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This paper proposes a replenishment decision support system, based on response surface methodology (RSM) and modified 
traveling particle swarm optimization (TPSO). Cross-border cooperation lengthens the distance for transportation and in 
turn widens the disparity in inventory cost among business partners, thus accentuates the importance of inventory 
management. Therefore, this paper solves a two-stage stochastic dynamic lot-sizing problem with two-phased 
transportation cost under a vendor managed inventory. Modified TPSO is proposed to solve a sub-problem, the nonlinear 
mixed integer programming. In this algorithm, which is executed with a perturbation policy, each move is a feasible 
solution. RSM is being used to determine the optimal replenishment condition. The result of the experiment indicates that 
the proposed approach lowers the cost for both the buyer and the vendor. Moreover, the solution quality using modified 
TPSO was tested and compared with that of the Solver tool in Excel and 3 lot-sizing decision rules. 
 
Significance:   The contributions of this paper include: (1) the decision support system based on RSM and PSO, (2)      

adding the perturbation policy to traditional PSO and analyzing the influence of the algorithm parameters 
on the solution quality, and (3) the probe into the impact of the replenishment policy on the VMI supply 
chain.  
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1. INTRODUCTION 
 
The order penetration point (OPP) is a stage in the supply chain where the suppliers allocate product orders in accordance 
with customers. Businesses at the pre-OPP operate under a make-to-stock environment (Olhager, 2003). Vendor managed 
inventory (VMI) model has been developing great momentum in upstream-downstream partnerships. This model allows a 
vendor to manage a buyer’s inventory by formulating a replenishment plan and directly monitoring the buyer’s inventory 
level, which can effectively decrease the bullwhip effect in the supply chain (Disney and Towill, 2003). Besides, 
globalization is an incentive for businesses to improve upstream-downstream integration so that cross-border cooperation 
and partnerships are becoming a trend. This has resulted in transportation cost becoming a critical issue in the 
replenishment policy. This paper proposes a decision approach for finding an optimal replenishment policy under the 
pre-OPP and VMI model. 

The objective of the dynamic lot-sizing problem (DLSP) is to determine the optimal replenishment quantity to satisfy 
demand within the planning horizon. Wagner and Whitin (1958) used dynamic programming to solve this one-stage 
problem. One-stage DLSPs in discrete time include: Diaby (1995), Hindi (1995), Megala and Jawahar (2006), Hwang and 
Jaruphongsa (2006), and Martel (1998). Moreover, Zangwill (1969), Prasad and Krishnaiah Chetty (2001), Gencer (1999), 
and Özdamar and Birbil (1998) tried to solve multi-stage problems. Transportation cost, however, was not taken into 
account in these studies. Smith (2003) proposed a multiple-inventory loading problem for transportation operations. This 
problem is not designed for VMI supply chain, and it doesn’t include forecasting models. Studies on DLSP that considered 
transportation cost are Osman et al. (2003), Yano and Newman (2001), Jaruphongsa et al. (2004), and Kaminsky and 
Simchi-Levi (2003), but in these models the demand is considered to be deterministic. Chiu and Chin (2005) proposed a 
production lot-sizing problem with the reworking and shortage not allowed. Their proposed problem is related to economic 
production quantity. The result shows that when the production lot-sizing becomes larger, the inventory cost becomes 
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larger as well. In their literature, the consideration for time is continuous. Hashemipour et al. (1999) proposed a production 
lot-sizing problem. Their model is designed for make-to-order garment manufacturers. 

This study solves a two-stage stochastic dynamic lot-sizing problem with two-phased transportation cost under a 
non-deterministic demand in which the vendor uses the exponential smoothing method for forecast. This paper also 
proposes a replenishment system based on particle swarm optimization (PSO) and response surface methodology (RSM). In 
the traveling particle swarm optimization (TPSO), particles must travel every variable (Su and Wong, in process). In 
performing the modified TPSO, perturbation policy is proposed for the velocity of the particles. Therefore, the main aspects 
of paper are to: (1) Formulate a decision approach applicable to stochastic model, here using RSM to determine the 
replenishment condition (e.g. the replenishment cycle) and than proposing modified TPSO to solve an NP-hard problem; (2) 
Examines how the parameters of modified TPSO influence the solution quality, which is then compared with the Solver 
tool in Excel; (3) Compare the performance of the proposed replenishment decision support system and traditional VMI 
model.  
 
2. MATHEMATICAL FORMULATION FOR THE PROBLEM 
 
Let t and T respectively denote the index of planning periods and the length of the planning horizon. For modelling the 
problem, the notations used in this paper are defined as follows: 

tx :  the procurement quantity at the vendor at the end of period t  

ty :  the replenishment quantity at the buyer at the end of period t  

 :  the constant of exponential smoothing method 
k :   the variable for extra order quantity to satisfy demand variation 

0T :  the length of the replenishment cycle 

tq :  the decision variables for expand transportation capacity in period t 

 :   interest rate 

1K :  the set-up cost of a procurement at the vendor 

2K :  the set-up cost of a replenishment at the buyer 

1p :  the unit procurement cost at the vendor 

2p :  the unit replenishment cost at the buyer 

1h :  the unit cost of holding inventory at the vendor 

2h :  the unit cost of holding inventory at the buyer 

w :  the unit waiting cost for shortage 

tc :  original capacity in period t 

G :  the fixed cost of transportation for 3PL 

1u :  the unit transportation/holding cost for each period under original capacity  

2u :  the added unit transportation/holding cost for the over capacity in each period 

1L :  the transportation lead time at the vendor 

2L :  the lead time of transportation from the vendor to the buyer through 3PL  

tS :  the order-up-to level at the end of period t 

O :  the quantity of expanded transportation capacity 

1tI :  the inventory level at the vendor at the end of period t 

2tI :  the inventory level at the buyer at the end of period t 

tD :  the demand in period t 

ˆ
td :  demand forecast at the end of period t 
+
0Z :  a non-negative integer 
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   :  the greatest integer less than or equal to the variable 

There is a buyer and a vendor, and a third-party logistics (3PL) service provider is responsible for the distribution. The 
main assumptions include: (1) the simulation is based on discrete unit time; (2) backlogging is provided at the buyer’s 
consent, which increases cost because of customer waiting; (3) the inventory management adopts the order-up-to policy and 
forecasts with the exponential smoothing method; (4) the lead time is a constant. The decision variables include: the buyer’s 
replenishment quantity (yt), the variable of the extra order (k), the replenishment cycle (T0), and qt.  

The expected total cost includes: the vendor’s cost, buyer’s costs, and transportation cost, as shown in Equation (1). The 
problem is as follows: 
Minimize 

           
       

1 1 1 1 1 2 2 2
1

2 2 2 2 2

E

1

T

t t t t t t t t
t

t

t t t t

Z K x p x h I G y u y L u y c q L

K y p y h I w I

   

 





  

        

      

                  … (1) 

Subject to: 

11, 1 1t t L t tI x y I       1, 2,...,t T                                                           … (2) 

22, 1 2, 2t t L t tI y D I       1, 2,...,t T                                                         … (3) 

t t ty c q O     1, 2,...,t T                                                                  … (4) 

0T +
0Z    1, 2,...,t T                                                                       … (5) 

 0,1tq     1, 2,...,t T                                                                     … (6) 

   1 2 2, , , , 0t t t t tx y I I I
      1, 2,...,t T                                                      … (7) 

                                                                                             
Note that δ(x) = 1 if 0x   and 0 otherwise; (x)+ = max{x, 0}; (x)– = – min{x, 0}; η(x) = 1 if x   1 and x 

otherwise; tD is a random variable. 

Equation (2) shows the inventory balance constraint at the vendor, Equation (3) is the constraint of the buyer’s inventory 
balance, and Equation (4) is the capacity constraint at 3PL. Equation (5) is a non-negative integer constraint. Equation (6) is 
a binary variable constraint that is either 0 or 1. Equation (7) is a non-negative real number constraint that implies 
backlogging is not allowed for the vendor, but is allowed for the buyer. 

In the order-up-to policy, the replenishment quantity provided by the vendor within a replenishment cycle is xt = St – 
inventory position. Therefore, the vendor’s replenishment quantity is as follows: 

1 2t t t tx S I I    0t nT ; 1, 2,...n                                                           … (8) 

 
According to Chen et al. (2000), in addition to the forecast demand in the replenishment cycle, in practice, additional 

k  orders will be placed for the forecast demand to satisfy any variation in the demand. Therefore, the vendor’s order-up-to 
level is as follows: 
 

 0
ˆ

t tS T k d   0t nT ; 1, 2,...n                                                             … (9) 

where the smoothing exponent forecasts  ˆ ˆ1 1d D dt t t     , 0 1  . 

 
3. REPLENISHMENT SYSTEM 
 
The proposed replenishment system is composed of RSM and modified TPSO, which determines the optimal replenishment 
condition through simulation. 
 
3.1. Framework of the proposed approach 
Meta-heuristic algorithms, such as genetic algorithms, ant colony optimization, and PSO, are derived from the observation 
of animal behavior or evolution and have been widely used. PSO, initially proposed by Kennedy and Eberhart (1995), was 
an evolutionary computation based on the observation of animal behavior like bird flocking. In executing the PSO, every 
particle moves at a randomized velocity based on the flight experience of its own and its neighbors’. Unlike traditional 
genetic algorithms, PSO has memory; consequently, the best solution for the swarm during the execution will be 
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memorized, and so will the personal best solution of individual particles. Individual particles move in accordance with 
these two memories. PSO was used by Abido (2002), and Salman et al. (2002) to solve optimization problems. Su and 
Wong (in press) proposed the concept of TPSO and applied it in the development of the controller of the processing 
parameters. This paper proposed the modified TPSO based on Su and Wong’s (in press) algorithm. After the vendor 
determines the replenishment amount through forecast, the particle determines the replenishment amount of each period at 
the buyer within a replenishment cycle, as shown in Figure 1.  

 
Figure 1. The diagram of TPSO application on the optimized replenishment policy 

 
RSM, an integration mathematical and statistical method, is a methodology for finding the optimal condition in 

experimental design methods. RSM is a mathematical model that uses parameters and quality characteristics to establish the 
relationship of the two and to find the optimal condition. There is more detail on RSM presented in Myers and Montgomery 
(2002).  

This paper solves a nonlinear mixed integer programming sub-problem of the proposed problem and proposes a 
meta-heuristic algorithm based on TPSO to determine the decision variables pertaining to be NP-hard (i.e. yt). RSM is used 
to find the optimal combination of decision variables T0 and k, as shown in Figure 2. 

 
Figure 2. Schematic diagram for the proposed system 

 
3.2. Modified TPSO algorithm implementation 
In this paper, the modified TPSO with a perturbation policy is used to determine the optimal replenishment period and 
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quantity for the buyer under the VMI model. The modified TPSO algorithm is being performed on this problem as follows: 
 

Step 1. Input: the parameter of modified TPSO (i.e. number of iterations B, number of particles E, perturbation rate , ρ, 1 , 

and 2 ). 

Step 2. Set initial iteration b = 1 and the initial velocity etv  of particle e during the replenishment period t. etv = random 

numbers, for  e, t. 

Step 3. Randomly generate the initial solution Y = { ety | t, e = 1, 2,…, E }, and calculate the cost. 

Step 4. Determine the current best solution
P
ety of particle e and the current best solution

G
ty of the entire swarm. 

Step 5. Update the velocity of the particle as follows: 

   1 1 2 2
P G

et et et et t etv v r y y r y y       ,                                               … (10) 

      where ρ is an adjustable parameter between 0 and 1, 1r and 2r are random numbers between [0, 1], 1 and 2 are 

constants. 
Step 6. Update the new solution as follows: 

      et et ety y v  .                                                                          … (11) 

Step 7. Perform the perturbation policy. If r  , then etv = random numbers of uniform distribution between 0 and ct, 

for e, t, else next step, where r is a random number between [0, 1]. 

Step 8. Update the new solution as follows so that the new solution is feasible: 

1 1

1

if

i f 0

0 if 0

t et t

et et t et

et

I y I

y y I y

y


  
 

 for  e, t. 

Step 9. Calculate cost and update
P
ety and

G
ty . 

Step 10. If b = B, then next step, else b = b + 1 and go to the step 5. 

Step 11. Return
G
ty and end. 

 
3.3. Simulation procedure 

The analysis is done through simulation. First, RSM is used to determine replenishment conditions 0T and k , then the 

modified TPSO algorithm is used in simulation to determine x = {xt | t = nT0, n = 1, 2,…} and y = {yt | t = 1, 2,…, T0}. The 
steps are as follows: 
 
Step 1. Input simulation parameters including all cost and forecast constant.  

Step 2. Determine the decision variables 0T and k by RSM. 

Step 3. Determine x and y as follows: 
Step 3.1. Generate the demand: Di = {Dit | t = 1,2,…,T} 1, 2,...,i Q . 

Step 3.2. Determine {xt | t = (n – 1)T0}in the n-th replenishment cycle by the forecast method. 

Step3.3. Determine 0 0 0| 1ty nT T t nT    in n-th replenishment cycle by modified TPSO. 

Step 3.4. Update 1tI and 2tI . 

Step 3.5. Repeat steps 3.1–3.4 0T T   times to obtain: 

 
 0 0, |1t tx y t T T T     . 

Step 3.6. If the remainder of 0T T does not equal 0, then adjust the planned periods and execute optimization to obtain: 

        
 0 0, | 1t tx y T T T t T     . 

Step 3.7. Calculate the objective value iZ . 

Step 3.8. Repeat steps 3.1–3.7 Q times to obtain z = {Z1, Z2,…, ZQ}. 
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Step 3.9. Return the
1

Q

ii
Z Q

 , x, and y. 

Step 4. Repeat step 2 until the RSM experiment is complete.  
 
4. COMPUTATIONAL RESULTS 
 
The first part of the experiment is an analysis of how the modified TPSO parameters would influence the solution quality, 
which is also compared with some lot-sizing decision rules and the Solver tool in Excel. The second part of the experiment 
is a simulation to compare the performance of the traditional VMI model and the proposed replenishment policy. 
 
4.1. Modified TPSO test 
This paper proposes a modified TPSO algorithm to solve the nonlinear mixed integer programming in the lot-sizing 
problem. This sub-section examines how parameters and ρ of the modified TPSO influence the quality of solutions in this 
sub-problem. The objective function of this sub-problem is as follows: 
 
Minimize 

       
       

1 1 1 2 2 2
1

2 2 2 2 2

TC( )

1

T

t t t t t t t
t

t

t t t t

y h I G y u y L u y c q L

K y p y h I w I

  

 





  

      

      


                       … (12) 

 
In order to test the modified TPSO algorithm, the Solver tool in Excel and three lot-sizing decision rules were used as 

comparison. The design of the three lot-sizing decision rules (i.e. DR1, DR2, and DR3) is as shown in Equations (13), (14), 
and (15) respectively.  
 

t ty D      for t = 1, 2,…, T                                                                   … (13) 

0ty        for t = 1, 2,…, T                                                                   … (14) 

1

for 1

0 otherwise

T

i
it

D t
y 

  



                                                                     … (15) 

 
In calculating the total cost, the design of DR1 (i.e. lot-for-lot rule) will enable h2 and w to be left out, the design of DR2 

will leave out K2 and p2, the design of DR3 will leave out w, and G and K2 will only be calculated once (i.e. in period 1). 
 

Table 1. Test result of parameter  
 

  
 

TPSO  
 

Excel tool 

  Min Mean Max  = 429.480 

0.016 
 

 
 

260.606 
 

271.0915 
 

286.777 
 

 
 

DR1 
= 428.873 

 
0.008 

 
 
 

260.455 
 

267.9376 283.202  
 

DR2 
= 4044.546 

 
0.002 

 
 
 

261.101 
 

272.7277 
 

283.566 
 

 
 

DR3 
 

0.000 
 

 261.931 270.4193 286.777 
 

  
 

 
Table 1 is the result of the parameter in modified TPSO in the thirty runs of each test. In this test, final customer 

demand is generated with discrete uniform distribution of [16, 25], and T = 20. Moreover, 1,0I of the sub-problem is a 
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constant. The parameters of modified TPSO are set E = 30, B = 5000, 1 = 1.2, 2 = 1.2, and ρ = 0.9. Table 1 shows that an 

adequate perturbation rate can improve the solution quality. When the perturbation rate = 0.008, its average objective 
function value is less than the solutions of the Excel tool and three lot-sizing decision rules. The convergence process, as 
shown in Figure 3, indicates that when the perturbation rate = 0, caving into the local optimum may be unavoidable. 
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n 
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e

0.000
0.008

 
Figure 3. The improvement of the average best solution on parameter = {0.000, 0.008} 

 
Table 2 shows the testing result of parameter ρ in the modified TPSO, with similar demand settings as Table 1. The 

parameters of the algorithm are set E = 30, B = 5000, 1 = 1.2, 2 = 1.2, and = 0.008. Compared with Tables 1 and 2 

indicates that when ρ = 0.9, the solution quality is better. 
 

Table 2. Test results of parameter ρ 
 

ρ 
TPSO 

Min Mean Max 
0.8 262.862 271.812 284.045 
0.7 266.786 280.826 289.455 
0.6 271.557 282.809 307.349 
0.5 274.246 291.361 320.873 

 
Table 3. Testing results of TPSO in 40 examples 

 

Methods  Case 1_1 Case 1_2 Case 1_3 Case 1_4 

 
TPSO 

Min 148.62 117.14 448.09 330.24 
Mean 165.21 122.73 505.08 367.25 
Max 187.04 142.99 553.82 417.63 

 
Excel 
tool 

Min 236.99 216.00 648.15 582.85 
Mean 248.56 218.80 681.55 606.78 
Max 259.53 222.05 717.83 633.21 

 
DR1 

 

Min 236.99 212.57 635.46 581.75 
Mean 244.61 215.36 645.61 586.82 
Max 258.00 218.79 659.78 591.16 

 
DR2 

 

Min 1293.06 832.60 9934.14 6611.86 
Mean 1472.01 897.27 10578.57 6981.71 
Max 1697.80 991.55 11034.15 7284.57 

 
DR3 

 

Min 148.62 117.14 513.72 398.10 
Mean 166.05 121.28 535.17 409.28 
Max 187.04 126.18 570.60 421.19 

 
The solution quality of modified TPSO is being tested in four different cases, with 10 examples in each case. In case 1_1 
the demands of the final customer are generated with discrete uniform distribution of [16, 35]. In case 1_2, the demands are 
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generated from Equation (16) under T = 10. In case 1_3 and case 1_4, the final customer’s demands are generated with 
discrete uniform distribution of [16, 35] and Equation (16) under T = 30, respectively. It is clear that Equation (16) is a 
distribution of demand with tendency. Table 3 shows the results of this test, which indicate that when the Excel tool is used 
to solve this sub-problem, the solution quality is not as good as expected, whereas the algorithm proposed by this paper 
renders better performance. This may be attributed to the fact that the greater the planning horizon T is, the more the 
carrying cost h2 would undermine the performance of DR3. On the other hand, the solution quality of the proposed 
algorithm is superior to that of the Excel tool and these three lot-sizing decision rules. 

115 0.1 0.1t t tD D t                                                                        … (16) 

where t is normally distributed with mean 0 and variance 2. 

 
4.2. Comparative test  
This experiment is to test the proposed replenishment system, supposing that the vendor is responsible for the transportation 
cost so that the buyer will consent to the VMI model. The proposed system is compared with the traditional VMI model (i.e. 
policy 2) so as to see who will benefit from the proposed replenishment system (i.e. policy 1). In the traditional VMI model, 
replenishment is provided by the vendor with his demand forecasts and the determined replenishment cycle (i.e. 
replenishment is provided at the beginning of replenishment cycle). The simulated cases 2_1 and 2_2 are generated from 
discrete uniform distribution of [16, 25] and Equation (16), respectively. The RSM reflects that the optimal model uses 
quadratic model. In other words, the quadratic model, with a convex response surface, as shown in Figure 4 is statistically 
significant. Table 4 shows the output of the statistical data. The results indicate that the values of the adjusted R-square for 
the four models are all above 95%, and that the quadratic model is statistically significant, reflecting the appropriateness of 
this model. 
 

 
Figure 4. Response surface of case 2_1 in policy 1 

 
 

Table 4. Output of the proposed model and the traditional VMI model 
 

 
R-Squared (%) 

Adjusted R-Squared 
(%) 

P-value 

State Linear model Quadratic model 

 Policy 1 Policy 2 Policy 1 Policy 2 Policy 1 Policy 2 Policy 1 Policy 2 

Case 2_1 99.04 97.10 98.36 95.03 0.9431 0.8317 <0.0001 <0.0001 

Case 2_2 99.32 98.56 98.84 97.54 0.7044 0.9221 <0.0001 <0.0001 
 

Through RSM, the optimal replenishment condition (T0 and k) is found, and Figure 5 is the output under the optimal 
condition. P1_1 and P2_1 are the results of using policy 1 and policy 2 respectively in case 2_1. P1_2 and P2_2 are the 
results of using policy 1 and policy 2 respectively in case 2_2. Figure 5 shows that in the simulation, the expected total cost 
of policy 1 is lower than that of policy 2, and that policy 1 lowers the cost for both the buyer and the vendor. The %τ of 
P1_1 and P2_1 = 10.23%. The %τ of P1_2 and P2_2 = 10.72%. Note that %τ = (the expected total cost of policy 2 – the 
expected total cost of policy 1)/the expected total cost of policy 1100. 



Decision Support System for Replenishment Policy  
 

9 

200

250

300

350

400

P1_1 P2_1 P1_2 P2_2

C
o

st
550

600

650

700

750 Vendor

Buyer

Total cost

 
 

Figure 5. Output of the optimal condition 
 
5. INDUSTRY APPLICATION 
 
The replenishment system proposed in this paper is applicable for lot-sizing problems that consider transportation cost in 
VMI supply chain. In practice, VMI policy is a common approach for quick response (QR) from vendor to downstream 
demand. The main concept of VMI is that upstream partnership controls downstream partnership’s inventory levels and 
order planning. Some famous high-tech enterprises, such as HP (Shah, 2000) and Dell (Baljko, 1999), implemented VMI 
policy to reduce inventory cost. Therefore, it’s possible that VMI policy is applicable in practice. The methodology 
proposed is a replenishment system that is designed for VMI supply chain. To better meet the practical situations, the 
decision model also considers transportation cost. 

 

 
 

Figure 6.The VMI supply chain replenishment 
 

We described an industry application scenario that the proposed methodology can be applied in. The background 
company in the illustrative example, HC Corporation, is a component raw material supplier in TFT-LCD industry. They 
produce single key material for polarizing sheets. The material is shipped from Japan to the regional warehouse in Korea. 
After some processing operations, these products can be sold to the downstream partnership TG in Korea. TG is an OEM 
manufacturer for polarizing sheets. In order to achieve QR, this simple supply chain adopts the VMI policy, and this 
example is shown in figure 6.In such scenario, decision makers face a non-deterministic replenishment problem for 
downstream, which is NP-hard. The approach proposed in this paper is applicable in the decision environment described 
above. In order to obtain an optimum replenishment policy, initially decision maker will acquire demand forecast by using 
forecasting model. Then, TPSO is used to determine optimal replenishment quantity. Finally, RSM is used to discover the 
best combination for other decision variables. In practical industrial application, the system proposed in this paper 
possesses some critical insights, which can be acquired by the experiments and problem characteristic in this paper, such as: 
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 In section 5.1, near-optimal solutions that TPSO obtains are: case 1 = 148.62, case 2 = 117.14, case 3 = 448.09, and 
case 4 = 330.24. In Excel tool, acquired near-optimal solutions for cases 1, 2, 3, and 4 are: 236.99, 216.00, 648.15, 
and 582.85. The result shows that TPSO performs better than Excel tool in different planning horizon and demand 
distribution. 

 Table 1 shows that TPSO gains better performance when parameter   is equal to 0.08. In practical application, 
decision makers should notice that the TPSO’s perturbation rate. If the rate is too high or too low, the solution 
performance will be compromised.  

 The replenishment model in this paper is applicable for VMI supply chain. Therefore, some practical execution issues 
are worthy to concern. For example, an experienced consultant should be hired to handle VMI policy. The power of 
supply chain partnership should be understood. Upstream and downstream partners should own complete and 
competent IT infrastructures. There should be complete reviews and communication channels for VMI policy 
executions (Tyan and Wee, 2003). 

 Achabal et al. (2000) proposed a decision support system for VMI supply chain. Their system includes a forecasting 
model and an inventory decision model. The replenishment system in this paper is designed for simulation system 
includes NP-hard. In practice, different forecasting models and parameters should be applied for different 
environments. For this issue, please refer to the literatures of Achabal et al. (2000). 

 In practice, vendors may persuade downstream partners to follow VMI policy by handling transportation cost. The 
experiment results in this paper also show that the proposed system can reduce cost for both upstream and 
downstream partners under VMI environment. Obviously, such approach doesn’t consider the risk for information 
sharing. 

 
6. CONCLUSIONS 
 
The increasingly globalized marketplaces are creating more and more opportunities for transnational cooperation. As a 
result, the transportation distance has been stretched and the transportation cost has become an issue of increasing 
importance. This paper proposes a replenishment system based on modified traveling particle swarm optimization and 
response surface methodology to solve a two-stage stochastic dynamic lot-sizing problem with two-phased transportation 
cost. To solve the nonlinear mixed integer programming sub-problem therein, this paper proposes a modified TPSO 
algorithm with perturbation policy. In table 1, mean objective values for parameter  = 0 and 0.008 are 270.4193 and 
267.9376 respectively. The result indicates that perturbed strategy is beneficial for improving algorithm performance. The 
experiment shows that adequate perturbation rate prevents the modified TPSO from caving into the local optimum and 
renders better solution quality than Excel tool and 3 lot-sizing decision rules in problems with larger planning horizon. 
Figure 5 shows that the total costs when adopting the replenishment system proposed in this paper are all less than three 
hundred. All total costs acquired by traditional VMI policies are more than three hundred. The result of the replenishment 
system test shows that the cost in the proposed model is lower than that in the traditional VMI model. Even though the 
proposed method is being implemented on the condition that the vendor is responsible for the transportation cost, expected 
cost is lowered for both the buyer and the vendor. When managers confront a similar supply chain environment as the one 
examined in this paper, the proposed method and the testing result can serve as a good reference in the decision-making 
process. 
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