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The aim of this paper is to show, by use of a complete and exact mathematical model, that the centroid method is a widely 

misunderstood method in facility location problems and that it is, in fact, normally an inappropriate method to use for such 

problems. While numerous sources do describe the procedure as minimizing the total shipping cost when transportation 

costs are linearly proportional to the distances of travel, this study shows that these statements are not valid.  The 

misunderstanding regarding what the centroid method actually does results from an improper interpretation of the notion of 

the center of gravity.  In fact, the centroid method minimizes shipping costs only if transportation costs are proportional to 

the squares of distances traveled.   

 

Significance:     The research findings have a significant impact on the theory and application of the centroid method in 

finding optimal facility locations.  As a result, the centroid method would seem to be completely 

inappropriate for most, if not all, facility location problems. 
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1. INTRODUCTION 
 

The problem of identifying the best location in which to place a new facility must be based on many different criteria.  

Issues such as political stability, the existing infrastructure in regions and the availability of a trained workforce are critical 

on a ‘macro level’ in making such decisions.  Once a set of feasible regions have been identified for possible location of a 

new facility, the determination of the ultimate location then takes place on a ‘micro level’.  One major ‘micro level’ 

criterion is to locate a new production facility to minimize total shipping costs to a set of distribution centers that it will 

supply.  The vast majority of reference books in operations management borrow an idea from the physical sciences to 

address this topic by suggesting the use of the Centroid Method, or the Center of Gravity Method, to minimize the total cost 

of shipping.  Numerous sources describe the procedure as minimizing the total cost of shipping when transportation costs 

are linearly proportional to the distances of travel. 

Following universal textbook definitions, we describe this procedure by identifying the locations of each of n 

distribution centers on a map according to their respective Cartesian coordinates ( )ii y,x , and we let im  denote the demand 

requirement at the corresponding distribution center i. The centroid of the distribution system is then located at map 

coordinates ( )cc y,x  with: 
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2. LITERATURE SURVEY 
 

Quotes from a sample of reference books suggest that a production facility located in this manner will minimize shipping 

costs to distribution centers. Shim and Siegel (1999), state that: “The center of gravity method is a method used to 

determine the location of a distribution center that will minimize transportation costs. The method treats shipping cost as a 

linear function of the distance and quantity shipped. We assume, however, that the quantity to be shipped to each 

destination is fixed”, (pages 160-161).  

Chase, Jacobs and Aquilano (2006) suggest that: “The centroid method is a technique for locating single facilities that 

considers the existing facilities, the distances between them, and the volumes of goods to be shipped. The technique is often 

used to locate intermediate or distribution warehouses. In its simplest form, this method assumes that inbound and 

outbound transportation costs are equal, and it does not include special shipping costs for less than full loads”, (pages 413-

415).  

Stevenson (2005) says that: “The center of gravity method is a method to determine the location of a distribution center 

that will minimize distribution costs. It treats distribution costs as a linear function of the distance and the quantity shipped. 

The quantity to be shipped to each destination is assumed to be fixed (i.e., will not change over time)”, (pages 366-369). 

Krajewski and Ritzman (2005) is an exception in noting that the centroid location usually is not optimal in minimizing 

shipping costs. They conclude that: “Testing different locations with the load-distance model (to minimize total cost) is 

relatively simple if some systematic search process is followed. A good starting point is the center of gravity of the target 

area.  …  This location usually is not optimal one for the Euclidian or rectilinear distance measures, but it still is an 

excellent starting point.  Using center of gravity as a starting point, managers can now search in its vicinity for the optimal 

solution”, (pages 455-456).  However the authors stop short of suggesting what the centroid method actually does as an 

optimization method for minimizing total shipping cost.  Heizer and Render (2005) write that: “The center of gravity 

method is a mathematical technique used for finding the location of a distribution center that will minimize distribution 

costs. The method takes into account the location of markets, the volume of goods shipped to those markets, and shipping 

costs in finding the best location for a distribution center”, (pages 251-253). Some theoretical work has been done to 

suggest what the use of the centroid method actually does purely in terms of an optimization perspective (ReVelle and 

Eiselt, 2005), but the implications of this work are easily misunderstood by academics who teach in the area of operations 

management. 

Russell and Taylor (2006) state that: “In general, transportation costs are a function of distance, weight and time. The 

center of gravity, or weight center, technique is a quantitative method for locating a facility such as a warehouse at the 

center of movement in a geographic area based on weight and distance”, (pages 301-303).  

The aim of this article is to further contribute to the operations management applied theory of the centroid method and 

its application in optimal facility location, as well as to show that the centroid method is typically an inappropriate method 

in facility locations problem. In order to truly understand what the centroid method of facility location actually 

accomplishes, we must first understand what the center of gravity means in the physical sciences from which the notion 

was borrowed.  This will lead us to the conclusion that the centroid method actually is a very poor method for facility 

location in most applications, despite the claims in the references given above. 

 

3. AN EXAMPLE OF THE MISUSE OF THE CENTROID 
 

We use an example that is based on a situation that is described in Chase, Jacobs and Aquilano (2006, pgs. 457-458) where 

a refining company needs to locate an intermediate holding facility between its refining plant at location L1 and its major 

distributors at locations L2, L3, L4 and L5. Table 1 gives the coordinates of these locations (in miles relative to a given 

origin position), along with the amount of gasoline that is shipped to or from the refining plant and the distributors.  A 

coordinate map of all of these locations is shown in Figure 1. 

 

Table 1. Coordinates of the locations and the volume shipped. 

 

 

 

 

 

 

 

 

 

 

 

 Location 

Coordinates L1 L2 L3 L4 L5 

ix  325 400 450 350 25 

iy  75 150 350 400 450 

Millions of Gallons ( )im  1,500 250 450 350 450 
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The coordinates of the centroid ( )cc y,x are calculated by using (1), which results in: 
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Figure 1. Coordinate map for the facility locations and the centroid. 

 

 

The total shipping cost (TSC) that results from positioning a distribution facility at a location L* that is located at 

coordinates ( )*y*,x  is generally expressed by the following equation: 
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where: 
 

uc  = cost to ship a unit volume per unit distance 

id  = shipping distance between L* and the location with coordinates ( )ii y,x . 
 

In our example, uc would be the cost to ship one million gallons over a distance of one mile.  The shipping distance id  

is obtained as the linear distance between L* and the location with coordinates ( )ii y,x , with: 
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Substituting (5) into (4) yields to:  
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The value of TSC that is obtained from the centroid coordinates is denoted by cTSC , and by using the centroid 

coordinates from (2) and (3) for L* in (6), we find =cTSC 561,003× uc.  This would be the minimum value of TSC that 

could be obtained, as claimed in most textbooks, if indeed the centroid location truly minimizes TSC when shipping costs 

are a linear function of the distance and quantity shipped. 

Let us take another perspective of this problem by making a direct attempt to minimize TSC, as it is defined in (6).  

Since TSC is the function of two unknowns, *x and *y , partial derivatives of TSC should be taken with respect to *x and 

*y  and each should be set equal to zero, as shown in (7) and (8).  The simultaneous solution of (7) and (8) will then yield 

the optimal location, ( ) opop y,x , that minimizes TSC.  
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By taking the partial derivatives of TSC in (6) with respect to *x and *y and using (7) and (8), the optimal values of 

 opx and opy are obtained by the following two equations: 
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Equations (9) and (10) represent a system of two equations with two unknowns,  opx and opy , and a standard 

spreadsheet package was used to obtain  opx and opy  for  the example problem from Table 1 that we have been working 

on. The calculated coordinates of the optimal location of intermediate holding facility ( )opop y,x  for the example from 

Table 1 are given by the following equations: 
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The coordinates for ( )opop y,x  from (11) are quite different than the coordinates ( )cc y,x  for the centroid in (2) and 

(3).  The total shipping cost, opTSC  that is obtained from (4) with the coordinates ( )opop y,x  and data in the Table 1 is 

found to be opTSC  = 492,624× uc.  Recall that the total shipping cost that was obtained with the coordinates of the centroid 

resulted in =cTSC 561,003× uc.  The obtained value of total shipping cost is found to be approximately 14 percent greater 

with the centroid solution than the optimal solution that we obtained directly, regardless of the value of uc that is assumed. 

If the coordinates of the centroid location truly minimized total shipping cost, as stated in the quotes from a sample of 

reference books, then coordinates of the centroid ( cc yx , ) would have been same as ( ), opop yx  and thus the total shipping 

cost would have been the minimum possible cost that could be obtained. This example clearly shows that the centroid 

method for facility location obviously does not really do what the textbooks claim that it does. 

As further evidence, a standard software package was used to generate a three-dimensional diagram of the total 

shipping cost that is obtained as a result of locating the new intermediate holding facility at general coordinates ( )y,x  in 
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our example problem from Table 1. This diagram is shown in Figure 2, and one can clearly see that the minimal total 

shipping cost is at the point when the intermediate holding facility is located at the point (325,75), which is the same point 

that we obtained above as  ( ), opop yx .  As a result, we can conclude that our value of TSC that resulted from ( ), opop yx  is 

a global minimum solution, and not a local minimum, for the example problem that we are considering. 

 
Figure 2. Total shipping cost for location (x,y). 

 

 

4. THE PHYSICAL INTERPRETATION OF THE CENTER OF GRAVITY AND ITS MISUSE 
 

We now investigate what goes wrong when we try to apply the centroid method to facility location.  Researchers in the area 

of facility location borrowed the notion of using the centroid from the physical sciences, where the centroid is equivalent to 

the center of gravity of a set of masses that are distributed in various positions in three-dimensional space. Let us consider 

Figure 3, where O is the origin of the space, 1O  is any other point in the space, and point cg is the center of gravity for n 

objects with respective masses, im . Vector ir
r
 connects O and im , is defined as: 

 

kzjyixr iiii

rrrr
++= and 2222

iiii zyxr ++=                          …. (12) 

 

where k,j,i
rrr
are unit vectors along z,y,x axis respectively.  Here, 2

ir  is the squared value of the Euclidean length of ir
r
. 

 

The moment of inertia of im for O is defined by 2
ii rm , and moment of inertia of all masses im for the point O is 

denoted as oI  and it is given by the sum of their respective moments which is written in equations (13) and (14): 
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Figure 3. Interpretation of the center of gravity 

 

 

Equation (14) can be rewritten in the following form: 
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Following the logic of the definition of the location of the center of gravity from the introduction, the coordinates of 

the center of gravity, cg, of all masses can be extended to three dimensions with 
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Let us assume that O is the center of gravity, such that cgz , , cgcg yx are equal to zero. Equation (15) becomes: 
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It can been seen from Figure 3 that in the special case when point O is the center of gravity point, cg, then cgii rr
rr

= , or: 
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Substituting (18) into (17) one can get the following equation:  
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When O is not the center of gravity, suppose that we consider the vector ir  from O to im in two stages, going first 

from O  to O1 with 1or
r

 and then from O1 to im  with ior 1

r
.  It can be seen from Figure 3 that: 
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Combining equations (13) and (20) one can obtain: 
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Equation (21) can be rewritten in the following form: 
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Let cgO =1 . From equation (24) one can obtain: 
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Equation (25) can be rewritten in the following form: 
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Substituting (19) into (26) there is: 
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Equation (27) shows that from all possible points for which we calculate the moment of inertia, the minimal moment of 

inertia is when O is the center of gravity cg, with 0=cgr .  

In general cgir
r

is the vector connecting cg  and im . Then, vector cgir
r

 is defined in equation (28), while scalar product 

cgi cgir r
r r

 is given in equations (29) and (30). 
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The moment of inertia for point cg can be obtained as: 
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Substituting (30) into (31) yields to: 
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We want to find extreme value (minimum) of the function cgI , defined by the equation (32). Since 

 ,z and ,y , cgcgcgx are unknown variables in the equation (32), partial derivates with respect to  z and ,y , cgcgcgx have 

to be obtained. Thus we have: 
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In order to obtain extreme value (minimum) of the moment of inertia, partial derivatives of cgI with respect to 

 z and ,y , cgcgcgx , given in the equations (33), should be equal to zero, as written in the following equations: 
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From equations (34) we get formulas for ,  , cg cgx y and cgz : 
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Equations (35) show that the coordinates of the centroid are obtained by calculating the minimum of the quadratic 

function ∑
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, as stated in the 

center of gravity method which treats total transportation cost as a linear function of both the distance of travel and the 

quantity shipped.  
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5. CONCLUSION 
 

The centroid method is widely reported to be a procedure that can be used to locate a central facility to minimize the total 

shipping cost to supply a product to a number of different locations.  The total shipping cost for such a problem is simply 

the weighted sum of distances over which the product must be shipped to meet the demand requirements at the locations 

that are to be supplied. Analysis is presented here to show that by calculating the coordinates of the centroid, we are 

actually minimizing the weighted sum of the squares of distances in facility location problems.   As a result, the centroid 

method is a totally inappropriate model to use for any facility location problem in which shipping costs are proportional to 

the total distance over which a product is shipped.  If transportation costs were actually proportional to the square of the 

distances between facilities under some very unusual circumstances, then the centroid method would give a correct result.  

A possible application for which the centroid method might be appropriate is in the determination of the location of a direct 

service providing facility, such that customers must instead travel from the locations to a central service provider.  It is 

quite plausible that customers would have a non-linear disutility for travel distances that are required to get to this central 

facility, and the total disutility for all customers would be the ‘cost’ that the service provider would be attempting to 

minimize.  The centroid method would be applicable in such a scenario if the customers’ disutility increased as the square 

of the distance that must be travelled to get to the central facility.  It is quite difficult to determine any general class of 

situations for which the centroid method would produce an optimal solution to the facility location problem. 
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