
International Journal of Industrial Engineering, 15(3), 304-313, 2008. 
 
 

ISSN 1072-4761              © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING 

Fuzzy Topsis Decision Method for Configuration Management 
 

Shu-Hsuan Chang1 and Hwai-En Tseng2 
 

1 Department of Industrial Education and Technology,  
National Changhua University of Education,  

Taiwan, ROC. 
 

2 Department of Industrial Engineering and Management,  
National Chin-Yi University of Technology,  

Taiwan, ROC. 
 

Corresponding author’s e-mail: {S-H Chang; shc@cc.ncue.edu.tw} 
 

Mass customization refers to an environment in which reducing quantities and increasing varieties of products are being 
manufactured. A product configuration is defined as an aggregation of parts whose functions and performance parameters 
must be defined and controlled to achieve the overall performance of a system or product. Since the product configurations 
would be varied based on consumer needs, selecting effective product configurations from among several alternatives is a 
challenge during the mass customization design stage. This study developed a structural model which combines a fuzzy 
quality function deployment with a fuzzy Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) to 
solve this problem. The configuration alternatives ranked using the proposed method can provide a useful reference for 
decision makers in implementing configuration management. 
 
Significance: In mass customization environments, configuration management is crucial to product development. 

Inappropriate PC selection results in poor product quality and increases the development time and cost. 
The decision model proposed in this study provides a more realistic approach for selecting 
configuration alternatives in developing design strategies. 
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1. INTRODUCTION 
 
Given the highly competitive global market, enterprises frequently select a production strategy capable of achieving a profit 
on a limited production scale to meet consumer needs. To reduce costs and adapt to small-to-medium batch production 
scale, flexible design should be an issue in the current environment. Furthermore, to produce added value, systems should 
be flexible to cope with environmental change (Salvador and Forza, 2004). Such manufacturing systems are defined as 
mass customization production (Silveira et al., 2001; Salvador and Forza, 2004; Tseng et al. 2005; Tseng and Chen, 2006; 
Jiao et al., 2007).  

In mass customization environments, configuration management (CM) is essential in developing small-to-medium 
scale products. Configuration identification, one of the main functions of CM, selects a proper set of product configurations 
to meet consumer needs (ISO-10007, 1995). The product configurations (PCs) describe the multi-composition relationships 
between parts on the bill of material (BOM). Since the PCs vary with consumer needs, how to select effective PCs from 
among several configuration alternatives is a challenge during the mass customized design stage. Improper PCs selection 
will produce poor product quality and increase development time and costs (ISO-10007, 1995). Moreover, selecting too 
many PCs will increase the cost of management control, while selecting too few PCs or incorrect PCs risks losing markets.  

Regarding design problems, Martin and Ishii (2000) and Siddique and Rosen (2001) have researched design problems. 
This study does not emphasize the design issue but rather decision model construction, including selecting configuration 
alternatives while developing design strategies. Moreover, an empirical case study dealing with configuration management 
of CNC lathe machine is provided to demonstrate the computational process and effectiveness of the proposed decision 
model. 

 
 
 
 

2. PROBLEM DESCRIPTION 
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The selection of PCs is modeled as a multi-criteria decision making (MCDM) problem (Hwang and Yoon, 1981). The 

decision makers first establish several strategic criteria from which the configuration alternatives are then ranked and 
selected. Because considerable incomplete and uncertain information exists in the early design and development stages, it is 
difficult to choose the PCs based on traditional cost and effectiveness analysis. This study attempts to build a decision 
model which offers a quantitative reference for selecting configuration alternatives. Furthermore, since most information 
available during the design stage is imprecise, vague, and uncertain and is generally expressed in natural language by 
decision makers, fuzzy set theory (FST) was adopted and the decision model, which combines a fuzzy quality function 
deployment (QFD) with a fuzzy Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) was developed 
here. 

 

Determine customer needs 
and technical demands (1) 

Generate feasible design 
spaces for configuration 

design (5)

Determine configuration 
alternatives (6) 

Generate fuzzy linguistic 
variables (2) 

List relationship matrix of 
customer needs and 
technical demands (3) 

Determine weight for each 
technical demand (4)

Rank alternatives 
via fuzzy TOPSIS (7)

Fuzzy TOPSIS procedures: 

7‐1. Establish membership 
function of fuzzy data, and 
calculate the fuzzy weight 
of each criterion. 

7‐2. Establish decision matrixD~ . 
7‐3. Calculate normalized 

decision matrix R~ . 
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normalized decision matrix
V~ . 

7‐5. Calculate fuzzy positive 
ideal solution and fuzzy 
negative ideal solution. 

7‐6.Calculate separation

Accept?

Select PCs to meet 
customer needs 

Yes

No

 
 

Figure 1: Decision making algorithm for selecting product configurations 
 

The TOPSIS developed by Hwang and Yoon (1981) was applied to solve the MCDM problem because of its numerous 
advantages: (1) the processing of TOPSIS fits the human decision selection process; (2) the best and the worst solutions are 
compared quantitatively; (3) it is easy to calculate and implement the algorithm. For the sake of transforming customer 
needs into product specifications/technical demands, a fuzzy QFD developed by Shen et al. (2000) is adopted. Since 
numerous factors influence the ranking of technical demands, sensitivity analysis of QFD approach was developed to make 
it more rigorous and operational (Shen et al., 2000; Chan and Wu, 2002; 2005). Shen et al. (2000) studied the sensitivity of 
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the ranking of technical demands to the defuzzification strategy, as well as the degree of fuzziness of fuzzy numbers. Two 
common defuzzification methods, namely, the Mean of Maxima (MOM) and the Centroid method, and the degree of 
fuzziness of fuzzy numbers by the linear index of fuzziness proposed by Kaufmann (1975) were used by Shen et al. (2000). 
The analytical results indicated that the degree of fuzziness slightly influenced the ranking of technical demands when the 
Centroid method was used, but did not affect the technical demands when using the MOM method. For convenience of 
implementation, the Centroid method was adopted in this study. 

 
Figure 1 shows the fuzzy decision making algorithm for selecting PCs. The algorithm comprises seven steps. 

 
Step 1:   Determine customer needs and technical demands. Two steps are generally adopted for deciding customer needs 

and technical demands. First, an in-depth exploration of consumer needs should be performed to understand the 
values which customers really care about. Customer utility can be achieved via a questionnaire survey. Second, the 
QFD method can be applied to transform customer needs into precise product specifications/technical demands 
(Otto and Wood, 2001). 

Steps 2-4: Generate the fuzzy linguistic variables, list the relationship matrix of customer needs and technical demands, and 
determine the weight for each technical demand. The fuzzy linguistic variables will be built to handle the 
subjective and imprecise opinions expressed in natural language by decision makers. In this study, two important 
input data are treated as linguistic variables: the importance to customer needs attributes, and the strength of 
relationship between the customer needs and the technical demands. The fuzzy evaluation score for each technical 
demand can be calculated by fuzzy QFD method. 

Steps 5-6: Generate the feasible design spaces for the configuration design and determine the configuration alternatives. In 
step 5, the feasible design spaces for the configuration design of product families are generated after filtering the 
functional specifications based on technical difficulty, cost and effectiveness, and customer satisfaction. Then, the 
specifications of components, subassembly, or major design variables can be determined. Furthermore, several 
PCs will be generated based on the environment, company strategy and related factors. 

Step 7:   Rank alternatives and select the optimum solution via the seven steps of the TOPSIS algorithm. The selection 
procedure is described in the following section. 

 
3. ALGORITHM FOR COMBINING QFD AND TOPSIS METHOD 
 
This study translates customer needs into technical demands by the QFD method to determine the respective weight for 
each technical demand. Alternatives are then evaluated by combining it with the TOPSIS method to include the opinions 
from decision makers during the evaluation of configuration alternatives. In the meantime, it is necessary to adopt the FST 
to implement the entire evaluation process to solve the decision problems in which descriptions of activities and 
observations are imprecise, vague, and uncertain. 

FST provides a strict mathematical framework in which vague conceptual phenomena can be precisely and rigorously 
studied. It indicates the elements of a set that belong to the degree of that set. Using fractional numbers between 0 and 1 to 
indicate the degree of membership, FST uses the fuzzy logic concept to compensate for the weaknesses in traditional sets, 
which use description based on just two values – 0 and 1. The triangular fuzzy number is used throughout this study, and all 
membership functions for linguistic input data are normalized in the interval [0, 1]. The definitions used in this study are 
stated below. 
 
3.1 Definition 1.  Positive triangular fuzzy number 
A positive triangular fuzzy number Α~ , a fuzzy set, can be defined by a triplet (l, m, u). The membership function )(~ xU A is 
defined as (Klir and Yuan, 1995): 

( )
( ) ( )
( ) ( )

⎪
⎩

⎪
⎨

⎧
≤≤−−

≤≤−−

=

otherwise 　,　0　　　

　,

　,

~ uxmumux

mxllmlx

x
A

U         …   (1) 

 
3.2 Definition 2.  Operations of positive triangular fuzzy numbers  
When given two positive triangular fuzzy numbers 1

~A = (l1, m1, u1) and 2
~A = (l2, m2, u2), according to the interval of 

confidence (Klir and Yuan, 1995), the algebraic operations of these two positive triangular fuzzy numbers 1
~A  and 2

~A  can 
be expressed as follows:  

)21212121 ,,(~~ uummllAA +++=⊕            …  (2) 
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)21212121 ,,(~~ uummllAA ⋅⋅⋅=⊗          …   (3) 
 

The procedures for fuzzy TOPSIS analysis in this study are explained below. 

Step 7-1 :  Establish the membership function of fuzzy data, and calculate the fuzzy weight of each criterion. Establishing 
the membership function of the fuzzy evaluation value is done by setting up an interval value between 0 and 1 
and expressed by a triangular fuzzy number. Furthermore, the fuzzy weight for each criterion in TOPSIS is 
calculated by applying the QFD method. The fuzzy weight for criterion j is defined as

 ),,(~
321 jjjj wwwW = . 

Step 7-2 :  Establish the decision matrix D~ . There are two types of values in decision matrix D~ , i.e., a crisp value and a 
fuzzy number. If the value is a fuzzy number, then use a triangular fuzzy number defined by formula (1). 

Step 7-3 :  Calculate the normalized decision matrix R~  based on the type of value in decision matrix D~ . 
(A) If the value of ijx  representing the evaluation value of alternative i and criterion j is a crisp value, then the 

transformed evaluation value ijr  can be defined as follows: 

(a) *
jijij x/xr = , j∀ ,                                              …  (4) 

where *
jx  is the ideal solution for the benefit criteria; 

(b) ijjij x/xr −= , j∀ ,                             …   (5) 

where −
jx  is the ideal solution for the cost criteria. 

(B) If the evaluation value ),,(~
321 ijijijij nnnx =  

is a fuzzy number, then the evaluation value ijr~  after normalization can 

be defined as follows: 
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where j is the benefit criterion, *
3 jn  is the largest ending value of the fuzzy number in all alternatives; 
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where j is the cost criterion, −
jn1  is the smallest ending value of the fuzzy number in all alternatives.  

Step 7-4 :  Calculate the weighted normalized decision matrix V~ . In formula (8) ijv~  is the element evaluation value after 
normalizing the decision matrix by including the weight value. This evaluation can be calculated by formula 
(3). 

j,i,W~)(r~v~ jijij ∀⋅= .                                                 …  (8) 
The value of 

jW~ , which is determined by the QFD method, is the weight value of the criteria. 
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where j is the benefit criterion; 
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where j is the cost criterion. 
Step 7-5 :  Calculate the fuzzy positive ideal solution *~A and the fuzzy negative ideal solution −A~ . 

)~,~,~(~ **
2

*
1

*
nvvvA LL= , jvv ijij ∀= ,~max~*         …            (11) 

)~,~,~(~
21

−−−− = nvvvA LL , jvv ijij ∀=− ,~min~                              …                     (12) 

In this step, it is necessary to transform a fuzzy number into a non-fuzzy number (i.e., defuzzification) in order to rank 

the alternatives. This study adopts the Centroid method for defuzzification. The formula for defuzzifying the number 
ijV~  is: 
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When there is an equal value among the fuzzy-number values of each alternative, one can choose randomly. The value 

of the cost criteria after normalization will be the same as that of the benefit criteria. The larger the attribute value, the 

better. Therefore, the selection of the fuzzy positive ideal solution *
jV and the fuzzy negative ideal solution −

jV is the same 

as that of the benefit criterion. 

Step 7-6 :  Calculate the distance between each alternative and the fuzzy positive ideal solution *~A and the distance between 
each alternative and the fuzzy negative ideal solution −A~ .  

When given two triangular fuzzy numbers =m~ (m1, m2, m3) and =n~ (n1, n2, n3), the distance between the two can be 

calculated by the vertex method, which is defined as follows (Chen, 2000):  
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Thus, the distance between 
ijv~  and the positive ideal solution is:  

jivvdD jijij ,),~,~( ** ∀=                                                …     (15) 

and, the distance between ijv~  and the negative ideal solution is:  

jivvdD jijij ,),~,~( ∀= −− .                                                    …         (16) 

On the other hand, the distance between the alternative i and *~A  is:   

∑
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and, the distance between the alternative i and −A~  is:   

∑
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The reason for adopting the vertex method in this study is that it is an effective and easy method among many distance-

measuring methods. As long as there is a different vertex value between the two triangular fuzzy numbers, a distance exists 

which can be calculated by the vertex method. 

Step 7-7 :  Calculate the relative closeness to the fuzzy positive ideal solution for each alternative. 
In formula (19), *

iC is the relative closeness for alternative iA to the fuzzy positive ideal solution *~A . 

*
*

ii

i
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                                                          …        (19) 

Obviously, miCi ,,2,1,10 * L=≤≤ . The closer *
iC  is to 1, the closer the alternative i is to the positive ideal solution. 

Thus, the alternative has a higher/superior ranking. 
 
4. CASE STUDY 
 
This study used a CNC lathe from one company as a case study of PCs selection (http://www.llcnclathe.com/index.asp). 
The lathe comprises six important modules: (1) headstock, (2) bed, (3) tailstock, (4) carriage, (5) controller and (6) other 
important parts, as illustrated in Fig. 2.  

• Headstock: the key part of the lathe structure; it includes the head shaft, motor and speed-changer set. 
• Bed: the main part of the lathe, which supports the tailstock, carriage, head shaft box and motor system. 
• Tailstock: also called the tailshelf, cartail, or bottomstock; it supports long pointing tools and is used to store drill 

bits, saws and other tools.  
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• Carriage: transferring tools with reciprocating motion on the bed stage of the lathe bed. The tools can be moved 
via manual horizontal or vertical movements, or by a rod. 

• Controller: the main module controlling working parts in the CNC lathe. The different modules have different 
functional parameters. 

The designer can plan the complete configuration alternative on the entire lathe based on the functional parameters, as 
shown in Fig. 2. The designer must consider every design parameter which influences the lathe during the designing 
process. Among these parameters, customers must provide at least two types of data, namely, the diameter and length of the 
processing parts. The diameter of the parts determines the center height, while their length determines the length of the 
lathe bed. Furthermore, the length of the lathe bed limits its width. From the analytical results, some parameters do not 
affect the design structure, namely, center height, bed length, bed width, turret, tailstock body movement, tailstock quill 
movement, and controller. These parameters are termed unchangeable parametric sets, and are represented by B. However, 
B does not make design changes based on customer choices. Instead, B accompanies other changeable parameters which 
have a configuration variant, as shown in Table 1. Basically, the possible choices for B remain unchanged. The only 
changes which occur in cross slide do so owing to the choices of either the dove tail or the box, and each choice differs 
between the fixed and rotary types. Thus, this study develops the different configuration alternatives by focusing on the 
functional parameters affecting the entire body design. Sixteen sets of alternative solutions are obtained, with each set of 
parametric alternative assemblies representing a possible solution to extending product configuration. 
 

Center height 

Tailstock body mover 

Spindle bore 

Bed length 

Bed width 

Tailstock quill 

Tailstock quill mover 

Types of turrets 

Types of cross slides 

Brand 

Headstock

Bed

Tailstock

Carriage

Controller

Other parts

Lathe 

 
Figure 2: Important modules of CNC lathe 

 
Four main considerations must be made regarding customer needs for CNC lathe: (1) the speed in completing the 

processing of the parts, (2) the degree of accuracy in cutting, (3) the rate of damage to the machine bench, and (4) the price. 
Consequently, it is possible to identify the technical demands which need to be considered to fulfill customer needs. The 
decision makers can then identify the relationship between the technical demands and customer needs. The relative 
importance of each technical demand can be determined by calculating the normalized total fuzzy evaluation score by 
applying fuzzy QFD method. Table 2 shows the investigation result of the present case study which lists the strength of 
relationship between the customer needs and the technical demands. This study also uses the fuzzy linguistic variables 
(defined in Table 3) combined with fuzzy calculation to determine the fuzzy weight value of the technical demands. Table 4 
listed the result obtained from calculating the normalized total fuzzy evaluation score. 
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Table 1. Design parameters of configuration alternatives 
Alternative 
assemblies Conditions 

Alternative 
assemblies Conditions 

A1 B+ bore 4+ dove tail+ fixed A9 B+ bore 4+box + fixed 

A2 B +bore 6+dove tail+ fixed A10 B+ bore 6+box+ fixed 
A3 B +bore 9+ dove tail + fixed A11 B+ bore 9+box+ fixed 

A4 B + bore 12+ dove tail + fixed A12 B+ bore 12+box+ fixed 
A5 B +bore 4+ dove tail + Rotary A13 B+ bore 4+box+ Rotary 

A6 B +bore 6+ dove tail + Rotary A14 B+ bore 6+box+ Rotary 
A7 B +bore 9+ dove tail + Rotary A15 B+ bore 9+box+ Rotary 

A8 B +bore 12+ dove tail + Rotary A16 B+ bore 12+box+Rotary 

 
Table 2. Relationship matrix between customer needs and technical demands 

            Technical  demands      
 
Customer Needs 

Cost Speed Strength Lubrication 
system 

Coolant pump 
system 

Speedily finishing processing parts Medium Very strong Weak Very weak Very weak 
High degree of accurate cutting Strong Medium Strong Strong Strong 

Low damaged rate Medium Strong Weak Very strong Medium 

Low price Very strong Weak Very weak Medium Weak 
 

Table 3. Fuzzy numbers for linguistic variables. 
Linguistic variables in relationship matrix Fuzzy numbers 

Very weak relationship (0, 0, 0.25) 
Weak relationship (0, 0.25, 0.5) 

Regular relationship (0.25, 0.5, 0.75) 
Strong relationship (0.5, 0.75, 1.0) 

Very strong relationship (0.75, 1.0, 1.0) 
 

Table 4. Result obtained from calculating the normalized total fuzzy evaluation score. 
                  Technical                  

demands  
 
Customer needs 

Cost 
X1 

Speed 
X2 

Strength 
X3 

Lubrication system 
X4 

Coolant pump 
system 

X5 

Speedily finishing processing 
parts (0.25, 0.5, 0.75) (0.75, 1.0, 1.0) (0, 0.25, 0.5) (0, 0, 0.25) (0, 0, 0.25) 

High degree of cutting accuracy (0.5, 0.75, 1.0) (0.25, 0.5, 0.75) (0.5, 0.75, 1.0) (0.5, 0.75, 1.0) (0.5, 0.75, 1.0) 
Low damage rate (0.25, 0.5, 0.75) (0.5, 0.75, 1.0) (0, 0.25, 0.5) (0.75, 1.0, 1.0) (0.25, 0.5, 0.75) 
Low price (0.75, 1.0, 1.0) (0, 0.25, 0.5) (0, 0, 0.25) (0.25, 0.5, 0.75) (0, 0.25, 0.5) 

Total score of fuzzy evaluation 
of technical demands (1.75, 2.75, 3.5) (1.5, 2.5, 3.25) (0.5, 1.25, 2.25) (1.5, 2.25, 3.0) (0.75, 1.5, 2.5) 

Normalized total score of fuzzy 
evaluation of technical demands (0.5, 0.79, 1) (0.43, 0.71, 0.93) (0.14, 0.36, 0.64) (0.43, 0.64, 0.86) (0.21, 0.43, 0.71) 

 
The procedures for evaluating configuration alternatives are shown below: 
Step 7-1 :  Establish the membership function of fuzzy data, and calculate the fuzzy weight of each criterion. Two 

things must be considered regarding the application of the configuration alternatives evaluation principles of the headstock: 
(1) the evaluation results for the five attributes, including cost (X1), speed (X2), strength (X3), lubrication system (X4), 
coolant pump system (X5), and (2) the fuzzy weight value for each attribute, the fuzzy weight for each criterion in TOPSIS, 
listed in Table 4. [ ].)71.0,43.0,21.0()86.0,64.0,43.0()64.0,36.0,14.0()93.0,71.0,43.0()1,79.0,5.0(~ =W  The attributes which 
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cannot be expressed numerically, for example, strength, lubrication system and coolant pump system, can be defined using 
linguistic variables, as listed in Table 5. 

 
Table 5: Attributes defined using linguistic variables. 

Degree Strength of 
linguistic variable Fuzzy numbers 

Linguistic variable 
after lubricating 

effect 
Fuzzy numbers Linguistic variable after 

radiating effect Fuzzy numbers 

1 Very weak (0, 0, 0.3) Worst (0, 0, 0.3) Worst (0, 0, 0.3) 
2 Weak (0, 0.3, 0.5) Bad (0, 0.3, 0.5) Bad (0, 0.3, 0.5) 
3 Normal (0.3, 0.5, 0.7) Normal (0.3, 0.5, 0.7) Normal (0.3, 0.5, 0.7) 
4 Strong (0.5, 0.7, 1.0) Good (0.5, 0.7, 1.0) Good (0.5, 0.7, 1.0) 
5 Very strong (0.7, 1.0, 1.0) Best (0.7, 1.0, 1.0) Best (0.7, 1.0, 1.0) 

 
Step 7-2 :  Establish the decision matrix D~  by including the fuzzy number of the linguistic variables to the decision matrix, 

as listed below. 
Step 7-3 :  Determine the normalized decision matrix R~ , which can be calculated by using formulas (4), (5), (6), and (7). 
Step 7-4 :  Determine the weighted normalized decision matrix V~ , which can be calculated by using formula (8). 
Step 7-5 :  Calculate the fuzzy positive ideal solution *~A and the fuzzy negative ideal solution −A~ by using formulas (11), 

(12), and (13). 
Step 7-6 :  Calculate separation measures for each alternative by using formulas (14), (15), and (16). The values of *

iS  and 
−
iS  can be calculated by using formulas (17) and (18). 

Step 7-7 :  Calculate the relative closeness to the fuzzy positive ideal solution. The relative closeness *
iC can be calculated 

by using formula (19). The result is listed in Table 6. 
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Each alternative is ranked from favorable to unfavorable. The degree of preference of an alternative increases with the 
value of *

iC . Thus, the alternative rankings are determined as:  

21513861110715141691234 AAAAAAAAAAAAAAAA fffffffffffffff . 
The proposed decision model ranks configuration alternatives into complete orders that can assist decision makers in 

selecting more appropriate sets of configuration alternatives. Alternatives with higher-ranking order have higher priority for 
consideration as a PC, satisfying both customer needs and technical demands for configuration management. The number 
of PCs selected depends on the budget available for configuration management. Furthermore, the ranking of the 
configuration alternatives offered by this study can provide a valuable reference for forecasting market trends and further 
developing specific products. In this case, A4 is chosen as the optimum alternative. From the result, based on the 
unchangeable nature of body structure B, the company can further stabilize and enhance the design of the fixed dove-tail 
type cross-slide. 
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Table 6: Relative closeness to the positive ideal solution. 

i *
iC  

1 0.5824 / （1.1472 + 0.5824）= 0.3367
2 0.5322 / （1.1689 + 0.5322）= 0.3128
3 1.2670 / （0.5295 + 1.2670）= 0.7053
4 1.3168 / （0.4419 + 1.3168）= 0.7487
5 0.5925 / （1.1065 + 0.5925）= 0.3487
6 0.8386 / （0.9257 + 0.8386）= 0.4753
7 0.9600 / （0.8047 + 0.9600）= 0.5432
8 0.7516 / （0.9458 + 0.7516）= 0.4428
9 1.1473 / （0.5895 + 1.1473）= 0.6606

10 0.9336 / （0.8327 + 0.9336）= 0.5286
11 0.8409 / （0.9178 + 0.8409）= 0.4781
12 1.1679 / （0.5617 + 1.1679）= 0.6752
13 0.7422 / （0.9552 + 0.7422）= 0.4373
14 1.0544 / （0.6752 + 1.0544）= 0.6696
15 0.9849 / （0.7519 + 0.9849）= 0.5671
16 1.1164 / （0.6424 + 1.1164）= 0.6348

 
5. CONCLUSIONS AND RECOMMENDATIONS 
 
This study has established a structural and effective model for selecting product configurations. Fuzzy set theory was 
adopted to solve evaluation problems involving incomplete, uncertain and subjective information. A relationship matrix for 
QFD has been applied to transform customer needs into technical demands and determine the weights for each criterion in 
TOPSIS. The TOPSIS method has been implemented to assess product configurations. A case study involving a CNC lathe 
machine serves as a practical example to demonstrate the effectiveness of the proposed method.  
In future, since configuration management is an incremental learning process and it is difficult to develop the ‘best’ design 
concept in single shop, it should be possible to combine the approaches of case-based reasoning (CBR) with the selected 
alternatives by the TOPSIS method and process them dynamically. Furthermore, the objectiveness of the evaluation process 
can be enhanced by group decision approaches. The decision model proposed in this study can undoubtedly be applied to 
other mass-customized products. 
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