et al., 2002), and PSO (Dallard et al.,
2006; Dallard et al., 2007; Sevki et al., 2007) have also been implemented to solve the OP. In this paper a novel DPSO
algorithm has been introduced which calculates the new position of the particle using pibest, gbest and the current position
of the particle using a discrete representation as discussed in the following section.

Muthuswamy & Lam

 94

3. DPSO ALGORITHM

In the DPSO algorithm of OP each particle constitutes a tour encompassing the list of nodes visited such that Tmax, the
distance constraint was obeyed. The starting and the ending nodes are distinct and specified. In order to ensure a good
starting solution in the population, the first particle was built using the s/d (score/distance) ratio. Starting from the first
node, the feasible node with the highest s/d value was chosen as the next city to be visited. Guided by the s/d values a
feasible tour was constructed for the first particle. The initial solutions for the remaining particles were constructed
randomly.
 The new position (new tour) for each particle was calculated as follows: For each node in the current particle a
random number Λ is generated. If Λ < w, the node is accepted as a part of a temporary array, Ω. In a similar fashion
nodes were included in the temporary array from the pibest particle if Λ < c1, and the gbest particle if Λ < c2. Duplicate
nodes were removed from Ω. If the temporary array was feasible it was accepted as the new position of the particle
otherwise nodes were randomly deleted till a feasible solution was reached. In order to improve the efficacy of the
algorithm so as to prevent it from being caught in local optima a Reduced Variable Neighborhood Search (RVNS) was
used as a local search tool (Sevkli and Sevilgen, 2006). In RVNS the solution space is searched by switching
neighborhoods. The two neighborhoods used in the algorithm include insert and exchange. In the insert neighborhood
a new node is inserted in the existing tour while in the exchange neighborhood a new node is exchanged for an existing
node in the tour. After the completion of the RVNS procedure a 2-opt operation is performed to optimize the tour. If
the tour length has been reduced by the 2-opt method, a node insert procedure is conducted in an attempt to increase the
fitness value (total score) of the tour. The flowchart for the DPSO algorithm is given in Figure 1 and the pseudo code
for RVNS is shown in Figure 2 (Sevkli et al., 2007).

Figure 1. DPSO algorithm flowchart

No

Stop

Particle update process
Temp array Ω built using pibest, gbest,
picurrent and parameters w, c1 and c2

Particle update process
Local search on Ω using reduced

variable neighborhood search and 2-opt

Yes

Create initial population

Find pibest and gbest

Particle update process
Improve Ω using insert operation

Final Ω is next gen particle

Stopping criterion
reached?

Find pibest and gbest

Discrete Particle Swarm Optimization

 95

Initial solution, Sinit
New solution, Snew

Initial solution tour length, Sinit_len
New solution tour length, Snew_len

while stopping criterion not satisfied
neighborhood ←1
if neighborhood =1
Snew ←Insert (Sinit)

end if
if neighborhood =2

Snew ← Exchange (Sinit)
end if

if Fitness(Snew) > Fitness(Sinit) | Snew_len < Sinit_len
Sinit ← Snew

Sinit_len ← Snew_len
neighborhood ←1

else
neighborhood ←2

end if
end while

Figure 2. RVNS pseudo code

 In order to better comprehend the DPSO algorithm the construction of the temporary array Ω is illustrated in Figure
3(a). Based on Λ(x i

n), Λ(x p
n) and Λ(x g

n) values assume Ω to be Figure 3(b). Remove duplicates to get the updated
value of Ω as shown in Figure 3(c). Using the updated Ω the next position of the particle is constructed as shown in the
flowchart (Figure 1).

pcurrent

(a)

(b)

 [1 6 11 4 8 17 15 2 7 13 18 19 5 3 21]

(c)

Figure 3. DPSO particle (a) DPSO particle configuration (b) Temporary array Ω (c) Updated Ω

4. PARAMETER VALUE SELECTION

For the DPSO algorithm of OP, six parameters including the population size, number of generations, w, c1, c2, and the
stopping criterion were chosen using Design of Experiments (DOE). The stopping criterion was the number of
generations for which the best solution found remains unchanged. Based on preliminary experimentation two levels
were chosen for the six factors as shown in Table 1.

1 5 8 14 9 3 20 17 15 2 21

1 5 8 15 6 3 20 19 11 7 4 21

1 7 13 15 9 8 18 19 5 3 4 2 12 21

[1 5 15 6 11 4 5 8 17 15 2 7 13 18 19 5 3 21]

gbest

pibest

pcurrent

pibest

gbest

Muthuswamy & Lam

 96

Table 1. DOE Parameters and Levels

Factor # Factors Level 1 Level 2
1 Number of particles 30 40
2 Number of generations 50 100
3 w 0.4 0.8
4 c1 0.4 0.8
5 c2 0.9 1
6 stopping criterion 25 40

 The experimentation was carried out using a 26 full factorial design. Each factor level combination was tested for 10
replications. The response variables used were the Relative Percentage Error (RPE) and the Average Relative
Percentage Error (ARPE). RPE is defined as the error between the best known solution and the best solution of all ten
replications. It shows if the algorithm can find the best known solution.

RPE =
best known score − best score

best known score
*100 ... (3)

ARPE is defined as the average error of all replications. It shows the robustness of the algorithm.

ARPE =

best known score − ithreplication score
best known score

*100
⎛
⎝⎜

⎞
⎠⎟i=1

10

∑
10

... (4)

Figure 4 shows the main effects plots of the Analysis of Variance (ANOVA) results.

Figure 4. ANOVA main effects plots (a) For response variable RPE (b) For response variable ARPE

 Figure 4(a) shows that the parameters, number of particles, number of generations, c2, and the stopping criterion
significantly affect the response variable RPE. Similarly Figure 4(b) shows that the parameters, number of particle, c2,
and the stopping criterion influence the ARPE more than the other parameters. The parameter values of the DPSO (see
Table 2) were chosen such that the overall RPE and ARPE were minimized.

Table 2. DPSO Parameters and their Values

Factor # Factors Value
1 Number of particles 40
2 Number of generations 100
3 w 0.4
4 c1 0.4
5 c2 0.9
6 stopping criterion 40

Discrete Particle Swarm Optimization

 97

5. RESULTS AND DISCUSSION

The performance of the DPSO algorithm was validated using four benchmark problem sets from the literature totaling
to 67 problems. Tsiligirides (1984) developed the three problem sets namely, dataset 1 with 32 nodes (18 problems),
dataset 2 with 21 nodes (11 problems), and dataset 3 with 33 nodes (20 problems). Chao et al. (1996) corrected an error
in Tsiligirides’s dataset 1 and named it dataset 4 (32 nodes with 18 problems). The size of the entire search space
(including feasible solutions, and infeasible solutions that violate the Tmax constraint) for these problems were 3.3 x 1017
(21 node problem), 7.2 x 1032 (32 node problem), and 2.2 x 1034 (33 node problem). The results of the DPSO algorithm
were compared with ten different heuristic models from the literature. Table 3 summarizes the acronym abbreviations
of various heuristic models that were used for comparison. The experiments were conducted on a windows XP
environment on an Intel CPU T2400@1.83 GHz processor using 1 GB RAM. The code was implemented using
MATLAB 7.1.0.

Table 3. Acronym Abbreviations for the Model Names

Acronym abbreviations
Tmax Maximum tour length allowed
UB Upper bound on score (Leifer and Rosenwein, 1994)
TS Tsiligirides’s heuristic (Tsiligirides, 1984)
TC Tsiligirides’s heuristic implemented by Chao et al. (Chao et al., 1996)
MVP Keller’s MVP heuristic (Keller, 1989)
GLV Golden et al.’s heuristic (Golden et al., 1987)
GWL Golden et al.’s heuristic (Golden et al., 1988)
ANN Wang et al.’s artificial neural network model (Wang et al., 1995)
CGW Chao et al.’s heurisitc (Chao et al., 1996)
GA Tasgetiren’s genetic algorithm (Tasgetiren, 2002)
ACO Liang and Smith’s ant colony optimization model (Liang and Smith, 2006)
Tabu Kulturel-Konak et al.’s tabu model (Kulturel-Konak et al., 2004)
PSO Sevkli et al.’s PSO algorithm (Sevkli et al., 2007)
DPSO New DPSO algorithm proposed

 Tables 4, 5, 6 and 7 provide the comparison of the best solution of 10 replications obtained by the DPSO algorithm
against the best solution of various heuristic models for problem sets 1 through 4. A ‘+’ symbol denotes that the DPSO
algorithm found a superior solution than the heuristic model in comparison and vice-versa for the ‘-’ sign. The results
in the tables show that the DPSO algorithm is competitive. It was able to reach the best known solutions for all of the
67 problem instances.

Table 4 . Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 1

Muthuswamy & Lam

 98

Table 5. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 2

Table 6. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 3

Table 7. Comparison of DPSO Algorithm with the Other Heuristic Models for Problem Set 4

Discrete Particle Swarm Optimization

 99

 Table 8 summarizes the total number of problems in which the DPSO algorithm outperforms the other heuristic
models. A ‘-’ symbol indicates the heuristic is not applicable to that dataset. The DPSO algorithm was at par with the
ACO (Liang and Smith, 2006) and TS (Kulturel-Konak et al., 2004) models for all the datasets. It outperformed the
GA (Tasgetiren, 2002), Tsiligirides’s heuristic implemented by Chao et al. (1996), and the Golden et al.’s heuristic
(Golden et al., 1988) in one instance each. In comparison to the other models the DPSO performed far better as shown
in Table 8.

Table 8. Summary of Problems in Which DPSO Outperformed Other Heuristics

 Sevkli et al.’s PSO model (2007) contains two error metrics RPE and ARPE to measure the robustness of their model.
The RPE and the ARPE were calculated for the 67 problems using the DPSO algorithm and compared with Sevkli et
al.’s PSO model. Table 9 shows that both the models reach the best known solutions with their RPE values of zero.
However, the ARPE of the DPSO algorithm is 0.84% lower than the PSO algorithm indicating that the DPSO
algorithm is more robust than the PSO model.

Table 9. DPSO vs. PSO Model Comparison

 PSO DPSO
RPE 0 0
ARPE 1.05 0.21

 On an average the DPSO algorithm took 21.66 seconds to solve an OP instance. The CPU time comparison between
different models has not been done since it is a machine and language/tool dependent criterion.

6. CONCLUSIONS

In this paper a DPSO algorithm was presented for the OP. In order to enhance the efficacy of the algorithm RVNS
technique was used as a local search tool and 2-opt was performed to further optimize the solution. This algorithm was
compared with ten different heuristic models from the literature using the benchmark datasets. The DPSO algorithm
was able to find the best known solutions for all the problems and outperformed seven of the heuristics in one or more
problem instances. In comparison to the PSO model from the literature the DPSO algorithm’s ARPE was 0.84% lower
which exhibits the robustness of the DPSO algorithm. As a future extension this DPSO algorithm could be enhanced to
represent the team orienteering problem and other routing problems.

7. REFERENCES

1. Abido, M. A. (2002). Optimal power flow using particle swarm optimization. Electrical Power Energy

Systems, 24:563–571.
2. Allahverdi, A., Al-Anzi, F. S. (2006). A PSO and tabu search heuristics for the assembly scheduling problem

of the two-stage distributed database application. Computers & Operations Research, 33:1056–1080.
3. Anghinolfi, D., Paolucci, M. (2009). A new discrete particle swarm optimization approach for the single-

machine total weighted tardiness scheduling problem with sequence-dependent setup times. European Journal
of Operational Research, 193(1):73–85.

4. Balas, E. (1989).The prize collecting traveling salesman problem. Networks, 19, 621–636.
5. Brandstatter, B., Baumgartner, U. (2002). Particle swarm optimization – mass-spring system analogon. IEEE

Transactions on Magnetics, 38:997–1000.

Muthuswamy & Lam

 100

6. Chao, I-M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic for the orienteering problem.
European Journal of Operational Research, 88:475–489.

7. Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated
vehicle routing problem. Journal of Zhejiang University Science A, 7(4):607–614.

8. Dallard, H., Lam, S., & Kulturel-Konak, S. (2006). A particle swarm optimization approach to the orienteering
problem. Proceedings of Industrial Engineering Research Conference, Orlando, FL.

9. Dallard, H., Lam, S., & Kulturel-Konak, S. (2007). Solving the orienteering problem using attractive and
repulsive particle swarm optimization. Proceedings of the International Conference on Information Reuse and
Integration, Las Vegas, NV.

10. Fischetti, M., Gonzalez, J. J. S., & Toth, P. (1998). Solving the orienteering problem through branch-and-cut.
INFORMS Journal of Computing, 10(2):133–148.

11. Fukuyama, Y., Takayama, S., Nakanishi, Y., & Yoshida, H. (1999). A particle swarm optimization for
reactive power and voltage control in electric power systems. Proceedings of the Genetic and Evolutionary
Computation Conference, Orlando, FL.

12. Golden, B. L., Assad, A., & Dahl, R. (1984). Analysis of a large-scale vehicle routing problem with an
inventory component. Large Scale Systems, 7:181–190.

13. Golden, B. L., Levy, L., & Dahl, R. (1981). Two generalizations of the traveling salesman problem. Omega,
8(4):439–441.

14. Golden, B. L., Levy, L., & Vohra, R. (1987).The orienteering problem. Naval Research Logistics, 34,307–
318.

15. Golden, B. L., Wang, Q., & Liu, L. (1988). A multifaceted heuristic for the orienteering problem. Naval
Research Logistics, 354:359–366.

16. Hu, X., Shi, Y., & Eberhart, R.C. (2004). Recent advances in particle swarm. Proceedings of IEEE Congress
on Evolutionary Computation, 1: 90–97.

17. Jarboui, B., Cheikh, M., Siarry, P., & Rebai, A. (2007). Combinatorial particle swarm optimization (CPSO)
for partitional clustering problem. Applied Mathematics and Computation, 192:337–345.

18. Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008a). A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and
Computation, 195:299–308.

19. Jarboui, B., Ibrahim, S., Siarry, P., & Rebai, A. (2008b). A combinatorial particle swarm optimization for
solving permutation flowshop problems. Computers & Industrial Engineering, 54:526–538.

20. Jin, Y-X., Cheng, H-Z.,Yan, J-Y., & Zhang, L. (2007). New discrete method for particle swarm optimization
and its application in transmission network expansion planning. Electric Power Systems Research, 77:227–
233.

21. Kantor, M., Rosenwein, M. (1992). The orienteering problem with time windows. Journal of the Operational
Research Society, 43(6):629–635.

22. Kataoka, A., Yamda, T., & Morita, S. (1998). Minimum directed 1-subtree relaxation for score orienteering
problem. European Journal of Operational Research, 104:139–153.

23. Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem. Computers and
Industrial Engineering, 54(3):648–665.

24. Keller, C. P. (1989). Algorithms to solve the orienteering problem: A comparison. European Journal of
Operational Research, 41:224–231.

25. Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of IEEE International
Conference on Neural Networks, 1942–1948.

26. Kennedy, J., Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of
the World Multiconference on Systemics, Cybernetics and Informatics, 4104–4109.

27. Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. Morgan Kaufmann: San Mateo.
28. Kulturel-Konak, S., Norman, B. A., Coit, D. W., & Smith, A. E. (2004). Exploiting tabu search memory in

constrained problems. INFORMS Journal of Computing, 16(3):241–254.
29. Leifer, A. C., Rosenwein, M. S. (1994). Strong linear programming relaxations for the orienteering problem.

European Journal of Operational Research, 73:517–523.
30. Lian, Z., Gu, X., & Jia, B. (2008). A novel particle swarm optimization algorithm for permutation flow-shop

scheduling to minimize makespan. Chaos Solitons & Fractals, 35:851–861.
31. Lian, A., Jiao, B., & Gu, X. (2006). A similar particle swarm optimization algorithm for job-shop scheduling

to minimize makespan. Applied Mathematics and Computation, 183:1008–1017.
32. Liang, Y-C., Kulturel-Konak, S., & Smith, A. E. (2002). Meta heuristics for the orienteering problem.

Proceedings of the 2002 Congress on Evolutionary Computation, 384–389.
33. Liang, Y-C., Smith, A. E. (2006). An ant colony approach to the orienteering problem. Journal of the Chinese

Institute of Industrial Engineers, 23:403–414.
34. Liao, C-J., Tseng, C-T., & Luarn, P. (2007). A discrete version of particle swarm optimization for flowshop

scheduling problems. Computers & Operations Research, 34:3099–3111.

Discrete Particle Swarm Optimization

 101

35. Pan, Q-K., Tasgetiren, M. F., & Liang, Y-C. (2008). A discrete particle swarm optimization algorithm for the
no-wait flowshop scheduling problem. Computers & Operations Research, 35:2807–2839.

36. Pang, W., Wang, K-P., Zhou, C-G., & Dong, L-J. (2004). Fuzzy discrete particle swarm optimization for
solving traveling salesman problem. Proceedings of the Fourth International Conference on Computer and
Information Technology, 796–800.

37. Ramesh, R., Brown, K. M. (1992). An efficient four-phase heuristic for the generalized orienteering problem.
Computers & Operations Research, 18(2):151–165.

38. Ramesh, R., Yoon, Y. S., & Karwan, M. H. (1992). An optimal algorithm for the orienteering tour problem.
ORSA Journal on Computing, 4(2):155–165.

39. Sevkli, Z., Sevilgen, F. E. (2006).Variable neighborhood search for the orienteering problem. Proceedings of
International Symposium on Computer and Information Sciences, Istanbul, Turkey.

40. Sevkli, Z., Sevilgen, F. E.,& Keles, O. (2007). Particle swarm optimization for the orienteering problem.
International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey.

41. Shi, Y., Eberhart, R. C. (1999). Empirical study of particle swarm optimization. Proceedings of Congress of
Evolutionary Computation, 1945–1950.

42. Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G., & Van Oudheusden, D. (2008). A
personalised tourist trip design algorithm for mobiletourist guides. Applied Artificial Intelligence, 22(10):964–
985.

43. Tasgetiren, M. F. (2002). A genetic Algorithm with an adaptive penalty function for the orienteering problem.
Journal of Economic and Social Research, 4(2):1–26.

44. Tasgetiren, M. F., Liang, Y-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research, 177:930–947.

45. Thomadsen, T., Stidsen, T. (2003). The quadratic selective travelling salesman problem. Informatics and
Mathematical Modelling Technical Report 2003-17, Technical University of Denmark.

46. Tseng, C-T., Liao, C-J. (2008).A discrete particle swarm optimization for lot-streaming flowshop scheduling
problem. European Journal of Operational Research, 191(2):360–373.

47. Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational Research Society,
35(9):797–809.

48. Van den Bergh, F., Engelbecht, A.P. (2000). Cooperative learning in neural networks using particle swarm
optimizers. South African Computer Journal, 26:84–90.

49. Venter, G., Sobieski, J. (2002). Particle swarm optimization. 43rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Material Conference, Denver, CO.

50. Wang, Q., Sun, X., Golden, B. L., & Jia, J. (1995). Using artificial neural networks to solve the orienteering
problem. Annals of Operations Research, 61:111–120.

51. Wang, X., Golden, B., & Wasil, E. (2008). Using a genetic algorithm to solve the generalized orienteering
problem. In: Golden, B., Raghavan, S., Wasil, E. (Eds.), The Vehicle Routing Problem: Latest Advances and
New Challenges, 263–274.

52. Yeh, L. W. (2003). Optimal procurement policies for multi-product multi-supplier with capacity constraint and
price discount. Masters Thesis, Yuan Ze University Taiwan.

Muthuswamy & Lam

 102

BIOGRAPHICAL SKETCH

Shanthi Muthuswamy is an Assistant Professor in the Department of Technology
at Northern Illinois University. She received her Ph.D. in Industrial and Systems
Engineering from State University of New York at Binghamton. Her teaching and
research interests include heuristic optimization, facilities planning, system
simulation, project management, and manufacturing systems.

Sarah Lam is an Associate Professor in the Systems Science and Industrial
Engineering Department and an Assistant Director of Systems Analysis and
Modeling of the Watson Institute for Systems Excellence (WISE), at the State
University of New York at Binghamton. She received an M.S. degree in operations
research from the University of Delaware and a Ph.D. degree in industrial
engineering from the University of Pittsburgh. Her current research involves
modeling and simulation, evolutionary optimization, data mining, and neural
network modeling and validation. She is a member of IIE and IEEE.

