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This paper presents a mathematical model for two-stage planning of transportation and inventory for many sorts of products 
(multi-commodity).  The situation considered in this paper, which happens in a local furniture manufacturing firm, is that 
the total supply in origins exceeds the current-stage’s total demand from all destinations (markets).  Therefore, the problem 
is how to arrange the current-stage’s shipping in consideration of next-stage’s (that is, future’s) inventory in both origins 
and destinations.  A mathematical model is proposed for the problem with the objective of minimizing the total cost of both 
shipping and inventory for all products within two stages.  Meanwhile, since the next-stage’s shipping costs usually are 
unknown, this paper presents a new concept of rational unit shipping cost: a forecasted average cost with weight of next-
stage’s shipping amount.  Finally, a numerical example extracted from the furniture manufacturing company with 4 origins, 
4 destinations and 4 commodities is illustrated in the paper. 
 
Significance: This paper presents a mathematical model for multi-commodity, two-stage transportation and inventory 

problem. The developed model is flexible for adjusting of the next-stage’s shipping plan in accordance 
with the practical conditions at that time. It is also proved that many variables can be reduced by use of 
the rational unit shipping cost. 
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1. INTRODUCTION 
 
With the rapid development of global marketing and manufacturing, the competition among manufacturing firms becomes 
more intense, so a well-established logistic system plays an important role in a manufacturing firm.  A complete logistic 
system involves four steps: moving raw materials from suppliers, converting raw materials into products, shipping products 
to various warehouses, and finally delivering products to customers. Obviously, transportation and inventory are two key 
elements in the entire logistic system, and have attracted many researchers (Lari and Nag, 1993;  Castro and Nabona, 
1996; Lee et al., 2003; Ahn and Seo, 2005).  However, due to complexities and difficulties, transportation and inventory are 
often studied separately although they are closely related, especially for those multi-product (multi-commodity) problems.  
While shipping plan for current-stage’s demands (without inventory) is made, how to hold other surplus commodities over 
current-stage’s demands has to be considered.  This paper will present a mathematical model for this problem. 

Mathematically, the multi-commodity flow problem, as a complicated network, has a variety of practical applications, 
such as, fleet management problem (Vemuganti et al., 1989), facility location problem (Lee, 1993), flight scheduling 
problem (Gu et al., 1994), commodity allocation problem (Bassok and Ernst, 1995), and lot sizing problem (Millar and 
Yang, 1993; Stadtler, 1996).  For arborescent supply chain with discrete-period variable demand, Chiu et al. (2003) 
proposed a mixed integer programming model to minimize the total supply chain cost including transportation cost and 
inventory holding cost over the periods (stages). In 2005, Ahn and Seo presented a multi-commodity ordering model by 
considering transportation constraint on the inventory management during the planning horizon. Huang et al. (2005) 
investigated a one-warehouse multi-retailer system in which each retailer faces a constant and deterministic demand over an 
infinite horizon, and then formulated the transportation and inventory problem as a 0-1 integer linear program. However, all 
the above papers assumed unit shipping cost to be fixed throughout the periods, which is seldom the case in the actual 
situation. Compared with the general multi-period (multi-stage) multi-commodity network flow problems, this paper 
studies a special case, that is, the two-period network flow problem.  The reason for this is obvious: the longer the time 
period to be considered, the more uncertain in future’s activities.  The problem considered in this paper will be addressed in 
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the next section.  Then, a mathematical model will be formulated and the complexity of the model will be analyzed to 
demonstrate the advantage of the model. Finally, a numerical example with sensitivity analysis is illustrated in the paper. 
 
2. PROBLEM DESCRIPTION 
 
The problem originates from a local furniture manufacturing company.  The company locates in the Pearl River Delta, 
while its markets are mainly in USA.  The USA buyers require that furniture must be finally assembled, so it requires a 
large space to store.  The furniture manufacturing company has a two-stage transportation and inventory problem, as shown 
in Figure 1.  When the company makes a transportation plan for its commodities, the company also considers the inventory 
for the next stage, that is, it has to consider where to store its commodities, at origins (the current locations) or destinations 
(warehouses in USA)?  Obviously, the commodities should be shipped to the destination at the current stage and stored 
there for future’s consumption.  However, the commodities may not be stored at destinations because (1) the holding cost at 
destinations is higher than at origins, (2) the inventory space at destinations is limited.  When the inventory space at 
destinations is not enough to hold those commodities for the next-stage’s (future’s) demand, certainly, these commodities 
have to be stored at origins.  However, in the case of higher inventory cost at a destination, the commodities may or may 
not be stored at origins because the shipping costs in both the current stage and the next stage must be compared.  While the 
shipping cost at the current stage can be known from transportation business companies, like airlines or vessel companies, 
however, the shipping cost for the next stage is uncertain.  This makes the problem more complicated. 

 

 
 

Figure 1. The two-stage transportation and inventory problem 
 

As the unit shipping cost in the next stage (actually, in future) is not clear, it is unreasonable to determine a concrete 
shipping plan for the next stage using the current-stage’s unit shipping cost.  In order to get a reasonable unit shipping cost 
for the next stage, the mathematical model developed in this paper will use a new concept, the rational unit shipping cost.  
The rational unit shipping cost here corresponds to the most probable unit shipping cost in the next stage for the total 
commodities held from one origin to all destinations.  Actually, the rational unit shipping cost is a weighted average unit 
shipping cost with the weight of next-stage’s shipping amount.  This shipping amount can be calculated by the Gravity 
Model for the Trip Distribution Problem (Adib, 1983; Bruton, 1985).  Therefore, the total shipping cost from the origin 
(which holds commodities) to all destinations is the rational unit shipping cost times the holding amount in this origin.  By 
using the rational unit shipping cost, the number of variables in the mathematical model will be reduced so the model of the 
problem becomes simpler.  The detailed derivation of the rational unit shipping cost will be addressed later. 

In summary, the conditions considered in the paper are: (1) demands within two stages in destinations, (2) current-
stage’s unit shipping costs from origins (factories) to destinations, (3) holding capacity in destinations, (4) current-stage’s 
unit holding costs in both origins and destinations, and (5) occupying space for holding one unit of different products.  By 
knowing these conditions, the objective of the model is to make a plan for transportation and inventory in order to minimize 
the total cost of transportation and inventory.  The mathematical model developed later in the paper can decide: 1) 
reasonable shipping amounts at the current-stage from different origins to different destinations, which cover current-
stage’s demands and inventory for partial or entire demands in destinations for the next-stage; and 2) reasonable amounts of 
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current-stage’s inventory in origins, which will be shipped in future to different destinations.  Mathematically, the model 
developed here is a special case of the general multi-commodity, multi-period network problems. 

 
3. NOTATION 
3.1. Parameters   

 I number of origins (i =1, 2,…, I ) 
J number of destinations (j =1, 2, …, J ) 
L number of commodities (l =1, 2, …, L) 
Al

i supply amount of commodity l at origin i 
Bl

j current-stage’s demand of commodity l in destination j 
B

l
j
 next-stage’s demand of commodity l in destination j 

Cl
ij current-stage’s unit shipping cost of commodity l from origin i to destination j 

ol
i unit inventory cost of commodity l at origin i 

dl
j unit inventory cost of commodity l in destination j 

Dl
ij Sum of unit inventory cost of commodity l in destination j and current-stage’s unit shipping cost of 

commodity l from origin i to destination j, that is,  
 l

ij
l
j

l
ij CdD +=  …. (1) 

Pi  inventory capacity for standard commodity in origin i 
Qj inventory capacity for standard commodity in destination j 
M incidence vector representing a relationship of the occupying inventory space of various commodities with the 

standard one. 
Here, M = (M1, M2,…, Ml,…, ML), an element Ml denotes the proportion of occupying space for a unit commodity l to a 

unit standard commodity.  Assuming Sd and Sl denotes occupying inventory space for the standard commodity and 
commodity l, respectively, then Ml= Sl / Sd. 

 
3.2. Variables 

X l
ij

 current-stage’s shipping amount of commodity l from origin i to destination j (j ≠ J + 1).  This amount will 

consumed at the current-stage in the destination j, which means this amount will not be held at either origin i 
or destination j. 

X l
iJ 1+

 inventory amount of commodity l at origin i. 

V l
ij
 inventory amount of commodity l in destination j shipped at the current stage from origin i but held at 

destination j for the next-stage’s consumption. 
 
3.3. Prerequisite 
In addition, a condition has to be met that the total supply amount at all origins must exceed the total current-stage’s 
demand in all destinations.  Mathematically, this can be expressed as follows: 

∑
=
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=

J

j
l
jB

I

i
l
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11
 l∀           … (2) 

Otherwise, if this condition can not be met, the problem will degenerate into a general transportation model, which has been 
studied by many researchers (Gass, 1990). 
 
4. MATHEMATICAL MODEL 
4.1. The Model 
Based on the previous discussion, the mathematical model of the problem can be detailed as follows: 
minimize     
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ij ,V l

ij ≥ 0 and integer  ∀ i, l, and j =1, 2,…, J + 1   … (9) 

 Obviously, the objective (3) of the model is to minimize the total cost, including shipping and holding.  Constraint (4) 
represents that total amount of a commodity l at origin i can be shipped to some destinations for consumption at current 
stage, or shipped to some destinations but held for the next-stage’s usage, or kept at origin i, that is, the item Xl

i,J+1.  
Constraint (5) addresses that the total amount of a commodity l, received at a destination j from all origins, should meet the 
current-stage’s demand at the destination.  Constraint (6) states that in a destination, the total amount of a commodity held 
for the next stage should not exceed the next stage’s demand of that commodity.  Constraints (7) and (8) are from the 
inventory space requirements at origins and destinations, respectively. 

It should be noticed that the item Cl
i, J+1 in the objective (3) has not been defined yet.  In fact, 

l
i

l
i

l
iJ CoC +=+1                   ∀ i, l      … (10) 

Where, l
iC  denotes the rational unit shipping cost from origin i to all destinations.  So, Cl

i, J+1 represents the total cost of the 
unit inventory cost of commodity l in origin i and the rational unit shipping cost of commodity l from origin i to all 
destinations. 

The rational unit shipping cost l
iC  can be derived as follows:  Assuming that Tl

ij denotes next-stage’s distribution 
amount (i.e., shipping amount) of holding amount Xl

i,J+1 of commodity l from origin i to destination j, that is,  

∑ =
=

+
J

j

l
iJ

l
ij XT

1
1                ∀ i, l         … (11) 

In order to get Tl
ij, the Gravity Model Method for the Trip Distribution Problem (Adib, 1983; Bruton, 1985) can be 

used.  The basic idea of the gravity model method is that the shipping amount from origin i to destination j is direct 
proportional to the inventory held at origin i (that is, Xl

i,J+1) and the next-stage’s demand at destination j (that is, l
jB ), but 

reverse proportional to the current shipping cost Cl
ij, so, 

l
ij

l
j

l
iJ

l
ij CBXT 1+=α            ∀ i, j, l       … (12) 

where α is a coefficient which can be obtained by the calibration method for the Trip Distribution Problem (Adib, 1983; 
Bruton, 1985).  Now the rational unit shipping cost can be represented as an average shipping cost weighted by the next-
stage’s shipping amount, that is, 
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 By combining (12) and (13), then 
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Current-stage’s shipping cost and next-stage’s demand are two key factors that impact next-stage’s shipping cost. On 
the one hand, the current-stage’s shipping cost has a positive influence on the next-stage’s shipping cost, that is, if the 
current-stage’s shipping cost is high, the next-stage’s shipping cost is usually also high. On the other hand, when next-
stage’s demand of commodity l in destination j (that is, l

jB ) increases, the next-stage’s shipping cost from origin i to all 

destinations (that is, l
iC ) normally will be affected more by current-stage’s shipping cost of commodity l from origin i to 

destination j (that is, Cl
ij). All these have been considered in the above formulation. Therefore, it is reasonable to determine 

next-stage’s shipping plan by using the rational unit shipping cost developed in the paper. 
In order to ensure that a feasible solution exists, the following condition is essential: 
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which states the inventory space requirement for all commodities can not exceed the available space at both origins and 
destinations. 
 
4.2. Complexity Analysis 
This model has I × (2J +1) × L variables including I × (J+1) × L Xl

i,J’s and I × J × L Vl
i,J’s, and  I × L constraints from (4), J 

× L constraints from (5), J × L constraints from (6), I  constraints from (7), and J constraints from (8). 
If the next-stage’s unit shipping cost is considered as the same with the current-stage’s unit shipping cost, the objective 

function of the model will be: 
minimize  
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Compared with the original objective (3), the first summation item in (3) is divided into two parts in (16). 
The variable number in the above model (16) is 3 × I × J × L, but the model presented in this paper is I ×(2J+1) ×L, so 
about (J-1)/ (2J+1)100% variables can be decreased for the objective function. In other words, if there is an example with 
10 origins, 10 destinations and 10 commodities, then about (10-1)/(2×10+1)= 43% variables will be reduced.  Apart from 
this, the model in section 4 can not only reduce the variables in the objective, but also reduce variables in the constraints of 
(4) and (7).  Constraint (4) can be reduced (J-1)/(2J+1)100%; constraint (7) is (J-1)100%, respectively.  So, the conclusion 
is when the larger the size of the problem, the more variables can be decreased.  Furthermore, the number of variables to be 
reduced is depending on the destination number J only, regardless of the number of origins, I, and the number of 
commodities, L.  In other words, with the world economy globalization, more markets are to be expanded for a company, 
then the model will become more complicated.  In the case of the future unit shipping cost is not clear, the problem will be 
simplified by use of the model presented in this paper. 
 
5. NUMERICAL EXAMPLE 
 
5.1. Example Data 
 

Table 1. Basic data of l=1 
C l

ij

1 2 3 4 o l
i A l

i

1 3 6 3 4 5 900
2 4 3 5 5 2 800
3 6 3 7 3 5 1000
4 7 5 3 2 5 1100

d l
j 6 4 7 5

B l
j 420 380 280 300

530 440 480 505

O

D

B
l
j  

 
 

Table 3. Basic data of l=3 
C l

ij

1 2 3 4 o l
i A l

i

1 11 15 16 27 10 950
2 22 30 19 20 13 860
3 19 22 24 28 15 780
4 30 27 23 18 26 980

d l
j 17 16 15 14

B l
j 800 760 550 610

797 1023 907 886

O

D

B
l
j  

Table 2. Basic data of l=2 
C l

ij

1 2 3 4 o l
i A l

i

1 2 3 5 1 3 680
2 3 7 4 5 7 890
3 4 2 3 5 2 550
4 6 8 3 5 4 800

d l
j 2 1 3 4

B l
j 620 680 550 430

706 808 645 558

O

D

B
l
j  

 
 

Table 4. Basic data of l=4 
C l

ij

1 2 3 4 o l
i A l

i

1 10 8 9 11 13 1000
2 9 8 10 13 11 1010
3 12 14 15 12 10 800
4 10 9 8 7 11 950

d l
j 9 8 6 7

B l
j 600 590 320 480

830 680 654 589

O

D

B
l
j
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To apply the above model, an example extracted from the furniture manufacturing company is solved by CPLEX, a 
commercial software package. Due to business confidentiality, the real data have been modified. The parameters of the 
example with 4 origins, 4 destinations, and 4 commodities are shown in Table 1, 2, 3, and 4, which are the data 
corresponding to commodity 1, 2, 3, and 4, respectively. Other data are as follows: M= (1, 2, 3, 2), P1=900, P2=840, 
P3=1080, P4=1500, and Q1=1400, Q2=900, Q3= 1500, Q4=2500. 
 
5.2. Numerical Results 
The rational unit shipping costs calculated with formulation (14) are shown at Table 5. 
 

Table 5. The rational unit shipping costs l
iC  

C l
ij

1 2 3 4
1 3.646 2.075 15.698 9.357
2 4.106 4.357 22.252 9.561
3 4.143 2.995 22.884 13.083
4 3.393 4.983 23.597 8.485

i

l

 
 

The example results solved by CPLEX are given in Table 6 and 7. The final objective is 152109.679. The numbers at 
upper left, upper right, lower left, and lower right in a cell in Table 6 and 7 are the results of commodity 1, 2, 3, and 4, 
respectively. 

 
Table 6. Transportation amount Xl

ij of commodity l from origin i to destination j 
 

Xl
ij 

1 2 3 4 

1 420   250 280  1 430 
707   26  320   

2  620       
83 216  564 550    

3   380 430     
10 384 760      

4      550 299  
      610 480 

O 

D 

 
 
 

Table 7. Inventory amount of commodity l: Xl
i,J+1 in origin i and Vl

ij in destination j from origin i 
Vl

ij 

1 2 3 4 Xl
i,J+1 

1 28        171  
     654   243  

2  270       800  
   230 64  150  13  

3   440      180 120 
 416       10  

4         801 250 
      370 470   

O 

D 

 
 
In Table 3, take origin 2 and commodity 3 for example: the supply is 860; meanwhile, the current-stage’s demands and 

the next-stage’s demands for destination 1, 2, 3, and 4 are 800, 797; 760, 1023; 550, 907; and 610, 886; respectively. The 
results in Table 6 show that current-stage’s shipping amounts of commodity 3 from origin 2 to destination 1 and 3 are 
X3

21=83 and X3
23 =550, respectively. Variable X3

25 has a value of 13, which indicates that 13 units of commodity 3 are held 
at origin 2. In Table 7, X3

23 =64 and X3
24 =150 mean that inventory amounts of commodity 3 in destination 3 and 4 shipped 

at the current stage from origin 2 but held at destination 3 and 4 for the next-stage’s  consumption are 64 and 150, 
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respectively. From the relevant parameters, the above results are reasonable. The same conclusion can be obtained for other 
origins and commodities. 

 
Meantime, for this particular problem, if the traditional approach is used, that is, two stages are considered separately, 

the minimal total transportation and inventory cost is 171466.86. With the model developed in the paper, the optimal cost is 
152109.679. The percentage of cost reduction is 11.29% ((171466.86-152109.679)/171466.86 *100%). 

 
5.3. Sensitivity Analysis 
Based on the previous numerical example, sensitivity analyses are carried out by changing (increasing and decreasing) the 
various parameters by 1%, taking one at a time and keeping the remaining parameters at their original values. We use 
OBJ’/OBJ as the measure of sensitivity, where OBJ is the objective cost under the original parameters and OBJ’ is the 
objective cost with the changed parameters. The results of the sensitivity analysis are shown in Table 8. It should be noticed 
that the changed parameters in the constraints are rounded to integers to be consistent with the realities. 

 
Table 8 (a). Sensitivity analysis of the model 

Parameters % changed Objective OBJ’/OBJ 
Cl

ij(j≠J+1) +1% 153287.715 1.007745 
Cl

ij(j≠J+1) -1% 150945.972 0.992350 
ol

i +1% 152222.674 1.000743 
ol

i -1% 151995.487 0.999249 
dl

j +1% 152349.129 1.001574 
dl

j -1% 151888.062 0.998543 
Al

i +1% 154792.972 1.017641 
Al

i -1% 149522.038 0.982988 
 

The main conclusions drawn from the sensitivity analysis are as follows: 
1) The range of OBJ’/OBJ is from 0.982988 to 1.017641. The average value of OBJ’/OBJ is 1.000073. 
2) The value of OBJ’/OBJ is more sensitive to the parameters of Al

i, Cl
ij(j≠J+1), and Bl

j, and less sensitive to the 
parameters of l

jB , ol
i, and Qj. 

3) When next-stage’s demands change, the objective almost remains the same. 
4) When current-stage’s unit shipping cost, unit inventory cost at both origin and destination, and supply amount 
increase, the objective costs also increase. The reverse is true for both current-stage’s and next-stage’s demand, and 
inventory capacity at both origin and destination. 

 
Table 8 (b). Sensitivity analysis of the model 

Parameters % changed Objective OBJ’/OBJ 
Bl

j +1% 151188.641 0.993945 
Bl

j -1% 153044.229 1.006144 

B
l
j
 +1% 152108.762 0.999994 

B
l
j
 -1% 152126.407 1.000110 

Pi +1% 152085.514 0.999841 
Pi -1% 152141.104 1.000207 
Qj +1% 151991.442 0.999223 
Qj -1% 152242.057 1.000870 

 
6. CONCLUSIONS 
The problem studied here is a special case of the multi-commodity, multi-period, transportation and inventory problem.  In 
this paper, a mathematical model was presented.  A new concept, the rational unit shipping cost, was also introduced.  The 
purpose of the model presented in the paper is to make the plan for both transportation and inventory in the current stage 
and the next stage.  The developed model has two advantages: 1) it can reduce many variables by use of the rational unit 
shipping cost; 2) it is flexible for adjusting of the next-stage’s shipping plan in accordance with the practical conditions at 
that time.   
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