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A study comparing the performance of three predictors of a manufacturing system’s future state based upon its current 
state is presented. The three predictors are constructed using statistical regression, neural networks and case-based 
reasoning techniques. An asynchronous transfer line with unreliable machines is considered for this study. The line’s 
current Work-In-Process (WIP) is used to forecast future throughput. A simulation model of the system is used to 
generate training data for constructing the predictors as well as data used for validation. The impacts of the number of 
machines and the number of line partitions on forecast accuracy are investigated. Results indicate that the predictors 
based on statistical regression and neural network techniques offered comparable performance, and both performed 
better than the predictor based on case-based reasoning technique. Future work includes development of a prediction 
model to assist in day-to-day operational tasks such as scheduling of opportunistic maintenance and manpower 
planning. 
 
Significance:  The objective is to develop a decision support tool to help the managers in an automobile assembly 

plant to make efficient day-to-day operational decisions. These decisions have severe impacts on unit 
cost and resource utilization. 

 
Keywords:   Forecasting, statistical regression, neural networks, case-based reasoning, system simulation. 

 
(Received 15 June 2007; Accepted in revised form 3 March 2009) 

 
1. INTRODUCTION 
 
Manufacturing environments are dynamic and stochastic in nature. In order to maximize productivity, people and 
processes must respond to changing conditions as, or even before, they occur. Real-time scheduling techniques are 
often used to identify and respond to the current state of a manufacturing system (Soroush et al., 2005) and (Lee, 2007). 
However, accurate forecasts of the system’s future state also provide useful information for managers as they try to 
optimize its performance (Cox et al., 1997), (Moon et al., 2003), (Hsu et al., 2004) and (Kwak et al., 2005). 
 A key performance measure for most manufacturing systems is the throughput (# parts/unit time). This paper will 
consider the construction of throughput prediction tools. A prediction tool collects real-time performance data from the 
manufacturing system and uses it to make a forecast of future throughput. Three separate prediction tools are 
constructed using the following data-driven modeling techniques: neural networks (Jang et al., 1997); statistical 
regression (Neter et al., 1996); and case-based reasoning (Lenz et al., 1998). 

Neural networks have been studied since the late 1950’s when Rosenblatt (Rosenblatt, 1962) first applied single 
layer perceptrons to pattern classification. They are composed of simple elements operating in parallel. The elements 
are inspired by biological nervous systems. How the network functions is determined largely by the connections 
between its elements and the weighting values associated with each connection. A comprehensive discussion of neural 
networks is presented in (Hagan et al., 1996) and (Degbtose et al., 2003). 

Regression analysis is a statistical technique for modeling and investigating the relationship between two or more 
variables (Neter et al., 1996). Regression analysis is used to build a model that describes some output value as a 
function of input values. 

Case-based reasoning, also known as memory-based reasoning, is an approach to problem solving by means of 
reasoning through analogy (Han et al., 2000). It provides a means of comparing an event that has not been encountered 
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before, by associating it with events that have occurred. Hence, it concerns the use of analogy and has been extended to 
the development of computer support of human problem solving. Note that analogical reasoning presumes that 
experiential case history may provide insight towards the solutions of new problems. 

In this paper, throughput prediction tools are constructed using these three techniques and their forecasting 
performance is compared. Note that to successfully use these three data-driven modeling techniques, a large set of 
input-output data reflecting the system’s behavior is required. 

The manufacturing system used in this study is an asynchronous transfer line with branches and a merge, Figure 1. 
This transfer line model is developed from the framing line in an automobile assembly plant and contains 53 stations. 
Parts enter the transfer line from the right side of Figure 1 (load station) and exit from the left (unload station). 

Since such systems in modern automobile assembly plants are highly automated, cycle time variation in the line’s 
stations are usually small. Hence, the stations in this line are modeled with constant cycle times that vary from station 
to station. Several small buffers, or accumulators, of varying sizes are located throughout the line. 

 
Figure 1. Transfer line 

 
The line’s stations are subject to failure. Each station is modeled with random failure and repair rates that are 

statistically independent from those of the other stations. The time-to-failure of each station is assumed to be 
exponential distributed while its time-to-repair is modeled with a gamma-2 distribution. The mean and variance of 
these distributions are obtained from actual production data collected from the stations in the framing line of an 
automobile assembly plant. Note that the mean and variance of these distributions vary from station to station. Details 
concerning the data used to construct these distributions are presented in (Hillberg, 2004). 

The three prediction tools compared in this study use the line’s Work-In-Progress (WIP) to forecast its throughput 
at the pay-point (located at the end of the line). The line is partitioned in several “areas” with the accumulation of WIP 
in each area being an input to the throughput prediction tool. The impact on the forecast accuracy of the number of 
stations in the line and the number of areas partitioning the line is also considered. 
 
2. THROUGHPUT PREDICTION TOOLS 
 
An overview of the throughput prediction tools is provided in this section. More details concerning these tools are 
presented in (Hillberg, 2004). Note for each prediction tool, the inputs are the WIP in the line’s areas while the output 
is the line’s throughput. 
 
2.1 Neural Network Prediction Tool 
 
In this study, several different neural network layouts were analyzed. The final network used for the throughput 
prediction tool has one input layer, one hidden layer and a single output node representing the throughput. The 
hyperbolic tangent sigmoidal transfer function is used for the nodes in the input and hidden layers while the output 
node’s transfer function is linear. MATLAB’s Neural Network Toolbox is used to implement the networks. 
 The number of input nodes is set equal to the number of areas which the line is partitioned, while the inputs for 
these nodes consist of each area’s WIP. Following standard practice, the hidden layer contains 50% more neurons than 
the input layer, (Haykin, 1999). 
 Back propagation training using a Bayesian Regularization algorithm is used since it is the least sensitive to 
memorization. Details concerning the various neural network layouts and training methods studied, as well as an 
analysis of their forecasting performance, is presented in (Hillberg, 2004). 
 
2.2 Statistical Regression Prediction Tool 
 
The statistical regression prediction tool is designed to include both first order interactions and second order effects. No 
clear evidence was found over the course of this study to investigate higher order regressions (Hillberg, 2004). The 
method of least squares is used to calculate the regression coefficients. 
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2.3 Case-Based Reasoning Tool 
 
While case-based reasoning is applied to many types of problems, its application to this study fits most closely with the 
classification methodology (Jain et al., 1999). When a new WIP data set, consisting of the WIP in each area, is 
presented to the prediction tool, WIP data sets in an experiential data-base are sorted based on their distance from this 
new data set. A finite number k of these data sets then “vote” for an appropriate classification value for the new data set. 
This method is known as “k-nearest neighbor” classification (Dasarathy, 1990) and (Jain et al., 1999). 
 One of the appeals of the case-based reasoning technique is its ability to use data “as-is”. It is concerned only with 
the following two functions. 

  A distance function which assigns a distance between the new data set and the experiential data sets. 
  A combination function which adapts a finite subset of the “nearest” experiential data to generate a 

classification. 
 
 In this study, the distance function used is the Euclidean distance between the new data set and an experiential data 
set. The combination function uses a fuzzy set scoring method with a weighted mean, where the weight is derived using 
a sigmoidal membership function (Cox et al., 1997). 
 The case-based reasoning tool used over 600 sets of WIP data in its experiential data-base. In the course of this 
study, differing values for k (the number of nearest neighbors) were used. Little difference was seen in the efficacy of 
the prediction tool when between 20 and 50 neighbors were used. Hence, 30 neighbors were selected when performing 
the comparison tests presented in this paper. 
 Note an additional advantage of the case-based reasoning technique is its ability to adapt. New data sets are added 
to the experiential data-base as they occur without the need for re-training the prediction tool, as is required by the 
neural network and the statistical regression prediction tools. A disadvantage of the case-based reasoning technique is 
that it tends to consume a large amount of both processing time and computer memory (Hand et al., 2001). A large 
amount of experiential data must be available in order to find a reliable set of neighbors. 

 
3. COLLECTION OF TRAINING DATA 
 
Numerous experiments were performed using the transfer line described in Section 1, Figure 1. A simulation model of 
this line was implemented in Automod (Automod Users Manual, 2001). Approximately 2,000 records of data were 
collected as training sets for the predictive tools. Simulations were run for 8 replications of 40 hours past the warm-up 
period. The simulation model was reset to a common initial condition at the beginning of each replication. Two-thirds 
of the collected data was designated for training the predictive tools while the remaining third was used to test the 
training. 
 
4. EVALUATION OF THE PREDICTIVE TOOLS 
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Figure 2. Evaluation of prediction tool performance 
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A procedure was developed for comparing the efficacy of each predictive tool, see Figure 2. The upper chart in the 
figure is a scatter plot of data collected from the simulation model. It is compared to the forecast from the prediction 
tool using the same set of inputs. A linear regression is calculated between the actual result from the simulation model 
and the forecast from the prediction tool. An R-squared value and a 95% range are also determined. The scatter plot 
shows the 95% confidence interval as two parallel lines. The lower chart in Figure 2 provides a histogram showing the 
distribution of the differences between the actual and forecast values. Also shown in the histogram plot are the mean 
absolute deviation and the standard deviation. 
 Next, performances of the three predictive tools are compared. Tables 1 and 2 show the performance of three 
predictive tools on data collected from the transfer line, Figure 1. The Kolmogorov-Smirnov variance test (Walpole et 
al., 2002) show a strong similarity between the residual distributions found in the regression and the neural network 
prediction tools. However, the performance of the case-based reasoning tool differed from that of the other two tools. 
The performance metrics such as R-squared, mean absolute deviation, etc. are worse for the case-based reasoning tool, 
so this tool is rejected as an adequate predictor. Anova and Kruskal-Wallis mean tests (Walpole et al., 2002), were then 
performed to recognize a difference in the residual averages of the regression and the neural network tools with no 
statistically significant difference between them being found, Table 2. 
 

Table 1. Performance of prediction tools for small transfer line 
 

Regression Neural Network Case-Based Reasoning 
R-Squared 0.871 R-Squared 0.883 R-Squared 0.819 
95% Range 3.666 95% Range 3.488 95% Range 4.342 

Mean Abs. Dev. 1.644 Mean Abs. Dev. 1.587 Mean Abs. Dev. 1.952 
Mean Residuals -0.074 Mean Residuals -0.063 Mean Residuals 0.294 
Conf. Interval [-4.43, 4.29] Conf. Interval [-4.21, 4.08] Conf. Interval [-4.88, 5.46] 

 
Table 2. Variance and means tests for small transfer line (P-values) 

 
 Regression vs. NN Regression vs. CBR NN vs. CBR 

Kolmogorov-Smirnov II 0.994 0.028 0.038 
Anova 0.953   

Kruskal-Wallis 0.873   

 
4.1 Impact of Transfer Line Size on Forecast Accuracy 
 
The number of stations in the transfer line has an impact on the ability of the prediction tools to accurately forecast 
throughput. It was found that as the line increases in size, the accuracy of the forecast improves for each of the 
prediction tools. This result was obtained by analyzing the performance of the prediction tools while varying the size of 
the transfer line. 

 
Table 3  Performance of neural network prediction tool for different transfer line size 

 
Small Line Medium Line Large Line 

R-Squared 0.758 R-Squared 0.872 R-Squared 0.879 
95% Range 4.680 95% Range 3.648 95% Range 3.585 
Mean Abs. Dev. 2.073 Mean Abs. Dev. 1.652 Mean Abs. Dev. 1.618 
Mean Residuals 0.020 Mean Residuals 0.053 Mean Residuals 0.098 
Conf. Interval [-5.55, 5.59] Conf. Interval [-4.39, 4.28] Conf. Interval [-4.36, 4.16] 

 
 

Table 4  Variance and means tests for different transfer line sizes (P-values) 
 

 Small vs. Medium Small vs. Large Medium vs. Large 
Kolmogorov-Smimoff II 0.067 0.101 0.940 

Anova   0.403 
Kruskal-Wallis   0.358 

 

The smallest line contained 53 stations (the original line, Figure 1) while the medium and largest lines contained 
75 and 100 stations, respectively. Note that in each case, the transfer line was divided into 10 areas. The general 
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configuration of the transfer line (a single line feeding two parallel lines which feed three parallel lines finally merging 
back into a single line) was unchanged. 

Since the neural network prediction tool produces an adequate forecast, it is used to determine the impact of 
transfer line size on forecast accuracy. The results are shown in Tables 3 and 4. The distribution of the residuals in 
Table 3 indicates that there is a difference in the forecast accuracy due to the size of the transfer line. It shows the 
performance metrics improve as the line gets larger. 

The Kolmogorov-Smirnov variance test indicates a statistically significant difference in the small versus the 
medium and the small versus the large lines at 10% level of significance. The mean residual values are all near zero, 
indicating that the predictive errors do not include a bias. The Anova and the Kruskal-Wallis means tests indicate no 
substantial difference in the mean residual of the medium versus large lines. Since the residual distribution of the small 
line could not be considered the same as the other two, it was not included in the means tests. 
 
4.2. Impact of the Number of Areas on Forecast Accuracy 
 
In the preceding analysis, the transfer line was partitioned into ten areas. In this section, the effect of increasing the 
number of areas on forecast accuracy is considered. This is easiest to accomplish on the large transfer line which 
contains 100 stations. The performances of the three prediction tools created using the large line divided into 10 areas 
are compared with three corresponding prediction tools created with the line divided into 23 areas. 
 

Table 5  Performance of regression prediction tool for different areas 
 

10 Areas 23 Areas Notes 
R-Squared 0.842 
95% Range 4.244 
Mean Abs. Dev. 1.844 
Mean Residuals 0.061 
Conf. Interval [-4.98, 5.10] 

 

R-Squared 0.85151 
95% Range 4.13131 
Mean Abs. Dev. 1.82777 
Mean Residuals 0.06767 
Conf. Interval [-4.85, 4.988] 

 

 
Likelihood of same underlying 
distribution is 72.6% from 
Kolmogorov-Smirnov II test. 
 

Likelihood of same mean. 
 Anova: 96.7% 
 Kruskal-Wallis: 61.9% 

 
The results are shown in the Tables 5, 6 and 7. In each case, the forecast time is 30 minutes. The notes adjoining 

each table indicate the likelihood that the residual distributions and means are the same, indicating whether there is (or 
is not) an advantage in dividing the line into smaller sized areas. In the case of the regression and the neural network 
prediction tools, no statistically significant difference in forecast accuracy was found. 

Increasing the number of areas decreases the forecast accuracy for the case-based reasoning prediction tool. This is 
most likely due to the distance heuristic used within the case-based reasoning algorithm. In this algorithm, the 
Euclidean distances from the current system state to all previously recorded states are calculated to define the group of 
nearest neighbors. This distance function makes no allowance for the physical proximity of one area of the line to 
another area. Hence, if a large number of small areas are used, it is more likely to result in a larger distance between 
two system states than when a small number of large areas are used. 

For example, consider a transfer line containing 100 stations partitioned into five areas with 20 stations per area. A 
part moving from station 5 to station 6 will not change the WIP count for area 1. Next, consider the same 100 stations 
partitioned into twenty areas with 5 stations per area. A part which moves from station 5 to station 6 will change areas, 
and there will be an impact on the WIP count in the distance function. The difficulty lies in that this change generates 
exactly the same distance value as a change between station 5 and station 100, which is much further away. So while a 
change between adjoining areas may not truly imply a significant change in the system state, the distance function 
considers it to be identical to a much more significant state change. 

 
Table 6  Performance of neural network prediction tool for different areas 

. 
10 Areas 23 Areas Notes 

R-Squared 0.8511 
95% Range 4.1200 
Mean Abs. Dev. 1.7855 
Mean Residuals 0.0533 
Conf. Interval [-4.84, 4.95] 

 

R-Squared 0.8522
95% Range 4.1099
Mean Abs. Dev. 1.7666
Mean Residuals 0.0200
Conf. Interval [-4.86, 4.90]

 

 
Likelihood of same underlying 
distribution is ~100% from 
Kolmogorov-Smirnov II test. 
 

Likelihood of same mean. 
 Anova: 79.9% 
 Kruskal-Wallis: 76.3% 
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Table 7  Performance of case-based reasoning prediction tool for different areas 
 

10 Areas 23 Areas Notes 
R-Squared 0.8244 
95% Range 4.4811 
Mean Abs. Dev. 2.0255 
Mean Residuals 0.0066 
Conf. Interval [-5.34, 5.33] 

 

R-Squared 0.7933
95% Range 4.8600
Mean Abs. Dev. 2.2966
Mean Residuals 0.3466
Conf. Interval [-6.17, 5.47]

 

 
Likelihood of same underlying 
distribution is 5.1% from 
Kolmogorov-Smirnov II test. 
 
Means tests were not performed 
since underlying distributions are 
not similar. 

 
4.3 Effects of Additional Buffer Capacity on Forecast Accuracy 
 
 In the systems described, buffering is implemented simply by designating that some stations require no processing 
time. The large system, which has 100 stations, was used to determine if the relative amount of buffering in the system 
has an impact on predictive ability. The model was executed in three experiments, where the difference between the 
models is in the number of buffer stations in the system. Zero, seven and twenty buffer stations were used in the three 
experiments; as in earlier examples, these values were chosen arbitrarily. The criteria being that they fit easily into the 
structure of the system, and that there is a proportionally large difference from one experiment to the next. The number 
of stations in the system remains at 100, but in the cases of seven and twenty buffers, evenly dispersed stations were 
given zero processing times. 

Table 8 shows the results of the experiments. The performance metrics (R-square, 95% Range, etc.) indicate a loss 
of predictive ability as the number of buffer stations increase. While the variance tests cannot conclude that there is a 
significant difference between none and 7 buffer stations, or between 7 and 20 buffer stations, it can conclude (with 
97.6% certainty) that there a statistically significant difference between none, and 20 buffer stations. Presumably, if 
enough data is collected, a significant difference between none and seven buffer stations may be found as well. 

Adding small capacity buffer stations to the system increases its cycle time variability. A buffer station can more 
quickly change from full to empty than can a processing station, and this increase in variability decreases predictive 
ability. For example, consider a data collection area of five stations. At a particular point in time it is observed that both 
the fourth and the fifth stations in the area are holding parts. The other stations are empty, and the WIP count for this 
area is two (a part in each of stations 4 and 5). 

Suppose there is no buffer in this area and the parts are blocked while waiting on a downstream station. Once the 
downstream blockage clears, the part in station 5 exits while the part in station 4 moves into station 5. Hence, the WIP 
becomes one (a 20% drop in the maximum WIP count for this area). Barring any new part entries into the area, WIP 
will remain at one at least until station 5 has completed processing the part. 

 
Table 8  Performance of neural network prediction tool for different buffer capacity 

 

No Buffers Buffer Capacity 7 Buffer Capacity 20 

R-Squared 0.889 R-Squared 0.865 R-Squared 0.823 

95% Range 3.436 95% Range 3.893 95% Range 4.416 

Mean Abs. Dev. 1.508 Mean Abs. Dev. 1.720 Mean Abs. Dev. 1.943 

Mean Residuals -0.032 Mean Residuals -0.004 Mean Residuals 0.029 

Conf. Interval [-4.11, 4.05] Conf. Interval [-4.63, 4.62] Conf. Interval [-5.27, 5.21] 

 

Table 9 Variance and means tests for different buffer capacity (P-values) 
 

Kolmogorov-Smirnov II   
Variance Tests:  P-values  

Means Tests 
using: P-values 

 None:  7 Buffers 0.682  Anova 0.802 

 None: 20 Buffers 0.024  

Kruskal-Wallis 

 

    7: 20 Buffers 0.506  0.618 
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Next, consider the same scenario, but with station 5 a buffer station. When the downstream blockage clears, the 

part in station 4 may be able to move immediately past station 5 (a buffer) and into the next area. The WIP count has 
now changed nearly instantaneously from two parts to none (a 40% drop in the maximum WIP count), twice what was 
seen in the previous scenario. This larger change increases the variability of the input data, which is reflected in the 
increased variability of the output data, and results in the negative impact on predicting throughput. 

It appears that this may be a fruitful area for further optimization. In collecting the WIP count, no special 
allowances are made to identify how the WIP is distributed between operational and buffer stations. If the WIP count 
was enhanced to incorporate this information, a better prediction may be observed. 
 
 
5. CONCLUSIONS AND PRACTICAL ASPECTS 
 
Three data-driven modeling techniques were studied for constructing a throughput prediction tool: neural networks, 
statistical regression and case-based reasoning. Results of this comparison indicate that the prediction tools designed 
using statistical regression and neural network techniques offered comparable performance. It was also observed that 
the prediction tools constructed using these two techniques performed better than the one designed using case-based 
reasoning techniques. 

Note that to successfully use these techniques to construct a prediction tool, a large set of input-output data 
reflecting the manufacturing system’s performance is required. This set of input-output performance data can be 
referred to as historical performance data. Unfortunately for many modern manufacturing systems, a sufficiently large 
set of such historical performance data required to use these data-driven modeling techniques may not be available. 

There are two main reasons for this shortage of data. First, the manufacturing system may be too new to have 
accumulated a large enough set of historical performance data. 

A more important reason for an insufficient amount of historical performance data is due to the continuous 
improvement process that is applied to most manufacturing systems (Askin et al., 2002). Most manufacturing systems 
are modified on a weekly, if not daily, basis. Hence, the current behavior of a manufacturing system is usually not 
reflected in the input-output performance data collected during the previous month due to system modifications. 

A potential solution to this problem is to use a verified simulation model of the manufacturing system to produce a 
set of simulated historical performance data. This set of simulated historical performance data could be used to train the 
throughput prediction tool via one of the data-driven modeling techniques. Once the throughput prediction tool is 
trained and verified, it will use real-time performance data collected from the manufacturing system in order to make its 
prediction. This is the subject of current research efforts. 

A prevalent theory at DaimlerChrysler during the course of this research project was “the largest impediment to 
throughput is machine reliability”. It was possible to identify the least reliable machines as having the lowest 
throughput, and place buffers upstream and downstream of that machine. However, this usually has little effect in a 
large system (dozens to hundreds of machines). The machine with the lowest reliability is generally only slightly worse 
than a number of other machines in the system. It is impractical, and usually impossible, to place buffers around each of 
these unreliable machines. What’s more, this would violate one of the primary tenants of lean manufacturing, as it 
would increase WIP in order to minimize the effects of machine unreliability. 

One approach to maximize reliability is the construction of intelligent machines that can identify their own pending 
failure (Higgs et al., 2004) and (Bengtsson, 2008). Once a possible failure condition is recognized, the machine would 
signal the appropriate personnel that preventive maintenance should be performed. 

But an intelligent machine cannot determine an opportune time for conducting preventive maintenance unless it 
understands the state of the system in which it resides. An optimal time to conduct preventive maintenance is when the 
machine is not expected to be busy, that is, when it’s expected throughput is low. By predicting periods of low 
throughput, the machine can be maintained at a time in which it would otherwise be starved for parts. This effectively 
synchronizes preventive maintenance to the throughput gaps which ‘naturally’ occur in the production system. 
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