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In this article, we propose a new rank regression model to extrapolate the product lifetimes at normal operation environment from 
accelerated testing data. Weighted least squares method is used to compensate for nonconstant error variance in the regression model. 
A group of dummy variables is incorporated to check model adequacy. We also developed customizing software for quick-and-easy 
implementation of the method so that reliability engineers can easily exploit it. Simulation studies show that, under light censoring, the 
proposed method performs comparatively well in predicting the lifetimes even with small sample sizes. With its computational ease 
and graphical presentation, the proposed method is expected to be more popular among reliability engineers. 
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1. INTRODUCTION 

 
   Development of reliable products is crucial for manufacturers to survive in increasingly competitive environment. In general, the 
process to evaluate product’s reliability is time-consuming, hence it hinders manufacturers from meeting market requirements within 
time period given for product development. Accelerated life tests (ALTs) have been widely used in many applications to shorten the 
evaluation time. In the ALT, products are exposed to a harsher environment than normal operating condition in order to expedite their 
failure mechanism, thereby reducing required test time. Based on accelerated testing results, product lifetimes at normal condition are 
extrapolated via known stress-life relationship. For more general discussion and detailed information on the ALT, see Nelson1 and 
Meeker and Escobar2. 
   General way to analyze life testing data is to firstly assume a probability distribution to represent the nature of failure-times of the 
interest. Then, a chosen model is statistically fitted to sample data in order to estimate unknown model parameters. Among commonly 
methods used to estimate unknown parameters there are rank regression (RR) method (often referred as “graphical method” or 
“probability plot”) and maximum likelihood (ML) method1-2. The ML method has been generally accepted as the most efficient 
method in many applications. However, it may produce biases in estimating the distribution parameters for small data sets or highly 
censored data3-6. Alternatively, the RR method has been primarily favored by practitioners because of its computational convenience 
and graphical presentation. Indeed, it does not require any iterative procedure for parameter estimation, such as the Newton-Raphson 
algorithm in the ML method, which is potentially sensitive to initial value7.  
   This article proposes an extended rank regression method to the ALT data. We introduce weighted least squares to deal with 
heteroscedasticity of error variance in the rank regression model. Dummy variables are newly introduced to check the validity of 
stress-life relationship all over test range. Finally, we develop customizing software with graphical user interface (GUI) to implement 
the proposed method. The suggested method provides straightforward and graphical presentation so that practitioners can implement 
the method and interpret resulting outcomes more easily. 
   The paper is organized as follows. Section 2 briefly reviews the ALT model and its analytical scheme. Section 3 presents the 
proposed RR method and an illustrating example is given in Section 4. In Section 5, simulation studies are presented to compare 
performance of the proposed method with that of the ML method. Concluding remarks are given in Section 6. 

 
2. ANALYSIS OF ACCELERATED LIFE TESTING DATA 

 
   Failure-times of testing samples may present variation from item to item, even under the same testing condition. This requires a 
proper application of statistical methods to analyze the life testing data. The ALT involves physical stresses to hasten product failure 
within a short time. Typical types of stresses are temperature, voltages, mechanical load, thermal cycling, humidity, and etc. Some 
well-known relationships are often required to investigate effects of the stresses on lifetimes. For example, the Arrhenius relationship 
describes the effects of temperature as 
 

( )TBA exp×=τ  ... (1) 
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where τ  represents nominal life, T  is temperature in the absolute Kelvin scale, A  and )0(>B  are unknown coefficients to be 
estimated from the data. The coefficients involve product geometry, specimen size and test method, and other factors. The inverse-
power relationship between nominal life and voltage stress is 

BVA=τ  ... (2) 

where V  is voltage, and A  and )0(>B  are parameters to be estimated from test data. As multi-stress model, the Eyring 
relationship is commonly used to describe relationship between lifetimes and temperature along with other accelerating variable S  as 
follows: 

( ) ( ) ( ) ( ){ }[ ]SDCTSBTA ×+×+××= 1expτ  ... (3) 

where A , B , C , and D  are unknown coefficients to be estimated from the ALT data. See Nelson1 for more details.  
   Failure-times and/or censoring times at several accelerated stress conditions are then analyzed under a presumed lifetime distribution 
and a pre-specified stress-life relationship to extrapolate product lifetimes at normal use condition. However, such application of the 
stress-life relationship to the ALT data implicitly assumes that a scale-accelerated failure-time (SAFT) model2 holds over test range. 
The term scale-acceleration means that lifetime at a certain stress level can be obtained by simply multiplying its lifetime at any other 
stress level by a time-scale factor2 (or an acceleration factor). Assessment of the model assumption often requires post-mortem 
analysis that determines whether or not applied stresses generate the same failure mechanisms as normal environment. Additionally, 
the validity of the SAFT model can be checked indirectly by implementing a statistical hypothesis test on the common shape or scale 
parameters of the fitted lifetime distribution1. Figure 1 shows a general procedure for analyzing the ALT data to make inference on the 
lifetimes at normal use condition. 
 

Plan and implement an ALT

Fit assumed lifetime distributions to the data
at individual accelerated conditions

Check the validity of the SAFT model

Repeat fitting the lifetime distribution assuming
the common shape or scale parameter and 
a stress-life relationship

Extrapolate the lifetime distribution at normal
operating condition

 

 
 

Figure 1. Flowchart for extrapolating use-condition lifetimes from the ALT data 
 
 
3. WEIGHTED RANK REGRESSION WITH DUMMY VARIABLES 

 
   The rank regression has been commonly used to analyze life testing data in engineering practice and commercial software. The rank 
regression determines a best-fit straight line for failure-time data plotted on a probability plot using the least squares method. For this 
purpose, it takes advantage of a linear relationship between the cumulative distribution function (CDF) and the failure-times. For 
example, the CDF of a Weibull distribution can be linearized as 
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( )[ ] tmmtF lnln)(1lnln +−=−− η  ... (4) 

for the CDF of Weibull failure-times )(tF  at time t , where m  and η  are shape and scale parameters of the Weibull distribution, 
respectively. For a lognormal distribution, the linearly transformed CDF is 
 

( ) ( ) ( )σσµ ttF ln)(1 +−=Φ−  ... (5) 

where )(⋅Φ  is the standard normal CDF, µ  and σ  are respective location and scale parameters of the lognormal distribution.  

   Suppose that an accelerated test is conducted at l  higher stress levels ),,2,1( liSi = . The stress iS  can contain multiple 

stresses, that is, ( )isiii SSSS ,,, 21 =  for s-dimensional multiple-stress vector. At each iS , in  units are put on test, then the total 

number of testing items ∑ =
= l

i inN
1

. Further, the ordered samples )()2()1( iinii ttt <<<   are obtained at ith stress level iS . The 

ordered sample ),,2,1()( iij njt =  is either a failure-time or a censored time. Several methods have been proposed to estimate the 

CDF at )(ijt . The commonly used methods are Bernard's median rank estimator8 as 

( )
0.3ˆ ( )
0.4ij
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jF t
n
−=
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... (6) 

 
and the Herd-Johnson estimator9-10 
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... (7) 

where ( ) ( )
ˆ ˆ( ) 1 ( )ij ijF t R t= −  and 1)0(ˆ )0( ==itR . Then, the unknown distribution parameters can be obtained by regressing t  on 

)(tF  with a simple linear model as (see table 1 for the details) 

ijiiij xy 10 ββ +=  ... (8) 

   Corresponding regression analysis should use different weights for each observation )(ijt  since variance of the response variable in 
the model (8) depends on its observations. In this study, we employ the following weight factor11 

( )0.025( ) ( )
ˆ ˆ3.3 ( ) 27.5 1 1 ( )ij ij ijw F t F t⎡ ⎤= × − × − −⎢ ⎥⎣ ⎦

 
... (9) 

   As mentioned in Section 2, one should check if the SAFT model is valid over entire range of testing conditions when the ALT 
scheme is employed. This can be done by checking that the fitted lifetime distributions at each testing conditions have the same shape 
parameter (m ) for the Weibull distribution and scale parameter (σ ) for the lognormal distribution. This means the slopes in (8) 
should be identical but the intercepts differ among each stress levels.  
 

Table 1. Variables and parameters in the simple regression model (8) 
 

 Variables Parameters 

Weibull ( )[ ] txtFy ln  ,)(1lnln =−−=  mm =−= 10   ,ln βηβ  

lognormal ( ) txtFy ln  ,)(1 =Φ= −  σβσµβ 1  , 10 =−=  

 
   This study proposes an inferential procedure using dummy variables for testing the hypothesis that l  regression models have a 
common slope. The regression model with dummy variables has been introduced in many applications to compare different regression 
equations (e.g., see Neter et al.12). First, define )1( −l  dummy variables corresponding to the l  groups, each taking on the values 0 
and 1 such as 
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and fit the following model to the pooled data over all of stress levels: 

,,,1 ,,,1 ,,1,,23,1210 ijmllDjmDjmDijDDij njlidddxy
iii

 ==+++++= +−++ βββββ  ... (10) 

where ∑
−

=

=
1

0

i

k
ki nm  and 00 =n . In the integrated model (10), each observation has  different combination of 0 and 1 on the dummy 

variables according to testing condition, i.e., the observations at iS  is assigned )0,,0,0,1,,1,1(
)()1(
 
ili −−

 for their dummy variables. This 

structure for dummy variables permits a common slope but different intercept terms (i.e., ∑ =
+= i

k DkDi 200 βββ ) all over the 

stress levels. Satisfactory fit with (10) implies that  the SAFT model is valid, along with the same slope.  
   Let DSSE  be the residual sum of squares from (10). Fit l  separate regression equations of (8) to each testing condition and find 

TSSE  by adding the residual sums of squares from each separate equation. Next, compute the test statistic 0F  and conclude that at 

%100)1( ×−α  confidence level, the SAFT model is adequate if 

( ) ( )
TTD dfdfdf

TT

TDTD F
dfSSE

dfdfSSESSEF ),(,0 −<
−−

= α  
... (11) 

where )1( +−= lNdfD , lNdfT ×−= 2 , and 
TTD dfdfdfF ),(, −α  is the thα percentile of the F-distribution with )( TD dfdf −  and 

Tdf  degrees of freedom. After checking validity of the SAFT model, the coefficients in the stress-life relationship can be estimated 

by fitting the regression model with the common slope )( 1111 lD βββ ===   and the different intercept s'0iβ , such as  

iDiij xy 10 ββ += , li ,,2,1 = , inj ,,2,1 = , ... (12) 

to the pooled data. In the regression model (12), the intercept term 0iβ  accounts for the effect that the stress variables have on the 
failure-time distribution. 
 
4. ILLUSTRATING EXAMPLE 

 
   The proposed method in previous section will be illustrated by analyzing a set of real ALT data: transformers in Nelson1. Ten 
samples were tested at each of three accelerated voltage levels; 35.4kV, 42.4kV, and 46.7kV. Table 2 shows lifetime data including 
some censored observations. The purpose of this experiment is to estimate the lifetime distribution at design voltage (15.8kV).  
 

Table 2. Transformer test data (Nelson1) 
 

Voltage Hours 

35.4kV 

42.4kV 

46.7kV 

40.1 59.4 71.2 166.5 204.7 229.7 308.3 537.9 1002.3+ 1002.3+ 

0.6 13.4 15.2 19.9 25.0 30.2 32.8 44.4 50.2+ 56.2 

3.1 8.3 8.9 9.0 13.6 14.9 16.1 16.9 21.3 48.1+ 

            + censored observation 
 
   The Weibull-inverse-power model was assumed for the lifetime-stress relationship,  and median rank method is used to estimate the 
CDF. We developed a special program with its own GUI, written in Visual Basic13 language, to implement all the computation so that 
practitioners can easily exploit the proposed method (its “Startup window” is shown in Figure 2). The succeeding figures in this 
section were all constructed by this program.  
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   The estimated common shape from the integrated model (10) is 1.0986 and the resulting DSSE  is 1.9061. Individual regression at 
each stress levels produces  

1.1763 0.25550.75840.16247.464.424.35 =++=++= SSESSESSESSET , 

and the test statistics (11) is calculated as 

2049.6)201763,1(2)1763.11906.1(0 =××−=F . 

 

 

 
 

Figure 2. Start-up window for implementing the proposed method 
 

For 4928.320,2,05.0 =F , we conclude that the slopes in the three regression lines are not identical. The estimated slope of the line at 
the highest level is quite different from those of the other two stress levels (see Figure 3). 
   Deleting the highest level from the whole data gives 6672.41969.1 13,1,05.00 =<= FF , concluding that slopes of the other two 
lines are the same. The common shape parameter at lower two stress levels is estimated as 0.9763. After incorporating the inverse 
power model into the Weibull equation (4), with some manipulation, the equation (12) becomes 

( )( )[ ]
( ) ijijiji

ijiijij

xxtmVBAm
tmmtFy

,22,110)(
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lnlnln                                      

lnln1lnln
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... (13) 

 
where ( ) ( ))(,2,1 ln,ln, ijiijij tVxx = , Am ln0 −=β , mB=1β , and m=2β .  
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Figure 3. Estimated Weibull distributions (1: 35.4kV, 2: 42.4kV, 3: 46.7kV) 
 
   The next step to evaluate the voltage effect on the transformer lifetimes is to fit (13) to the pooled data from the two lower stress 

levels, giving 211029.8ˆ ×=A  and 521.12ˆ =B . Figure 4 shows the estimated stress model under inverse-power-law relationship. 
Estimated lifetime distributions at the two stress levels are also plotted in Figure 5, along with lifetime distribution at the design stress 
(left straight line).  
 

 

Figure 4. Estimated stress-model of the inverse power law 

15.8k
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                Voltage 

Time 
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Figure 5. Estimated Weibull distributions assuming a common shape parameter (0: 15.8kV, 1: 35.4kV, 2: 42.4kV) 

 
5. SIMULATION RESULTS 

 
   The rank regression method is intuitively appealing because it requires simple calculation for parameter estimation. Meanwhile, it 
may introduce bias in predicting the lifetimes. The bias is caused by its two-step analysis including the nonparametric CDF 
computation and succeeding estimation of model parameters (Ross4, Skinner et al.5, and Somboonsavatdee et al.6). In this section, we 
use simulation studies to evaluate the performance of the proposed method and compare it with that of the ML method. From this, we 
suggest a general guideline as to what situation the propose method can be a potential alternative over the ML method.  
   Random samples from the Weibull and the lognormal distribution with specified parameter values (m =1.0, 2.0, and 5.0 for 
Weibull; σ =0.25, 0.5, and 0.3  for lognormal) were generated. The acceleration model was assumed as x5.20ln −=η  for the 

Weibull, and x5.21−=µ  for the lognormal, where x  is a standardized stress level such that the use level 0x  becomes 0 and the 

highest level hx  becomes 1. The number of stress levels l  was varied from 2 to 4, and different combinations of stress level were 

assumed such as )0.1 ,5.0(  for 2=l , )0.1 ,7.0 ,3.0(  for 3=l , and )0.1 0.75, ,5.0 ,25.0(  for 4=l . We considered the equal 

number of samples ( 25 ,15 ,10=in ) assigned to each stress level. The samples generated at each stress level were classified as 

either failure-times or censoring observations such that desired levels of censoring %)50 %,30 %,10 %,0(=CP  were satisfied.  

   Based on the simulated data, we estimated scale parameter 0η  in the Weibull distribution (or location parameter 0µ  in the 

lognormal distribution) at use condition ( 00 =x ) using both the proposed method and the ML method. We repeated the simulation 
for 1,000 times. To evaluate relative performance of the proposed method, we calculated relative efficiencies (REs), which defined as 
the ratio of the mean squared error (MSE) of the ML method to that of the proposed method. Resulting REs are summarized in Table 
3 for the Weibull distribution and Table 4 for the lognormal distribution.  
   According to the tables, the proposed approach seems fairly comparable to the ML in estimating the use-condition lifetimes ( 0η  and 

0µ ) even with small samples as long as censoring is not heavy. In fact, no significant difference exists between the two methods for 
the case of lognormal distribution. Note that the proposed method is more efficient than the ML method in estimating the common 
shape parameter (m ) of Weibull distribution when 2=l . Similar results have been reported in the works of Ross4, Skinner et al.5, 
and Somboonsavatdee et al.6 for the case of 1=l  with small sample sizes. In other cases, as expected, the ML method performs 
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significantly better than the proposed method for the estimation of Weibull shape parameter. Also, the MSE of the ML method is 
much smaller in all cases of estimating the scale parameter (σ ) of lognormal distribution. Such disadvantage that the rank regression 
has over the ML method becomes more clear when more than 2 stress levels are employed. We observed that the rank regression is 
likely to produce the larger MSE as the number of stress levels (and experimental size) increases (see Figure 6). In conclusion, under 
light censoring, the proposed method may be an alterative over the ML method in extrapolating the lifetimes at the use condition from 
small-scaled accelerated testing data with limited number of stress levels. 
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(a) Weibull ( 2=m )                                  (b) lognormal ( 5.0=σ ) 

Figure 6. Plots of relative root mean square errors (RRMSE, mm ˆ)ˆ(MSE  or σσ ˆ)ˆ(MSE ) vs. number of stress levels 

( 15=in ) 

Table 3. REs  of the proposed shape estimator ( m̂ ) and use-condition scale estimator ( 0η̂ ) for Weibull distribution 
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Table 4. REs of the proposed scale estimator (σ̂ ) and use-condition location estimator ( 0µ̂ ) for lognormal distribution 
 

 
 
6. CONCLUSION 

 
   In this work, we propose a new rank regression model to extrapolate the product lifetimes at normal operation environment from 
accelerated testing data. The main goal in this article is not to recommend new estimators over the MLE, but to explore and extend 
conventional rank regression techniques to accelerated life testing data when the ML method is not available. We particularly 
emphasize its accessibility and ease to implement by general practitioners. Based on the simulation results, we confirm that employing 
the proposed method, rather than the ML method, does not bring substantial depreciation in performance of extrapolating the use-
condition lifetimes even with small samples as long as censoring is not heavy. Further works may include theoretical investigation 
along with extensive simulation studies in order to understand statistical convergence properties of the proposed method. 
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