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Agent-based technology provides a natural approach to model supply chain networks. Each production unit, represented by 
an agent, is responsible for planning its operations and communicates with other units for coordination purposes. In this 
paper, we study a softwood lumber supply chain made up of three production units (the sawing unit, the drying unit and the 
finishing unit). We define the local problems and propose agent-specific mathematical models to plan and schedule 
operations. Then, in order to coordinate these plans between the three agents, we propose different coordination 
mechanisms. Incorporating these developments, we show how an agent-based simulation tool can be used to integrate 
planning models and evaluate different coordination mechanisms. 
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1. INTRODUCTION 
 
   Canadian lumber companies are confronted with the need to reengineer the way they manage and plan their supply chain 
operations. Supply chains are global networks of organizations where material and information flow in many directions 
within and across organizational boundaries through complex business networks of suppliers, manufacturers and 
distributors, to the external customers. These organizations can be part of the internal supply chain that consists of members 
of the same company or part of the external supply chain, which includes members of different companies. They must all 
exchange materials and information in order to maximize customer satisfaction at the lowest possible cost. 
   As concerns the lumber supply chain, it is similar to that of other industries: lumber material flows from forest 
contractors, to sawing facilities, to value-added mills (referred to as secondary transformation), and through the many 
channels of distributors and wholesalers to finally reach the markets. However, lumber operational planning represents a 
major challenge. Unlike the traditional manufacturing industry which has a convergent product structure (i.e., assembly), 
the lumber industry needs to master industry-specific operational processes. These are characterized by: (1) a divergent 
product structure (i.e., trees are broken down into many products), (2) the highly heterogeneous nature of its raw material 
and (3) radically different planning problems must be solved by each production center. 
   Distributed planning is an interesting approach for supply chain operational planning since it enables the use of specific 
optimization strategies and information available only locally. Unlike centralized planning approaches, which generally 
cannot take into account specific operational details, distributed planning makes it possible to create detailed models of 
specific planning problems. 
   The purpose of this paper is to propose planning models for the lumber production units and then to compare different 
coordination mechanisms. In Section 2, we present a description of the softwood lumber production processes and planning 
strategy used by practitioners. Next, in Section 3, a literature review is provided on lumber planning, supply chain and 
coordination. Then, in Section 4, we propose a distributed planning system, including specific planning models for each 
production unit as well as coordination mechanisms to ensure coherence between agents. Section 5 reports how an 
industrial supply chain was modeled in order to validate the models and evaluate the coordination mechanisms, using 
agent-based tools. Finally, Section 6 concludes the paper. 
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2. SOFTWOOD LUMBER PRODUCTION AND PLANNING 
 
2.1 Production Units 
This section introduces the three different production units involved in softwood lumber production:  
 

• the sawing facility, where logs are cut into various sizes of rough pieces of lumber; 
• the drying facility, which reduces the lumber moisture content and 
• the finishing facility, where lumber is planed (surfaced), trimmed and sorted.  

 
Figure 1 presents the different production units.  

 
 
 

Figure 1. Production units and products in a lumber supply chain 
 
 
   This paper does not address the log supply problem. Forest is harvested by entrepreneurs responsible for felling trees and 
crosscutting them into logs according to an annual harvest plan. Therefore, logs are supplied to the sawing unit more or less 
according to this plan. 
 
Sawing Unit 
   Logs often times remain in a sawmill yard for a lengthy period of time before being processed. They are stored in huge 
lots according to certain physical characteristics (species, length, average diameter, etc.), each lot representing a specific 
class of logs. 
   Logs are then broken down into various sizes of rough pieces of lumber. Different dimensions of lumber will be obtained 
at the same time from a single log, which is called co-production. Most of the time, sawmills have access to data regarding 
past production, allowing them to forecast the expected quantities of the different types of lumber to be produced from a 
specific quantity of logs of a given log class. This information defines a production matrix (Figure 2). Arcs show the 
quantity of each type of lumber expected when sawing a given volume from a specific log class. According to this example, 
if a batch of 100 logs from Class 2 is about to be processed, it is expected to produce 110 pieces of 2”x3” and 95 pieces of 
2”x4”. 
   In most sawmills, the production line can be set up in different modes, each setup being associated with a specific 
production matrix which gives the production manager some control over the production output mix. However, certain log 
classes may be incompatible with certain setups; for example, in most sawmills, fir and spruce cannot be processed in the 
same production shift and are thus associated with different setups. Therefore, the decisions the production manager must 
make are the following: 

(1) decide how the plant will be set up for each production shift, and 
(2) decide which quantities of each log class to be consumed at each production shift.  

   Once logs are sawn, green pieces of lumber are assembled into bundles of the same dimension (2”x3”, 2”x4”, etc.) and 
length (8-foot, 12-foot, 16-foot, etc.), and generally of the same species (spruce, fir, etc.) in order to be dried. 
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Figure 2. Example of a production matrix 
 
 
Drying Unit 
   Lumber drying is a transformation operation which aims at decreasing the lumber moisture content in order to meet 
customer requirements. These requirements are usually specified by industry standards, although some customers may 
require specific levels of moisture content. Softwood lumber drying is a rather complex process to carry out. It takes days 
and is done in batches within large kiln dryers. Bundles of lumbers of different lengths can be dried in the same batch (e.g. 
8-foot and 16-foot), but lumbers must be of the same dimension and species (although there are some exceptions). A batch 
must be assembled as a rectangular prism filling the kiln dryer almost entirely. There are many constraints related to the 
stability of this stacking. For these reasons, each sawmill defines its own set of loading patterns that can be used. Figure 3 
shows two examples of loading patterns. 

 
 
 

Figure 3. Examples of small loading patterns (actual kilns and patterns contain a few hundred bundles) 
 
 
   Under certain circumstances, special sections of the wood yard may be used to perform air drying. Air drying, which 
precedes kiln drying, may take several weeks but allows the reduction of the drying time in the kiln. Air drying also plays a 
role in increasing the overall quality of the finished product (obtained after finishing).  
   For a given batch of green lumber, there are different possible alternative operations that can be used for air-drying and 
kiln-drying. Figure 4 presents an example of four possible alternative combinations of operations. For air drying, these are 
mostly differentiated according to their durations. For kiln operations, they are different with regard to air temperature, 
humidity parameters, and duration. The planning decisions for this production unit are the following: (1) what drying 
activities to perform, (2) what loading pattern to use, and (3) when to perform them. 
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Figure 4. Example of drying processes available for a given batch of lumber 
 
 
Finishing Operations 
   At the finishing facility, lumbers are first planed (or surfaced). They are then sorted according to their grade (i.e. quality) 
with respect to the residual moisture content and physical defects. Lumber may be trimmed in order to produce a shorter 
lumber of a higher grade and value. This process is usually optimized by hardware to produce products with the highest 
value, with no consideration for the actual customer demand. This causes the production of multiple product types at the 
same time (co-production) from a single product type in input (divergence). It is important to note that the co-production 
cannot be avoided from a planning point of view: it is embedded within the transformation process. It is common to obtain 
more than 20 different types of products from a single product. The expected products mix to be obtained from a batch 
depends on the drying process used. Therefore, in the planning models introduced hereafter, we consider the output product 
associated with each of the drying processes (paths in Figure 4) as a different kind of input for the finishing process. 
   There is also a setup cost each time the facility processes a different dimension (e.g. from 2”x3” to 2”x6”). Consequently, 
most sawmills allow such a setup only between production shifts as they prefer campaigns (a batch of products of the same 
dimension but variable length) with a duration of more than one shift.  
   To sum up, the decisions that must be taken in order to plan the finishing operations are the following: (1) which 
campaign to realize (i.e. which lumber dimensions), (2) when and for how long and (3) for each campaign, what quantities 
of each length to process. Figure 5 shows a simple example of a production plan, including the campaigns (2”x3”, 2”x6” 
and 2”x4”) and the time spent on each length.  

 
 
 

Figure 5. Production plan for a finishing line for six consecutive production shifts 
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2.2 Lumber Production Planning and Sales 
   Due to the highly heterogeneous nature of the resource and the inherent complexity of forecasting production throughput, 
the dominant thinking in the North American lumber industry is to produce the maximum volume with the available 
resource. This can be identified as a push production mode, where demand from specific clients is not taken into account. 
Production is oriented towards large batches to take advantage of economy of scale, resulting in large inventories, low 
flexibility and low agility. The production manager has as main objective to feed the production line continuously, in order 
to maximize the production rate and throughput. He also tries to forecast the quantity of output products as precisely as 
possible. Once a week, he transmits to the sales department an updated forecast about what product should be available 
(and when) during the following four to six weeks. 
   The sales process is triggered by clients calling to ask if a specific product will be available at a specific date. If it is 
forecasted the product will be available at this date, the sale is concluded. If not, the sale is lost and the client will look for 
the product elsewhere. It is also common for a client to request the product availability list and then make its selection (if 
any) from that list. In that case, if no sale is concluded, the company will not be aware of the missed opportunity as the 
need of the client was never revealed. This is mainly a spot market approach. 

 
2.3 Toward a Pull Production System 
   While the previous planning approach has the advantage of maximizing the throughput value, it does not take client needs 
into account. On-hand or forecasted inventory can be different from what final clients really want, leading to missed sales 
opportunities. This is why some Canadian lumber producers are investigating the possibility of evolving from a push 
production mode to a pull production mode.  
   This approach consists in crafting long-term agreements with certain clients, whose favored supplier you wish to become. 
The client and the supplier agree upon annual volumes and a mechanism for determining prices. The exact moment for 
deliveries, volumes and the identification of products will vary in time however, as a function of the client’s needs. Several 
times a year, the client transmits a list of product quantities and preferred delivery dates, called demand plan. The supplier 
does his best to fulfill this demand and transmits a supply plan to the client, where delivery dates can differ from those 
requested by the client. Although clients are usually flexible regarding delivery dates, the supplier will be evaluated, in a 
long-term perspective for its capacity to carry out deliveries as closely as possible to the delivery dates requested. As 
current planning tools used by the lumber industry (generally in-house spreadsheet applications) were designed for push 
production systems, they cannot be used in a context where production is planned according to demand. Companies must, 
in fact, limit themselves to selling only a marginal portion of their production in the context of these long-term agreements, 
and do so even when these sales prove to be more profitable. Therefore, a new planning paradigm should be adopted. 
   To design such a pull production system, some characteristics of the problem must be taken into account. For example, it 
takes days to produce a batch of green lumber that is ready to be dried because of co-production at the sawing unit.  The 
relatively large size of kiln dryers and the constraint to dry similar products together imposes some important production 
lead times. Furthermore, due to co-production at the finishing unit, a single batch of green lumber to be dried and finished 
contributes to the fulfillment of many customer orders for different product types. Also, because the volume of each 
customer order for a specific product is usually larger than the amount produced with one single batch, many batches are 
usually needed to fulfill one particular need. These specific issues have raised the need for a tightly integrated process 
planning and scheduling (Bartak et al, 2002). 

 
3. LITERATURE REVIEW 
 
3.1 Lumber Production Planning 
   Certain authors have worked on the specific problem of softwood lumber production planning. Among them, Maness et 
al (1993) have proposed a mixed programming model that simultaneously determines the optimal bucking and sawing 
policies based on demand and final product price (integration of stem bucking and log sawing). This model was later 
modified to handle several periods (Maness et al, 2002). These works focus on the identification of new cutting 
patterns/policies. 
   Taking a more global view of the supply chain, Singer et al (2007) recently presented a model for optimizing planning 
decisions in the sawmill industry. They modeled a simplified internal supply chain, including two transformation stages and 
two inventory stages. The objective was to demonstrate how collaboration can benefit the partners, by transferring timber 
and using the competitive advantages of each. Other interesting studies have been presented about integrated supply chain 
planning in the wood furniture industry (Ouhimmou et al, 2005) and in the OSB panel industry (Feng et al, 2008).  
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3.2 Supply Chain Planning 
   Operations planning within supply chains is a complex issue. Companies usually deal with this by implementing and 
using information and decision support systems that address various planning tasks. Some companies also adopt just-in-
time approaches to control the pace of production and replenishment. When organizational units are part of the same 
company, centralized information and planning systems are sometimes used. Gathering information in a centralized 
management system and redistributing plans can ensure synchronization and optimization of plans. Decision support 
systems, such as Advanced Planning and Scheduling (APS) systems are sophisticated sets of decision support applications 
using operational research (OR) techniques to find solutions to complex planning problems (Frayret, 2002). Many consider 
APS systems  as state-of-the-art manufacturing and supply chain planning and scheduling practices. The reader is referred 
to Stadtler (2005) and Stadtler et al (2005) for a thorough description of APS.  
   Yet, even in an internal supply chain, the planning problem is complex and difficult to handle. In fact, currently available 
software solutions generally do not provide the necessary support to network organizations and are clearly insufficient in 
planning and coordinating activities in heterogeneous environments (Stadtler, 2005). Planning, scheduling and traditional 
control mechanisms are insufficiently flexible to react to rapid changes in production modes and client needs (Maturana et 
al, 1999). In other words, traditional systems have not been developed to work in decentralized, dynamic and 
heterogeneous environments, like supply chains. Collaboration and coordination mechanisms are needed to ensure 
synchronization and consistency throughout the supply chain. This has opened the way to an entirely new research domain, 
where researchers are interested in coordination and decision-making between supply chain partners to optimize the supply 
chain performance (Strader et al, 1998). 

 
3.3 Coordination in Supply Chains 
   An important management challenge in supply chains is the need for partners to perform different planning tasks locally 
while simultaneously managing their interdependencies. Among several authors who have studied coordination in supply 
chain, Bhatnagar et al (1993) differentiate between inter-function coordination, referred to as the general coordination 
problem, and the multi-plant coordination of the same function. The general coordination problem is usually subdivided 
into three classes of coordination problems, namely, supply and production planning, production and distribution planning, 
and inventory and distribution planning. Thomas and Griffin (1996) present a review of the literature concerned with the 
coordination of these functions, while Bhatnagar et al (1993) focus on issues concerning the multi-plant coordination 
problem. 
   This work focuses on the multi-plant coordination problem and proposes three operations planning models linked by their 
material flow variables (i.e., delivery and order variables), and coordination mechanisms to make sure the resulting 
operations plans are coherent with each other. 

 
4. DISTRIBUTED PLANNING FOR THE LUMBER SUPPLY CHAIN 
 
   In this section, we present a distributed-APS system for the lumber supply chain. The local problems associated with each 
production unit (sawing, drying and finishing) are modeled and solved separately. This specific structure is neither unique 
nor optimal, as it would be possible to design a more centralized structure with a single agent responsible for the planning 
of all production operations. Unfortunately, due to the complexity and the specificities of those problems, it appears 
difficult to take advantage of such a centralized planning algorithm because it is more than likely that only aggregated 
information could be handled with such a single agent. On the other hand, distributed planning enables the use of specific 
optimization strategies and information available only locally. Finally, by replicating natural interactions existing between 
the units, it permits faster reactivity to local perturbations.  
   In the remaining portion of this section, different Mixed Integer Programming (MIP) models for the operations planning 
and scheduling of the three production centers are proposed. These models can be used individually or collectively. 
Afterwards, we propose different coordination mechanisms to ensure the coherence and feasibility of the production plans. 

 
4.1 Planning and Scheduling Models 
   In order to plan individually or collectively the operations of the different production centers, planning and scheduling 
models have been developed. The following subsections present the optimization models developed specifically for the 
sawing unit, the drying unit and the finishing unit.  

Sawing Model 
   The following defines the proposed planning and scheduling model for the sawing unit. Each processing activity is 
modeled as an association between a quantity of logs to consume, expected production, and machine usage. More than one 
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processing activity can be used during the same production shift, but with certain limitations imposed by setup constraints 
(see Section 2.1). 

Sets 
 the number of periods in the planning horizon. The index t refers to the periods t = 1,…,T; 
 set of products p; 

 products p that can be consumed (raw products). ; 
 products p that can be produced. . Please note that  and  are non intersecting 

subsets. 
 set of machines m; 
 set of processing activities  available to the unit; 
 each defines a mode in which the plant can be set up to operate; 
 specifies the modes  such that the plant can execute the processing activity a. An activity may be 

compatible with many modes and many activities can be compatible with the same mode. 

Parameters 
 inventory of product  in stock at the beginning of the planning horizon; 

 holding cost (per period) for product p; 
 supply for product  provided at the beginning of period t; 
 demand for product  the plant is expected to deliver by the end of period t; 

 backorder cost that occurs when one unit of product  is late for one period; 
 variable cost associated to performing a, including cost of raw material, if it applies; 

 volume of raw material consumed each time a is executed. A single processing activity a can 
consume different product types at the same time; 

 quantity of product  produced each time a is executed. A single processing activity can produce 
many product types at the same time. 

 capacity of machine (number of time units) used each time a is executed; 
 available capacity of machine for period t (number of time units). 

Variables 
 total volume of product  consumed during period t; 
 total volume of product  produced during period t; 

 volume of product  in stock at the end of period t; 

 cumulated demand for product  not satisfied at the end of period t (that is, backorder); 

 volume of product  that would be in stock if the cumulated demand was satisfied. This variable can 
take negative values. It is introduced in order to simplify flow constraints formulation. See constraint (1.7) for 
the relation between ,  and ; 

 binary variable equals 1 if the plant is set up in mode f at period t; 0 otherwise; 

 usage of processing activity a during period t (continuous variable).  

Objective function 
   Within the industrial application considered in this paper it is impractical to consider demand as a hard constraint (late 
deliveries are inevitable). Consequently, we try to minimize the cost of these backorders. We also take into account 
inventory cost and variable production cost:   

 (1.1) 
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Production constraints 
The product consumption and production of the plant are related to the number of times each processing activity is used: 

 
 (1.2) 

 
 (1.3) 

At each period t of the planning horizon, the sawing line can be set up in only one mode and thus can only use the 
processing activities compatible with that mode: 

  (1.4)  

  (1.5) 

where  is a significantly large number  

The number of times each processing activity is executed is constrained by the capacity of each machine: 
  (1.6) 

Flow constraints 
Constraint (1.7) and (1.8) together with the objective function allow the computation of backorder level. Of course, no 
backorder is allowed for raw products (1.9). 

  (1.7) 

  (1.8) 

  (1.9) 

Constraints (1.10) and (1.11) establish the relation between inventory, supply and consumption of logs.  
  (1.10) 

  (1.11) 

Constraints (1.12) and (1.13) establish the relation between inventory, demand and production. 
  (1.12) 

  (1.13) 

Model implementation and resolution 
   For real industrial problems, this model was easily solved using the MIP solver ILOG CPLEX 9.1. Near optimal solutions 
can be found in a few minutes.  

Drying Model 
   Drying is a multi-stage process (see Section 2.1). In the proposed model we chose not to model directly the alternative 
combination of activities (paths in Figure 4). Instead, we modeled the individual activities. The connection between the 
activities (i.e. a valid precedence relationship between two activities) is enforced by the stocks level constraints for 
intermediary products (an intermediary product needed by an activity, must first be produced by its predecessor). 
   Figure 6 presents the main idea involved in this model. We have different activity types . Each type of activity can 
be executed on a compatible machine , and has a specified duration . The parameters  and  
specify the consumption and production for products . In this context, building a plan can be seen as deciding which 
activities to perform, when to do them and which machines to use. A solution can be represented by a Gantt chart of 
activities (see Figure 6). Each type of activity can be inserted as many times as needed in the plan. Inserted activities have 
an impact on product inventories  by increasing or decreasing it since they produce and consume different products. 
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Demand from the finishing unit  also influences product inventories. These kinds of models are referred to as 
timetable models or time-line models (Bartak, 1999a; 1999b; 2002). 

 
 
 

Figure 6. Illustration of the drying model 
 
 
Sets 
   This drying model uses notation similar to the sawing model. The following sets have the same meaning in both models: 
periods , products  and machines . Because drying processes allow intermediary products 

that can be both produced and consumed,  and  may now intersect. Consequently, in order to simplify the 
presentation of flow constraints, we will consider each product  as a resource that can be consumed, produced, 
supplied and shipped.  

The following defines other sets used by the drying model: 
 set of all types of drying activities a; 

 subset of activities which consume the product p. ; 

 subset of activities which produce the product p. ; 
 subset containing all types of activities that can be processed on machine . ; 
 subset of machines that can carry out activity a. . 

Parameters  
   The following parameters have the same meaning as in the sawing model although they are now defined for every 
product : supply , demand , initial inventory and costs , material consumption and 

production of activities . However, we will suppose that  is equal to zero for all products that can be 

consumed. The parameter  also has the same meaning as in the sawing model. In addition, we define these parameters: 
 1, if machine m is available during period t, 0 otherwise; 

 number of consecutive periods needed to accomplish activity a. 
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Variables  
   The following variables have the same meaning as in the sawing model although they are now defined for every 
product : , , , , . In addition, we define this decision variable: 

 Binary decision variable taking value 1 if an activity of type a starts on machine m at period t, 0 otherwise. It 
is defined for each couple .  

Objective function 
The objective function is similar to the one in the sawing model:  

 (2.1) 

Production constraints 
   The consumption constraint (2.2) defines  as being the total consumption of activities starting during period t and 
consuming product p. The sum is computed only for the couple of activities a and machines m for which m can carry out a, 
and a consumes p. Consumption for products that are never consumed is set to zero. 

 
 (2.2) 

   The production constraint (2.3) is the counterpart of the previous constraint. It sets that total production is the sum of 
what is produced by activities a ending during period t (i.e. those starting at period ) and producing product p.  

 
 (2.3) 

   The capacity constraint (2.4) sets that the number of activities running on a machine m at period t must be smaller than or 
equal to 1. For each type of activity a, there is an instance running at period t if one has started in the 
interval . 

  (2.4) 

Flow constraints 
Flow constraints are similar to those of the sawing model, with the exception that some products can both be consumed and 
produced: 

  (2.5) 
  (2.6) 

  (2.7) 

  (2.8) 

  (2.9) 

Model implementation and resolution 
   For real industrial-size problems we were not able to obtain good feasible solutions in reasonable time. Consequently, we 
propose a simple greedy heuristic to solve this problem. First, a list of the available drying processes must be established a 
priori (i.e. each path in Figure 4). Then, the plan is produced incrementally (starting with an empty plan) by performing the 
following steps: 
 

Compute the value of the objective function for the current plan. 



Gaudreault et al. 

 
 178 

Insert into the plan the process that will most reduce the value of the objective function. Each process is evaluated 
by performing these steps:  

a. Compute the earliest date for which one of the products produced by the process is backordered. 
b. By considering this as being the due date, backward schedule the activities of the process using just-

in-time planning. 
c. Compute the improvement of the objective function. 

Go back to step 1 (the algorithm stops when it becomes impossible to insert a process reducing the value of the 
objective function in step 2). 

Finishing Model 
   In practice, the three steps of the finishing process (i.e., planing, sorting and trimming) are performed on a single 
production line. For planning purposes, this line can be considered as a single machine, whose production rate is equal to 
that of the machine that is the bottleneck on the line. 

As stated in Section 2.1, a finishing production plan is a sequence of campaigns (see Figure 5). Each one has a product 
family associated to it (e.g. 2”x4”), which is related to a specific setup for the plant. During the campaign, different types of 
products corresponding to the family can be processed (e.g. 2”x4”-8’, 2”x4”-10’). However, they must be processed in a 
specific order. 
   It the following model, binary decision variables specify how the plant is set up at each period. A setup cost  must be 
accounted each time there are two consecutive periods with a different setup (that is, each time a new campaign begins). 
Other decision variables in the model represent the quantities of each length (e.g. 8’, 10’) to process at each period (rather 
than the quantity to process at each campaign as imposed by the problem). To compensate for this “relaxation”, a constraint 
states that the entire consumption of the campaign takes place at its beginning, and its production at the end. On the other 
hand, we have to maintain two different inventories: one in the yard (similar to the sawing and drying problems) and one in 
the plant. 

Sets 
   This finishing model uses notation similar to previous models. The following sets have the same meaning: , , 

, and . Similar to the sawing model, each  defines a mode in which the plant can be set up to 
operate. Each mode corresponds to a product family (e.g. 2ʺ″x4ʺ″). In addition, we define the following sets: 

 products p that can be consumed when the plant is set up in mode f. ; 

 finished products p that can be produced when the plant is set up in mode f. ; 
 set of couples . 

Parameters 
   The following parameters have the same meaning as in the sawing model: , , , , and . In addition, we 
define these parameters: 

 volume of product  produced when one unit of product  is consumed while the plant 
is set up in mode f. Defined for couples ; 

 time needed to consume one unit of product  when the plant is set up in mode f. Defined for 
couples ; 

 cost of processing one unit of product . Defined for couples ; 
 capacity of the plant (number of time units) for period t; 
 cost of performing a setup change. 

Variables 
   The following variables have the same meaning as in the sawing model. Variable  identifies in which mode the plan is 

set up. The variables ,  and  corresponds to the inventory in the yard. Variable  corresponds to a quantity 
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transferred in the plant at the beginning of a campaign. Variable  to a quantity transferred from the plant to the yard at 
the end of the campaign.  

In addition, we define these variables: 
 1, if the plant is setup for mode f at period t and this was not the case at period t-1. 0, otherwise. In other 

words, this variable is equal to 1 if a campaign using mode f  begins at period t; 
 1, if a campaign (of any mode) begins at period t. 0, otherwise; 
 1, if a campaign (of any mode) ends at period t. 0, otherwise. 

 
 volume of raw product p to process at period t while the plant is set up in mode f. The product must be 

already in the plant to be processed. Defined for couples . 
 volume of product p produced at period t. The product remains in the plant and is not available to satisfy 

demand until the end of the campaign. It will be released and thus be considered a production of the plant 
only when the campaign is over. Defined for ; 

 volume of product p in the plant at the end of period t. Defined for . 

Objective function 
   The objective function is similar to the one in the sawing model although in this problem the setup costs are taken into 
account. Production costs depend both on how the plant is set up and the raw material consumed. 

 (3.1) 

Production constraints 
   First, the plant can only be set up in one mode at a time (3.2) and a product can be processed (consumed) only if the plant 
is configured in a compatible mode (3.3). 

  
(3.2)  

  (3.3) 
where  is a significantly large number.  

   Constraints (3.4) to (3.6) state a batch can start or end only if the plant is set up in a compatible mode. Constraint (3.7) 
ensures that a specific batch will run until it has ended.  

   (3.4) 
  (3.5) 
  (3.6) 

  (3.7) 

Variables  and  respectively take value 1 if and only if a batch is starting (3.8) or ending (3.9) at period t. 

  (3.8) 

  (3.9) 

   Raw products can enter the plant only at the beginning of a compatible campaign (3.10). Finished products are released 
only at the end of the campaign (3.11). No products can be left inside the plant at the end of the campaign (3.12). 

  (3.10) 
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  (3.11) 

  (3.12) 

The following are the flow conservation constraints for the raw products inside the plant: 
  (3.13) 

  (3.14) 

  (3.15) 

These are the flow conservation constraints for the finished products inside the plant: 
  (3.16) 

  (3.17) 
  (3.18) 

These constraints establish the relation between consumption and production inside the plant: 
  (3.19) 

Finally, the capacity of the finishing line must be respected: 
  (3.20) 

Flow constraints (yard) 
   The constraints for the product flow in the yard are the same as in the sawing model. Therefore, we reuse constraints (1.7) 
to (1.13) in order to establish the relations between , , , , , ,  and . 

Model implementation and resolution 
   As for the drying model, we were not able to obtain good feasible solutions in reasonable time for real industrial 
problems. Again, we proposed a simple greedy heuristic to solve this problem. Each time the finishing line is available, we 
start a campaign for the product family  for which it is most urgent to start production (i.e. the family with the 
smallest “first period with unsatisfied orders minus expected production time”). Because of setup costs, we want this 
campaign to have the longest possible duration (i.e. satisfying as many future orders as possible). However, the campaign 
must be over before the next delivery date. We also need to leave room for the production of other families. Here is the 
detailed pseudo code: 
 

1. Let  be the first period for which the finishing line and some raw material are available. 
2. For each mode  : 

a. Let  be the first period where an order for a product  is not satisfied according to the 
current production plan.  

b. Let us suppose a campaign ending at  that allows satisfying the demand for all  
at period  (without considering raw material availability). Let  be the start time of this campaign 
according to the needed production duration. 

c. If there is no raw material  available at , increase  until some is (  remains 
unchanged).  

Sort the modes  in increasing order of . 
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Considering the modes  for which we have some raw material  available at period , select the 
one with the smallest .  Insert a campaign for this mode into the plan: 

d. It begins at . 
e. It has the longest possible duration (according to raw material availability) but without trespassing    

(next delivery date for current family) or the next  in the vector of step 3 (starting date of a 
campaign for the next most urgent family). 

f. The consumed products/quantities are established as follows:  
i. Quantifies of  needed to satisfy the next unsatisfied order for this family. 

ii. If room is available, the quantities for the next order of this family, etc. 
Go back to step 1. 
 

4.2 Coordination Mechanisms 
   In a distributed planning system, it is necessary to deploy a coordination mechanism between the different production 
units in order to integrate the different plans so as to make sure they are coherent with each other (in terms of material 
availability) but also to guarantee a certain level of collective performance. Such a strategy defines which information is 
transmitted from one agent to the other, when it is transmitted and what the sequence used to propagate the information is.  
   The most common class of coordination mechanisms (both in the literature and industrial practice) can be described as 
hierarchical. In this approach there is a sequence (naturally defined or specified in a long-term agreement) specifying the 
order in which the partners must plan their operations. Schneeweiss (2003) describes many problems using real industrial 
applications to illustrate the challenge of distributed decision-making. In this section, we describe three different 
coordination mechanisms, which are (1) upstream planning, (2) two-phase planning and (3) bottleneck-first planning. 
Then, a modification to the last two mechanisms is proposed in order to support hybrid push/pull systems. 

Upstream Planning 
   The most common hierarchical approach is referred to as upstream planning (Bhatnagar et al, 1993; Dudek et al, 2005). 
Agents plan their operations one after the other, beginning with the agent that is closest to the customer (right-hand side 
agent in Figure 7). Knowing demand from the external customer, this agent plans its activities. This allows identifying the 
supply need of the production unit (in the model, its supply parameter  is transformed into a variable). This supply need 

is then transferred to its supplier and becomes demand for the latter . All this presupposes that each agent is always 

able to satisfy any demand. Of course, this assumption cannot be met in all contexts. This is why it cannot be used in our 
application and is furthermore not implemented. 
 
 

 
 
 

Figure 7. Upstream planning 
 
 
Two-phase Planning 

   One variant of this approach, particularly relevant in a process industry with strong supply constraints, is to apply two 
planning phases: one upstream and the other downstream (see  
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Figure 8). This approach involves each agent twice. The agent first makes a temporary plan to compute its supply needs and 
sends this information to its supplier. In turn, the supplier tries to satisfy this demand and responds with a supply plan that 
does not necessarily meet all demand (e.g., some deliveries may be planned to be late or some products can be replaced by 
substitutes). When informed of the supply granted by its supplier, the initial agent has to revise its production plan in order 
to account for supply constraints. The succession of planning activities forms a loop with two phases: one upstream, where 
demand is tentatively propagated and the other downstream, where final supply is propagated. 

 
 
 

Figure 8. Two-phase planning 
 
 
Bottleneck-first Planning 

   A truncated version of the two-phase planning approach is illustrated in  

 
Figure 9. The external customer demand is transmitted directly to the drying agent instead of going through the finishing 
agent. This modification is inspired by the theory of constraints proposed by Goldratt et al (1992) to plan the production 
bottleneck first. In the lumber supply chain, the drying production center is often the bottleneck because of the investment 
needed to deploy kiln dryers. Kiln drying duration can span from 12 to 60 hours, immobilizing and having a tremendous 
impact on the flexibility of the supply chain.  

 
 
 

Figure 9. Bottleneck-first planning 
 
 
   Since demand for finished products is transmitted to the drying agent, it must have a definition of the finishing processes, 
which is done by adding the finishing activities in the graph of activities (see Figure 4), and by doing so, the drying agent 
has a simplified representation of the finishing unit processes. 

Pushing alternative products 
   In our context, internal demand (demand from one unit to another) cannot be considered as a hard constraint. When a 
production unit cannot satisfy the entire demand of a partner, it might be useful to propose alternative products to this 
partner. With this option in mind, a simple modification to the previous mechanisms (two-phase and bottleneck-first) is 
proposed. In the downstream phase, the unit uses still available production capacity to produce alternative products and 
“push” them to the next unit (hoping it will be able to use them in order to satisfy demand).  
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   To implement this, we simply run the planning model of the agent another time: we remove the already used capacity and 
raw material, and provide the model high demand for other products. In the objective function, these products are weighted 

 using their respective expected market value. 
   Using this strategy also has a consequence: the part of the production capacity that is not needed or cannot be used by the 
network in order to satisfy the external demand (e.g. associated with long-term agreements) will be used in order to produce 
products with the greatest expected value (the company will be able to sell them using the more traditional spot market 
approach - see Sections 2.2 and 2.3). 
 
5. INDUSTRIAL APPLICATION 
 
   The following section first presents work that was done with an industrial partner in order to validate the models (Section 
5.1). We then proceed to demonstrate how an agent-based simulation platform (Section 5.2) can be used to evaluate 
coordination mechanisms according to the supply chain performance (Section 5.3).  
 
5.1 Process Modeling and Industrial Validation 
   Intending to validate the proposed planning models, we developed a case study with a lumber company which includes 
production processes, products, orders, on-hand inventory, selling prices, resource costs, forecasted supply, capacity and 
work-in-process inventories. Processes were modeled in collaboration with the company’s production manager. Customer 
data and on-hand inventory data were extracted from the partner’s ERP system. Finally, the partner’s sales team provided 
the data on product prices and resource costs.  
   Each planning model was assessed using real industrial data in an off-line planning mode. Over a horizon of several 
months, the partner’s production manager sent us weekly updated production data, which we used to generate a production 
plan. The production manager gave us feedback concerning the quality and feasibility of the generated plans. This 
interactive validation phase allowed us to review and adjust the planning parameters as well as the planning models. This 
validation process took about one year and many adjustments were made to the models. 

 
5.2 Agent-based Planning Platform 
   With the goal of developing an Advanced Planning and Scheduling (APS) system for the lumber supply chain, the 
FORAC Research Consortium at Université Laval (Québec, Canada) has proposed an agent-based planning platform. In 
brief, this platform aims to address: (1) the ability to plan and coordinate operations throughout the supply chain; and (2) 
the ability to analyze the dynamics of different scenarios through simulation. It allows the user, whether a production 
manager or a researcher, to evaluate and compare different planning models, coordination mechanisms or supply chain 
configurations, according to user-specified performance measures. Essentially, each planning model is embedded within a 
software agent that has the capacity to manipulate data, solve its planning model, and exchange information with other 
agents according to specific coordination mechanisms. In order to allow the user to designing and implementing various 
coordination mechanisms, the platform relies on the concept of conversation protocols that are commonly used in multi-
agent systems. The interested reader is referred to Frayret et al (2007) for a more thorough description of the design 
specifications and functions of this platform.  
 
5.3 Simulation 
   We simulated the coordination mechanisms from Section 4.2 that are compatible with a pull production system (i.e. Two-
phase planning and Bottleneck-first planning) using the agent-based planning platform described previously. A virtual 
supply chain was modeled, based on the industrial case. The planning agents (sawing, drying and finishing) were set up 
according to these data. The studied case has a total of 448 types of production activities (or processes) and 114 different 
products, including 45 finished products available to the external customer.  
   The mechanisms were compared regarding how well they allow suppliers to satisfy external customers under the long-
term agreement assumption described in Section 2.3. Recall that in the context of these agreements, the client and the 
supplier agree in advance on the annual volumes and a mechanism for determining prices. However, delivery dates, 
volumes, and product types are functions of the client’s dynamic needs. At different moments during the year, the client 
submits a list of products, quantities and preferred delivery dates (demand plan). The supplier does his best to fulfill this 
demand and transmits a supply plan to the client (anticipated delivery dates can differ from those of the client). The 
network is evaluated according to its capacity to carry out deliveries as closely as possible to preferred delivery dates. 
   The performance indicators used in our experiments are the following: (1) the percentage of orders that cannot be 
delivered on the preferred date (deferred deliveries), and (2) the average delay (as all orders cannot be delivered on the 
preferred date). The evaluation is done for different scenarios. For each scenario, a set of long-term agreements is defined 
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that corresponds to a specific percentage of the theoretical production capacity (in volume). For instance, if zero percent of 
the production capacity was to be allocated to long-term agreements, the entire production would be sold on the spot-
market, no deferred deliveries would occur, and the average delay would be zero. However, as the percentage of the 
production capacity dedicated to long-term agreements increases, it is expected it will be more difficult to meet the 
preferred delivery dates expressed by the customers.  
   Six scenarios were defined for sets of long-term agreements, ranging from ten to sixty percent of the theoretical capacity 
(in volume)1. Demand for each of the six scenarios was generated using a probabilistic demand generator (Lemieux et al, 
2008), for a sixty day planning horizon. This generator created random daily demand, according to predetermined settings 
such as distribution functions, minimum/maximum limits and seasonality as well. For each scenario, 10 replications have 
been generated. 

 
5.4 Results  
   Figure 10 shows deferred deliveries (in %) according to the capacity allocated to long-term agreements (in %), for both 
coordination mechanisms and for each replication. For both mechanisms, the percentage of deferred deliveries grows 
rapidly as long-term agreements are increased (see second-degree polynomial trend lines). However, there is a clear 
advantage for Bottleneck-first planning. Table 1 synthesizes the results; for each scenario it shows average result (µ) for the 
10 replications, standard deviation (σ) as well as the worst and best result. The last column of Table 1 shows the relative 
reduction of deferred deliveries Bottleneck-first planning allows in comparison with Two-phase planning (between 88.9% 
and 11.0%). We note that the relative reduction diminishes as the percentage of capacity allocated to long-term agreement 
grows. 
 

 
 
 

Figure 10. Deferred deliveries (in %) according to the volume capacity dedicated to long-term agreements (in %) 
 
 
 
 
 

                                                
 
1 When X% of the theoretical production capacity (in volume) is allocated to long-term agreements, a lot more than X% of the processors’ capacity (in 
time) is needed in order to fill this demand. As an explanation, we recall from Section 2.1.3 that processing a single product at the finishing unit can 
simultaneously produce more than 20 products (due to co-production). The same phenomenon occurs at the sawing unit (see Figure 2). 



Operations Planning in the Lumber Supply Chain 

 

 185 

Table 1. Deferred deliveries (in %) according to the volume capacity dedicated to long-term agreements (in %) 
 

 
 

 

 
 

 
Figure 11. Occurred delay (in days) according to the volume capacity dedicated to long-term agreements (in %) 
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Table 2. Occurred delay (in days) according to the volume capacity dedicated to long-term agreements (in %) 
 

 
 

  

 
Figure 11 and Table 2 show the average delay that occurs. Again, we notice a considerable advantage associated with using 
Bottleneck-first planning when a moderate part of the capacity is allocated to long-term agreements (95.1% of improvement 
over Two-phase planning at ten percent of the production capacity). At 60% of the production capacity, performances of 
both mechanisms become very similar (in fact, Two-phase planning presents an advantage of 1.1%). However, results with 
Bottleneck-first planning still show much less variability (see reported standard deviation, worst and best results). 

 
6. DISCUSSION AND CONCLUSION 
 
   This paper describes the production planning problems and models for three production units in the North American 
softwood lumber industry. The models can be used individually or in a distributed supply chain context. Different 
coordination mechanisms have been described. We showed how the planning models may be integrated in an agent-based 
planning platform in order to evaluate how the coordination mechanisms would perform in a pull production setup.  
   The results should not, however, be used as generic prescriptions for the lumber industry, as they are specific to this case 
study. The best coordination mechanism to use depends on various factors. Moving the bottleneck or changing the mix of 
alternative products can have a major impact on the performance of the mechanisms.  
   In addition, managers within industry could use the proposed methodology to evaluate the right level of production 
capacity that should be allocated to long-term agreements. However, they should take into account how much their 
customers will tolerate delays as well as the additional profit margins associated with long-term agreements vs. spot-
market. 
   In future research, various improvements can be made to the models and coordination mechanisms. For instance, agents 
could exploit information about their partners’ preferences for alternative products. It would be interesting to evaluate the 
robustness of the system in an environment filled with unexpected events. 
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   Finally, other coordination mechanisms have been studied in order to offer alternatives to the ones presented in this paper. 
Forget et al (2008, 2009) have proposed and simulated an intelligent planning agent model, called multi-behavior agent, 
which can adapt its coordination mechanisms according to specific states in its environment. Also, Gaudreault et al (2009) 
have proposed a distributed planning algorithm based on distributed constraint optimization, where agents are requested to 
submit multiple local plans in order for the collective to find the best arrangements of plans. 
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