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This paper considers the optimal management problem of a finite capacity M/M/1 queueing system with F-policy in 
which some customers may demand a second service in addition to the first essential service. The F-policy investigates 
the frequent issue of controlling arrival to a queueing system and its required startup time before allowing customers to 
enter the system. This system has potential applications in the wireless communication networks, the transport service 
and production system. By applying the birth and death process, some important performance measures are derived. A 
cost model, developed to determine the optimal control F-policy at a minimum cost, and sensitivity analysis are also 
studied.  
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Significance: We study the controlling arrivals of a Markovian queueing system through simple mathematical tools, 
where some customers may demand a second service in addition to the first essential service. Such a system has 
potential applications in the wireless communication networks, the transport service and production system, etc. 
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1. INTRODUCTION 

 
   In this paper, we deal with the issue of controlling arrivals for an M/M/1/K queuing system with an F-policy, which 
some customers may demand a second service in addition to the first essential service. In the proposed model, when the 
number of customers in the system reach its capacity K ( ), no further arriving customers are allowed to enter 
into the system until a certain number of customers, who are already in the system, have been served in order to make 
sure the number of customers in the system decreases to a predetermined threshold F ( ). At that time, 
the server needs to take an exponential startup time and allow customers to enter into the system. Moreover, the server 
provides the first essential service as well as a second optional service. Upon completion of the essential service, the 
customer may opt for an optional service with probability q. 
   Controllable queueing models aim to find the optimal operating policy, that is, rules for turning the server on and 
off that result in the lowest long-run cost. Past works regarding such queueing problems could be divided into two parts 
according to whether the system is considered to control the service or the arrival. The issue of controlling the service 
includes: the N-policy introduced by by Yadin and Naor (1963), the T policy proposed by Heyman (1977) and the 
D-policy introduced by Balachandran (1973). Among said operating policies, the studies of N-policy queueing models 
gained a lot of attention due to analytical being easily tractable. The variations and extensions of these vacation models 
with N policy can be referred to Lee et al. (1994, 1995), Ke (2003), Arumuganathan and Jeyakumar (2005), Moreno 
(2008), and others. The developments and applications on service control of queueing systems are rich and diverse (see 
Tadj and Choudhury (2005)). In the other hand, F-policy, the pioneering work in the issue of controlling the arrivals, 
was first investigated by Gupta (1995). The intention of the F-policy is to control the arrival process when service 
control is not possible through N-policy.  
   As for optional service, Madan (2000) first investigated an M/G/1 queueing system with a second optional service, 
in which some of arrivals may require a second optional service immediately after completion of the first essential 
service. In Madan's work (2000), the service times of the first essential service are assumed to be a general distribution 



Arrivals for a Markovian Queuing System 
 

 49 

and those of the second optional service are exponential. He also cited some important applications in day-to-day life 
situations. Madan's work (2000) is extended to ‘optional service’ with general distribution case by Medhi (2002). Later, 
Choudhury and Paul (2006) studied the queue size distribution at a random epoch as well as at a departure epoch for an 
Mx/G/1 queueing system with second optional channel under N-policy. They also derived a simple procedure to obtain 
optimal stationary policy under a suitable linear cost structure. The reliability measures were examined by Wang (2004) 
for the ordinary M/G/1 queue with channel breakdowns and second optional service. Recently, Tadj and Ke (2008) 
examined the optimal control policy for a two-phase bulk service queueing system under N policy with multiple 
vacation and setup, where the group of customers has the option to choose the service type in either phase of service. 
   Existing research, however, seldom addresses the optimization issue in such queueing systems with optional service. 
Besides the lack of research works on such problem, our study is also motivated by some practical systems. For 
example, in the wireless communication system, arriving (new and handoff) calls are granted, or denied, access to the 
network by the call admission scheme (CAC) based on predefined criteria, taking the network loading conditions into 
consideration. When the system capacity has reached the predefined level, the arriving calls will be restricted entrance 
until the number of calls drops to a threshold level. When system capacity reduces to the threshold level, the calls are 
allowed to enter the system. This will help to prevent the system from becoming over-loaded (F-policy). In addition, 
multimedia services such as voice, video, data, and audio are to be offered with various QoS profiles in the third 
generation and beyond wireless systems. Hence, except for handing the normal accesses from wireless mobile devices 
(essential service), the access gateway may need additional work (optional service) to negotiate with other gateway for 
QoS control depending on the request of wireless mobile devices.  
   The other applications in our model are the transport service and production system. Considering the transport 
service based on Ke (2006), all ships arriving at a port may need unloading service on arrival. Due to the limited 
working place and labor power, the control policy should be executed to maintain the quality of unloading service. 
When the capacity of working place is full, the arriving ships will be restricted entrance until the capacity of working 
place drops to a threshold level. When the capacity of working place reduces to the threshold level, the ships are 
admitted to enter the port (F-policy). Yet, some of ships may require a re-loading service (which is optional) soon after 
the unloading (essential service). In the production system, items are allowed to be produced by the machine based on 
predefined criteria, taking the machine loading conditions into consideration. When the machine capacity is reached the 
predefined level, the arriving items will be restricted entrance until the number of items drops to a threshold level. 
When machine capacity reduces to the threshold level, the items are allowed to enter the system. This will help to 
maintain the production performance of the machine (F-policy). The machine producing items, however, may require 
two of services such as periodic checking (essential service) and repairing (optional service) during the processing of 
raw materials. At times, some of units may either left the system after periodic checking or rest of units may send to 
workshop for the reprocessing service. 
   The reminder of this paper is organized as follows: In Section 2, the queueing model is briefly described. In Section 
3, the mathematical model is developed and its analytical steady-state solutions are derived. Various system 
performance measures are presented in Section 4. In Section 5, we develop the total expected cost function per unit 
time for the F-policy M/M/1/K queueing system with a second optional service, and then provide the numerical 
illustration and sensitivity analysis in Section 6. Finally, some concluding remarks are drawn. 

 
2. MODEL DESCRIPTIONS 

 
   We consider the issue of controlling arrivals for the F-policy M/M/1/K queueing system with a second optimal 
service. It is assumed that arriving customers follow a Poisson process with parameter ". A general case for a customer 
service is considered. All arriving customers require the essential service and some customers may further demand a 
second optional service. On completion of the essential service, the customer may leave the system with probability p 
or may opt for the second optional service with probability q (1-p), the times of the essential service and the optional 
service are assumed to be exponential distribution with parameter µ1 and µ2, respectively. Arriving customers form a 
single waiting line based on the order of their arrivals. In other words, they are queued according to the first-come, 
first-served (FCFS) discipline. The server can only provide either the essential or the optional service for one customer 
at a time and that the service is independent of the arrival of customers. A customer who arrives and finds the server 
busy must wait in the queue until he is available. In addition, the server operates F-policy when the number of arrivals 
reaches its capacity K (i.e., the system becomes full). As soon as the number of the customers drops to a predetermined 
threshold value F ( ) since the system becomes full, the server immediately requires an exponential 
startup time with parameter # to start allowing customers in the system. The system operates normally until the number 
of customers in the system reaches its capacity at which time the above process is repeated all over again. 

 
3. STEADY-STATE SOLUTIONS 
 
   The following pair describes the states of the F-policy M/M/1/K system with second optional service channel 

, where i represents server’s state and n represents the number of customers in the system. Let i=0 denote the 
customer is not allowed to enter into the system when the server is providing the essential service, i=1 denote the 
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customer is not allowed to enter into the system when the server is providing the optional service, i=2 denote the 
customer is allowed to enter into the system when the server is providing the essential service, i=3 denote the customer 
is allowed to enter into the system when the server is providing in the optional service. Thus  

. 
In steady-state, the following notation are used, 

: Probability that there are n customers in the system when the arrivals are not allowed to enter into the system, 

and the server is providing the essential service, where . 

: Probability that there are n customers in the system when the arrivals are not allowed to enter into the system, 
and the server is providing the optional service, where . 

: Probability that there are n customers in the system when the arrivals are allowed to enter into the system, and 
the server is providing the essential service, where . 

: Probability that there are n customers in the system when the arrivals are allowed to enter into the system, and 

the server is providing optional service, where . 

Referring to the state-transition diagram depicted in Figure 1, the steady-state equations for  
are given by:  

 
,                      ... (1) 

 
 ... (2) 

  
,       ... (3) 

 
,        ... (4) 

 
, ... (5) 

 
, ... (6) 

 
,     ... (7) 

             
,    ... (8) 

     
,         ... (9) 

 
,  ... (10) 

   
,     ... (11) 

   
,     ... (12) 

  
Since the closed-form solutions of equations (1) - (12) are too complicated to obtain by using a recursive method, a 
computer software (MATLAB) is used to compute the  ( ) by using the following normalizing 
conditions: 
 

.  
... (13) 
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Figure 1. State-transition rate diagram for the F-policy M/M/1/K queueing system with optimal service 
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4. SYSTEM PERFORMANCES 
 

   Some important system performance measures of the F-policy M/M/1/K queueing system with a second optional 
service are defined as follows: 

L ! the expected number of customers in the system; 
Pe ! the probability that the server is providing the essential service; 
Pop ! the probability that the server is providing the optional service;  
Ps ! the probability that the server requires a startup time before starting the service; 
Pb ! the probability that the system is blocked 

W ! the expected waiting time in the system 
E(S) ! the expected number of customers when the server starts to allow customers entering the system; 
E(B) ! the expected number of customers when the system is blocked; 

The expression for L, Pe, Pop, Ps, Pb and W are given by: 
 

L = , 
... (14a) 

 

 

Pe = , 
... (14b) 

  

Pop = , 
... (14c) 

  

Ps = , 
... (14d) 

 

 

Pb = . 
... (14e) 

  

The effective arrival rate is "eff="[ ], 

W = , 
... (15a) 

  

, 
... (15b) 

 

 

. 
... (15c) 

 

 
5. COST SENSITIVITY ANALYSIS 

 
   We construct a total expected cost function per unit time for the F-policy M/M/1/K queueing system with a second 
optimal service, in which F and K are a decision variable. Our objective is to determine the optimum threshold F, say F*, 
and the optimum system capacity K, say K*, simultaneously at minimum cost. The joint optimal values (F*, K*) and 
various system performance measures are obtained based on assumed numerical values given to the system parameters. 
Let us define the following cost elements: 
Ch : the holding cost per unit time for each customer present in the system; 
Ce: the cost per unit time for the busy server with essential service; 
Cop: the cost per unit time for the busy server with optional service; 
Cs: the setup cost per unit time for the preparatory work of the server before staring the service; 
Cb : the fixed cost for each lost customer when the system is blocked; 
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Cw : the waiting cost per unit time when one customer is waiting for service; 
C7: the fixed cost per customer’s space; 

The total expected cost function per unit time is determined by 
 

TC(F,K)= ChL+CePe+CopPop+CsPs+Cb"Pb+CwW+C7K, ... (16) 

 
where L, Pe, Pop, Ps, Pb and W are defined above.  
   The cost parameters in Eq. (16) are assumed to be linear in the expected number of the indicated quantity. 
Substitution of Eqs. (14) and (15a) into Eq. (16), the cost function is too ample to be shown here. In many practical 
optimization problems, we must focus our attention on finding the absolute minimum (or absolute maximum) of a 
function of two variables. We should mention that the first and second partial derivatives are powerful tools for locating 
and categorizing the relative extrema (relative minimum or relative maximum) of a function of two variables. 
Following the Calculus textbook, the second derivative test is used to find and classify the relative extrema of a 
function of two variables. Unfortunately, the analytic study of the behavior of the cost function TC(F, K) would have 
been an arduous task to undertake, or at least extremely difficult to develop the optimal solution (F*, K*) symbolically 
due to the highly non-linear and complex nature of the optimization problem. To the best of the authors’ knowledge, no 
new and efficient methods to solve this optimization problem currently exist. This is due to the fact that there are two 
decision variables, F and K, involved in our model. Here, we should explicitly point out that the solution really gives 
the minimum value and the second partial derivative of TC(F, K) at the (F*, K*) is greater than 0 when the values of 
system parameters satisfy suitable conditions. Yet, it is quite boring to provide the explicitly expression. Thus, we will 
present extensive numerical experiments to show that the function is truly convex and that the solution actually gives a 
minimum. An efficient and direct procedure is used to obtain (F*, K*). Following Hilliard (1976), we carry out the 
following steps for achieving the joint optimal values (F*, K*).  

Step 1: Find the optimal system capacity K*, for threshold value F, i.e., 
 

Step 2: Find the set of all minimum cost solutions for F=1, 2,…, K-1, 

{TC(F,K*):F=1,2,…,K-1} 

Step 3: Find the minimum cost solution for F=1, 2,…, K-1, 
 

   An example (such as the transport service system mentioned in Section 1) is provided to illustrate the direct search 
procedure. For example:  
! The ships arrive follows a Poisson process with rate "=1.5.  
! The preparing interval for admitting ship entrance is an exponential random variable with rate #=0.1.  
! The unloading and re-loading time are according to an exponential distribution with rate µ1=1.0 and µ2=1.2, 

respectively.  
! Upon the completion of unloading, the ships require re-loading with probability p=0.6. 
! Holding cost Ch=$10/unit, unloading cost Ce =100/day, re-loading cost Cop=60/day, Setup cost Cs =300/day, 

blocked cost Cb=400/unit, waiting cost Cw=8/day, and fixed cost C7=5/unit. 

Step 1 Find K* for threshold value F, where F=1, 2, 3…, 29 (see Table 1) 
Step 2 From Table 1 the set of all minimum cost solutions $={$692.09, $691.42, $692.22,…, $1063.63} 
Step 3 From Step 2, the optimal solution TC(F*,K*)= $691.42 is achieved at F*=2 and K*=9.  
   Alternatively, we also sketch this example to demonstrate that the expected cost function is convex and the solution 
achieves a global minimum. From Figure 2, we can find the expected cost function attains a minimum $ 691.42 at F*=2 
and K*=9. 
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Table 1. The expected cost TC(F,K*) for given 
 

 
 

Figure 2. The expected cost TC(F,K) for different values of different F and K. 

 
6. NUMERICAL ILLUSTRATION  
 
   The numerical model is analyzed to illustrate how the management of the transport service system can use the 
above results to make the decision regarding the system capacity and the threshold level to minimize the total expected 
cost (such as Table 1 and Figure 2). The managers can find the optimal system capacity (working place) and the 
optimal threshold level (for admitting ship entrance) are 9 and 2, respectively, which attain the minimum cost. Based on 
above cost setting listed above, we also perform a sensitivity analysis for changes in the optimal value (F*, K*) along 
with changes in specific values of the system parameters. Under optimal operating condition, numerical results are 
presented in which various system performance measures are calculated. Various values of (", µ1, µ2) are considered 
when #=0.1 and p=0.6. The optimal value (F*, K*), the minimum expected cost TC(F*, K*), and various system 
performance measures are displayed in Table 2.  
   From Table 2, one can see that (i) the optimal value (F*, K*) and the minimum expected cost TC(F*, K*) increase as 
" increases; and (ii) the optimal value (F*, K*) and the minimum expected cost TC(F*, K*) non-increase as µ1 increases. 
Moreover, (F*, K*) do not change as µ2 increases and TC(F*, K*) slightly decreases with µ2 increases. It is reasonable 
that the cost of maintaining the transport service system increases as the number of arriving ships increases. On the 
other hand, the optimal system capacity (working place) and the optimal threshold level don’t almost change when 
re-loading service rate varies. The cost of maintaining the transport service system slightly decreases as the rate of 
re-loading service increases. We believe that the numerical investigation is useful and significant for the manager to 
make intelligent decision (such as the determination of working place and threshold level for admitting ship entrance, 
etc.). 
    
 
 

F 1 2 3 4 5 6 7 8 9 10 
(F,K*) (1,9) (2,9) (3,9) (4,9) (5,9) (6,10) (7,10) (8,11) (9,11) (10,12) 

TC(F,K*) 692.09 691.42 692.22 694.54 698.40 703.03 708.96 716.34 724.09 733.52 
F 11 12 13 14 15 16 17 18 19 20 

(F,K*) (11,12) (12,13) (13,14) (14,15) (15,16) (16,17) (17,18) (18,19) (19,20) (20,21) 
TC(F,K*) 743.15 754.12 766.47 780.01 794.60 810.11 826.43 843.49 861.20 879.50 

F 21 22 23 24 25 26 27 28 29  
(F,K*) (21,22) (22,23) (23,24) (24,25) (25,26) (26,27) (27,28) (28,29) (29,30)  

TC(F,K*) 898.34 917.67 937.45 957.63 978.20 999.10 1020.33 1041.84 1063.63  
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Table 2. System performance measures for different values of " , µ1 and µ2 under optimal operating conditions 
 

 (",µ1,µ2) (0.1,1.0,1.5) (0.4,1.0,1.5) (0.4,2.0,1.5
) 

(0.4,3.0,1.5) (0.4,1.0,3.0) (0.4,1.0,4.0) (0.9,1.0,1.5) (0.4,2.0,3.0) (0.4,2.0,4.0) 

(F*, K*) (2,3) (4,6) (4,5) (3,4) (4,6) (4,6) (4,9) (4,5) (4,5) 

TC(F*, K*) 129.4397 163.3724 136.4057 129.0396 159.3366 158.5444 370.5292 134.9840 134.7584 

L 0.1397 0.8794 0.4231 0.3037 0.7458 0.7159 3.2937 0.3265 0.3051 

E(B) 0.0058 0.0505 0.0064 0.0049 0.0379 0.0353 0.9419 0.0042 0.0039 
E(S) 0.0021 0.0172 0.0027 0.0016 0.0144 0.0138 0.1426 0.0022 0.0021 

 
Table 3. System performance measures for different values of #  and p under optimal operating conditions 

 
(!, p) (0.01, 0.7) (0.5, 0.7) (0.1, 0.2) (1, 0.2) (10, 0.2) (1, 0.5) (1, 0.8) (0.1, 0.5) (0.1, 0.8) 

(F*, K*) (1,8) (2,6) (1,7) (2,4) (2,3) (2,4) (2,5) (2,8) (3,10) 
TC(F*, K*) 981.1184 524.8738 714.7991 502.1438 426.5778 492.0476 475.9678 699.7748 667.1461 

L 0.6893 3.0147 2.6301 2.4426 2.1537 2.3212 2.6669 3.0246 3.8226 
E(B) 0.3750 1.6911 1.5687 1.4840 1.3365 1.4038 1.5246 1.7077 1.9437 
E(S) 0.0083 0.1216 0.0307 0.1349 0.0478 0.1501 0.1233 0.0894 0.1579 

   
 Alternatively, Table 3 shows the optimal value (F*, K*), the minimum expected cost TC(F*, K*), and various system 
performance measures for different values of # and p, in which "=1.5, µ1=1.0 and µ2=1.2. Table 3 reveals that (i) the 
optimal value K* and the minimum expected cost TC(F*, K*) increase as!# decreases, but F* increases as # increases; and 
(ii) the optimal value (F*, K*) increases as p increases, but the minimum expected cost TC(F*, K*) increases with p 
decreases. It is logical that the cost of maintaining the transport service system decreases as the startup rate (preparing 
for admitting ships entrance) increases or the occurrence of ships re-loading (1-p) decreases. Moreover, the optimal 
system capacity (working place) increases as the startup rate decreases and the optimal threshold level increases as the 
startup rate increases. 
 
7. CONCLUSIONS 
 
   In this paper, we studied an F-policy M/M/1/K queueing system with a second optional service, and obtain the 
steady-state analytic solutions. This model generalizes (i) a generally M/M/1/K queueing system with a second optional 
service; and (ii) an F-policy M/M/1 /K queueing system (see Gupta (1995)). We have provided a method to determine 
the optimal threshold and system capacity simultaneously, to minimize the expected cost function, and calculated 
various system performance measures under optimal operating conditions. This research presents an extension of the 
Markovian model theory and the analysis of the model will provide a useful performance evaluation tool for more 
general situations arising in practical applications, such as the wireless communication networks, the transport service 
and production system, and many other related systems. 
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