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Abstract

The study offers local probability density function (PDF) analysis to estimate spatial probability failure index
(PFI) which was applied to mapping probability of landslide occurrence of the Nam Li watershed, Uttaradit,
Thailand, where big event of landslide occurred in 2007. The PDF analysis required landslide susceptibility
indexes (LSIs) as input. They were derived from slope stability model involving ranges of engineering
properties and varying slopes of each rock unit. Critical PFI layer of each rock unit was cell-based estimated
Jrom one of the candidate LSIs which provided the biggest ratio of landslide scars and PFI egual 1. Critical
PFIs of all rock units were divided into 4 classes, namely low, moderate, high, and very high to represent the
probability of landslide occurrence of the area in terms of scar-class area ratio as 0.038, 0.051, 0.054, and

0.112, respectively.

1. Introduction

Landslide causes a loss of lives and estate on the
carth. Most events occurred in the high slope area
with different environment and characteristics that
lead to different damage intensity. It can cause a big
loss and tragedy if occurs in the densely populated
arca. In Thailand, the big landslide events were
recorded starting from 1970 (DMR, 2011). Many
studies were concentrated on mapping landslide
susceptibility for land-use and regional planning,
and mitigation management (Yumuang, 2006,
Jamali and Abdolkhani, 2009, Sartohadi et al., 2010,
Intarawichian and Dasananda, 2011 and Cannats et
al,, 2012). The landslide susceptibility is mapped
based on qualitative or quantitative and direct or
indirect methods (Guzzetti et al, 1999), and
deterministic or non-deterministic (probabilistic)
models (Yilmaz, 2010). Referring to Yesilnacar and
Topal (2005) and Yilmaz (2010), different size of
study arcas will dictate suitable input data and
analytical processes.

For large area or regional scale, the qualitative
methods and probabilistic models are considered
more suitable. The susceptible failure can be
determined based on the landslide inventory,
geologic and geomorphologic characteristics of the
potential area. The variety of methods and models
for landslide susceptibility studies cover bivariate
probability analysis (Bijukchhen et al, 2011 and
Yalcin et al, 2011), logistic regression or
multivariate analysis (Lee, 2004, Yesilnacar and
Topal, 2005, Chen and Wang, 2007, Yilmaz, 2010,
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Yalcin et al,, 2011 and Pourghasemi et al., 2012),
fuzzy logic (Pradhan, 2010, Kayastha, 2012,
Pourghasemi et al., 2012 and Kayastha et al., 2013),
frequency ratio (Lee and Pradhan, 2006,
Intarawichian and Dasananda, 2011 and Yalcin et
al., 2011), artificial neural network (ANN) (Ermini
et al, 2005 and Pradhan and Lee, 2010) and
analytical hierarchy process (AHP) (Yoshimatsu
and Abe, 2006, Intarawichian and Dasananda, 2010
and Yalcin et al., 2011). The well-known AHP deals
with scores and weights of criteria for index
calculation, which are more subjective or arbitrary
and more likely to depend on the uncertain expert
opinions. Most factors used in those models
frequently consist of landslide inventory (position
and number of scars), geology (lithology, rock unit,
and fault line), topographic characteristic (elevation,
slope, aspect, and curvature), hydrological (runoff,
drainage density, distance to drainage), land
use/land cover, road (Yalcin et al., 2011) and other
indexes such as topographic wetness index (TWI),
stream power index (SPI), and normalized
difference vegetation index (NDVT) (Yilmaz, 2010).
None of them applies engineering property of
materials related to the process of the landslide.

For smaller area or local scale where more
spatially detail and accurate result is expected, the
geotechnical engineering method which is a
quantitative method and physical based model has
been selected for landslide susceptibility mapping.
The geotechnical engineering method has been
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widely used during 1998 to present. The slope
stability theory based upon infinite slope stability
model was used through SINMAP model (Pack et
al., 1998 and Zaitchik et al., 2003) and SHALSTAP
model (Meisina and Scaravelli, 2007). The
SINMAP and SHALSTAP arc spatial modelings
using GIS technology. The variables include
rock/soil properties (cohesion and friction angle)
and water condition (Topographic Wetness Index;
TWI). These models applied the Factor of Safety
(FS) which is a simple slope stability model to
assessing landslide probability. Many studies
calculated FS using GIS function to indicate
landslide probability (Greif et al., 2006 and Omar et
al., 2007).

Tanang et al., (2010) applied Factor of Safety
(FS) to landslide mapping in term of Landslide
Susceptibility Index (LSI) which was calculated
from the average properties of rock units. The result
showed that high frequency of landslide scars
occurred evenly in the whole range of LSIs with no
specific pattern (Figure 3). Therefore, it can be
concluded that the classification of the potential of
landslide occurrence in any area using LSI alone is
not possibly valid. This invalid result could be
obtained by using average rock properties in LSI
estimation in spite of the presence of rock properties
of each unit, in fact, existing in range. Due to the
spatial complexity of mixed kinds of rocks and their
structure in a geological mapping unit, its
quantitative engineering properties which relate to
landslide always exist in a specific range of number

(Wyllie and Mah, 2004, Das, 2007 and Alden,
2010). To cover engineering properties existing in a
geological mapping unit as much as possible, the
input of them for LS calculation should be varied to
be many values to cover a whole range of
properties. Thus, all possible combinations of these
properties and slope should be used as
representative inputs into the Probability Density
Function (PDF), a function which can be used to
solve the problem on varying rock properties in
slope stability analysis (Wyllie, 1999). Therefore,
this research proposes PDF for the probability of
landslide occurrence mapping together with slope
stability analysis in term of LSI,

2. Study Area

Nam Li Watershed, where big catastrophic landslide
event occurred in 2007, is sclected to be the study
area. It is located in Uttaradit Province, Thailand.
The Nam Li watershed is approximately 200 square
kilometers. The topography is the mountainous area.
Based on geologic map at scale of 1:50,000
(Lamchuan and Sinpunanan, 1987), geology of the
area is characterized by rocks ranging in ages from
Carboniferous to Triassic and consists of 4 units
which are Mae Ta group (Carboniferous phyllitic
shale, C), Kiu Lom formation (Permian tuffaceous
sandstone, P1), Triassic intrusive igneous rock
(biotite granite, gr) and Phra That formation
(Triassic red sandstone, Trl) as displayed in Figure
1.
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Figure 1: Geology, slope angles of rock-slope polygons, and landslide scars of the event in rock units of Nam

Li watershed, Uttaradit, Thailand
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The weathering of these rocks covering the whole
study area is considered high weathering based on

Slake Durability Index (SDI) test which is the
method for rock durability determination.

3. Material and Methods

The main methods used in this research consist of
slope stability analysis for LSI calculation and
probability of failure for PFI determination. There
are four steps of the procedure to map Probability of
Landslide Occurrence (PLO) as follow 1) data
collection and manipulation, 2) LSI analysis, 3) PFI
analysis for critical LSI, and 4) PLO mapping as
shown in Figure 2.

3.1 Data Collection and Manipulation

The main input data set of LSI analysis consists of
engineering properties of rock and slope angle. The
properties of each rock unit were collected and
analyzed from field investigation and laboratory.
Relevant rock properties were assigned as attributes
of geologic units which were prepared in form of a
GIS vector layer. Boundaries and distribution of
geologic units of the study area were based on the
geological report and map at a scale of 1:50,000

(Lamchuan and Sinpunanan, 1987 and DMR, 2009)
and modified by field investigation data. The
attributes of rock properties as input data for slope
stability analysis include cohesion, unit weight, and
friction angle which are shown in Table 1. Random
field samples from the C unit in the study area were
tested for cohesion and friction angle by point load
strength and direct shear testing. The results are
consistent with the properties listed in rock property
databases of Goodman (1989), Wylliec and Mah
(2004), and Alden (2010). Hence, attributes of rock
units were adopted from the databases. From ficld
investigation, landslide scars occurred on
weathering rock as a shallow landslide of which
thickness is between 1 to 3 meters. Most landslide
scars occurred on the shallow surface where
weathered rock strata of the units were mixed,
indicating by the complicate structure and being
heavily fractured due to long time experiencing the
tectonic force. This landslide event occurred when
pores of material in scars were fully filled by
infilirated water. Thus, the same thicknesses of
material (depth of weathered rock above sliding
plane) and its saturation when the failure occurred
were assigned.
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Figure 2: The research procedure
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Table 1: Geotechnical properties of rocks of 4 geologic units in the study area

14

Geologic Group/ Rock Cohesion, c Unit weight, Friction angle,
units Formation Clagsification | (kN/m?) y (kN/m*) ¢ (degree)
C Mae Tha Phyllitic shale 5.0x10° | 23.54x103-27.47x10° 20-27
gt Intrusive Biotite granite 55.2x10° | 25.51x10°-26.49x10° 34-40
Igneous rock
P1 Ratburi/ Tuffaceous 38.4x10° | 21.58x10%-27.47x10° 27-34
Kiu Lom sandstone
Trl Lampang/ Red sandstone 27.2x10° | 23.54x10°-25.51x10° 27-34
Phra That

The mean of each property was calculated for
candidate L.SIs estimation. To represent all possible
properties of each rock unit, engineering properties
in ranges were broken down into 6 classes with
equal increment. Possible combinations of classes
from each property were arranged to represent each
rock unit. This resulted in 216 combinations of rock
properties for each unit. TIN polygons representing
slope faces of the study area were generated from 5
m x 5 m grid DEM of the Land Development
Department (LDD), Thailand. The Slope angle of
each TIN polygon was estimated by a function in
3D analysis tool of ArcGIS™. Howevert, the slopes
of an area that cause material movement on it
should not less than 30% or 17.45 degree (Coc et
al., 2000 and Mahidol University, 2003).

Then, the TIN polygons with slope <17 degree
were extracted as insensitive areas. The parameters
for LSI calculation were obtained under the domains
of geologic units and slope characteristics. Thus, an
intersection of TIN slope of sensitive area and rock
unit vector layers was performed and resulted in
layers of rock-slope polygons which contain
attributes of rock properties and slope angles. A
layer was represented by a rock unit. For more
information, it is better to clarify that the rock-slope
polygon layer was derived from layers of TIN and
geologic map with difference scales, therefore, the
accepted suitable scale of the layer should rely on
the scale of a geologic map which is smaller.
Sequentially, this suitable scale was transferred to
the results of any further analyses.

The landslide scars required for ranking
candidate LSIs and estimating fitting ratio were
extracted from a SPOT image (Copyright (2006)
GISTDA) by visual interpretation.

3.2 LSI Analysis

The LSI analysis of each rock-slope polygon was
petformed using Factor of Safety (FS), one of the
slope stability models. The model variables include
rock properties and slope angle. There are many
different methods for FS calculation.

Having clear boundaries of landslide scars, the
infinite slope stability method was selected for this
research. This method is a 1D model which is most
commonly employed for the purpose (Mergili and
Fellin, 2009 and Das, 2007). The FS is the ratio
between resisting and driving forces. The resisting
force is the shear strength (t;) and the driving force
is the shear stress (tq). The equations involve the
Mohr-Coulomb failure criterion as shown in
Equation 1 and Equation 2:
Fs=1c
Ty
Equation 1

When the force acts on slope plane with B (degree)
slope angle, the FS can be calculated by:

=c+(7-Z-yw-Zw)-cos2B-tan¢
v-Z-sinf-cosp

FS

Equation 2

Where ¢ is the cohesion (kN/m?), y is the unit
weight of material (kN/m?), v is the unit weight of
water (9.81 kN/m®), Z is the thickness of slope
material above sliding plane (m), Z, is the thickness
of saturated slope material above sliding plane (m),
and ¢ is the internal friction angle (degree).
According to several previous studies (Wyllie,
1999, U.S. Army Corps of Engineers, 2003; Wyllie
and Mah, 2004, Das, 2007, Cheng and Lau, 2008
and Mergili and Fellin, 2009), the slope failure will
occur when the driving force is bigger than the
resistance force. This statement is more likely to
apply properly to site investigation, not for the area
of the geologic rock unit. The FS values or called
LSIs in this study, calculated from Equation 2,
relatively indicate where slope failure could occur in
the geologic rock unit. The LSIs of rock-slope
polygons were then derived using their mean and
216 combinations of rock properties. The rock-slope
polygons layers of 4 rock units with LSIs derived
from the mean properties were converted to be
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raster layers with 5 m x 5 m cell size, corresponding
to original grid DEM data used. Then, LSIs from
cells and cells of landslide scars were plotted against
their frequencies. The ranges of candidate LSIs of
rock units were then obtained by matching to the
distribution ranges of the scars. From 276
combinations of each rock-slope polygon, 216 LSIs
were derived. Then, mean and SD of them from
each polygon were calculated for further PFI
analysis.

3.3 PFI Analysis

As above mentioned, there were many candidate
LSIs of each rock unit. Additionally, when dealing
with the uncertainty of engineering properties of
rock units which appear in ranges, the variation of
LSIs would occur to represent all possible
combinations of properties. To overcome this, LSIs
of each TIN polygon of any rock unit should be
better transformed to be the PFI by the use of PDF
(Wyllie, 1999). PFI analysis was therefore applied
to choose a critical PFI layer from the candidates.
Critical PFI layer expressed areas having probability
of landslide occurrence more accurately.

The analysis includes PFI calculation using the
PDF and the selection of the best PFI which
provides the highest spatial fitting ratio between
cells of PFI equal 1 and scar cells. Cells containing
PFI equal 1 indicate 100% of landslide occurrence
probability. PDF performs the rock-slope-polygon-
based calculation using normal distributing L.8Is and
their mean and SD, which can be defined as
(Wyllie, 1999):

)= —L—exp —%"“ﬂz
SDv2n 2\ SD
Equation 3

Where X, is aset of LSIs, i=1,...,n,n =216, Xis
the mean of LSIs, SD is the standard deviation of
LSIs. The PDF calculation of each rock-slope
polygon resulted in the probability distribution of
216 LSIs. Theoretically, these probabilitics were
plotted against 216 LSIs. Then, each candidate LSI
was applied to identifying the probability of failure
of each plot. The candidate LSI value separates area
under the curve to be negative and positive zone.
The area under the curve in the negative portion
zone can be calculated to be the PFI. The PFI range
is between 0-1. This performance was operated by
the specific function of Microsoft® Excel. However,
the candidate LSI which provides PFI equal 1 to

more polygons might not be the critical LSI for that
rock unit. But the one that provides polygons with
PFI equal 1 matching more to landslide scars is.
Therefore, the fitting ratio to determine the
matching area was required. The layers of rock-
slope polygons containing PFIs achieved from all
candidate LSIs were converted to be candidate PFI
raster layers (5 m % 5 m resolution) for matching.

Fitting Ratio (FR) was designed to select a
critical PFI layer from the candidates. The ratio
represents the proportion of the intersection (ANB)
and union (AUB) of scar cells (A) and cells of PFI
equal 1 (B). The ratio can be expressed as:

_(anB)
“(AUB)

Equation 4

The candidate PFI layer provided the highest ratio
was identified as the critical PFI layer,

3.4 Spatial Distribution Comparison of Probability
of Landslide Occurrence and Scars

The critical PFI layer of the study area was obtained
from the merging of 4 critical PFI layers of rock
units. For the display purpose, the layer was
classified to be 4 classes by equal range, reflecting
the distribution of probability of landslide
occurrence. The consistency of the probability and
actual occurrence was observed when compared the
frequencies of each class and landslide scars in the
same class.

4. Result and Discussion
According to the methods described above, the
results are as follows:

4.1 Rock Properties and Slope Angles of Rock Units
From 6 classes of each engineering property, 216
combinations of each rock unit were formed up.
Table 2 shows parameters of classes and their
means. The slope angles generated from TIN
polygons fall into the range of 0.22-53.52 degree.
TIN polygons with slope angle >17 degree were
extracted to be sensitive areas. The intersection of
these sensitive polygons and geclogy resulted in
rock-slope polygons. The slope angles of polygons
were classified into 8 classes to display their spatial
distribution together with landslide scars of the
event in rock units (Figure 1). It confirms that all
landslide scars existed in the area falling into
polygons with slope angle > 17 degree.
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Table 2: The parameters of classes and their means for LSI calculation

Clagy €1t (e = 5.0x10° kN/?) P1 unit (c = 38.4x10° kN/m?)
yO@N/m)| ¢O(degree)) Z(m) | Zw(m) (m)| y &N/m?) | ¢O(degree) | Z(m) | Zw(m)

1 23540 13.0 1.0 1.0 21580 270 1.00 1.00

2 23804 14.0 14 14 22758 284 1.40 1.40

3 24068 15.0 1.8 1.8 23936 29.8 1.80 1.80

4 24332 16.0 22 22 25114 31.2 2,20 2,20

5 24596 17.0 26 26 26292 326 2.60 2.60

6 24860 18.0 3.0 3.0 27470 34.0 3.00 3.00

Mean 21200 155 2.0 2.0 24525 30.5 20 2.0

Clens gr umit (¢ = 55.2x10° kN/m?) Trl unit (c = 27.2x10° kN/m?)
yO(kN/m?®) | ¢C(degree)| Z (m) Z (m) yOKN/m?) | ¢0 (degree) | Z(m) | Zw(m)

1 25510 34.0 1.00 1.00 23540 27.0 1.00 1.00

2 25706 352 1.40 1.40 23934 284 1.40 1.40

3 25902 36.4 1.80 1.80 24328 29.8 1.80 1.80

4 26098 376 2.20 2.20 24722 312 2.20 2.20

5 26294 388 2.60 2.60 25116 32.6 2.60 2.60

6 26490 40.0 3.00 3.00 25510 340 3.00 3.00

Mean 26000 37.0 20 2.0 24525 30.5 2.0 2.0

Table 3: The candidate LSIs of rock units

Geologic| LSIs ranges Candidate LSIs
units
C 0.630-1.603 0.63, 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, and 1.603
ar 1.026-3.196 1.026, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 2.10,
2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80, 2.90, 3.00, 3.10, and 3.196
P1 0.926-2.480 0.926, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80 1.90, 2.00,
2.10, 2.20, 2.30, 2.40, and 2.480
Trl 0.768-2.317 0.768, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.4¢, 1.50, 1.60, 1.70, 1.80,
1.90, 2.00, 2.10, 2.20, 2.30, and 2.317
Table 4: Some examples of mean and SD of 216 LSIs from TIN polygons
Polygon 1 2 3 S 214 215 216 Mean SD
ID
0 | 1.90609 1.98950 | 2.07516 | ... 2.04706 2.13780 [ 2.23142 | 2.34758 1.78988
1| 1.75111 1.82719 | 190531 | ... 1.79661 1.87696 1.95971 2.15377 1.64240
2| 2.17228 226813 | 236655 | ... 2.23688 233811 2,44237 2.67958 | 2.04259
3] 147528 | 1.53818 | 1.60275 | ... | 1.50696 1.57338 | 1.64179 | 1.80815 | 1.37948
9646. 1.35025. 1.40706. 1.46538. ... 1.37503. 1.43502. 1.49686 1.65088. 1.25996
9647 | 1.24237 1.29380 | 1.34660 | ... 1.26055 1.31486 1.37080 1.51456 1.15631
9648 | 1.29569 1.34977 | 1.40529 | ... 1.31710 137420 143303 1.581%90 1,20748
4.2 Resulting LSIs each rock unit (Figure 3). From the plot of each rock

The LSI analysis using mean rock properties of
rock-slope polygons in the sensitive arca resulted in
various LSIs. They were converted to be LSIs raster
layer. Then, frequencies of scar cells and sensitive
cells were plotted according to varying LSIs to show
the relationship between their spatial distributions in

unit, the observable frequencies of both appear to be
in the same ranges of LSIs. It is observable that the
high frequencies of scar cells are more likely
associated with low LSIs of each rock unmit. This
reflects that the scars occurred more in low resistant
zone of rock units.
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Figure 3: The relation of sensitive and scar areas
frequency and LSIs

Therefore, the range of candidate LSIs of each rock
unit can be determined and broken down with 0.1¢
increments as shown in Table 3. These LSIs become
candidates of a critical LSI finding. It means that
one of them can be the most sensitive LSI indicating
the highest probability of landslide occurrences in a
rock unit area. Table 4 shows examples of 216 LSIs
of each rock-slope polygon calculated from
combinations of rock properties in ranges. Their
mean and SD were also calculated for further input
to PFI analysis.

4.3 Critical PFI Layer

The PFIs of all TIN polygons of each rock unit were
calculated wunder each candidate LSI and
transformed to be raster layers as shown in Figure 4.
The cells with PFI equal 1 are depicted in red while
the ones with PFI less than 1 are in green. The scar
cells are depicted in black.

Obviously, the number of red cells and their
association with the scar cells are increased with
increasing candidate LSI. In contrast, the number of
green cells and their association with the scar cells
are increased with decreasing LSI as well.
Therefore, the FR of each candidate PFI raster layer
was calculated and the results are shown in Figure 4.
From the results, critical PFI layers of C, gr, P1, and
Trl units were achieved from the critical LSI of 1.2,
1.8, 1.7, and 1.6 and their best fitting ratios are
0.143, 0.159, 0.082, and 0.095, respectively.

4.4 Probability of Landslide Occurrence

The merged critical PFI layer or the map of
probability of landslide occurrence (PLO map) was
then classified into 4 classes namely, low, moderate,
high, and very high, using equal ranging as shown
in Figure 5. The ratios between scar cells and cells
of classes of the study area and each rock unit were
estimated and shown in Figure 6. The result shows
that the higher probability class is associated with
the higher ratio as obviously expressed in the plot of
the whole study area. Nevertheless, the ratios of
moderate and high classes of C and Trl units are
almost the same. The reason to explain this is the
areas of these 2 classes of these rock unmits are
comparatively very small compared to their low and
very high classes. The higher ratio in high and very
high classes indicates the more sensitive rock unit to
landslide occurrence. The C unit shows highest
sensitive, follow by gr, Trl, and P units,
respectively. It is interesting to note that the high
and very high classes of gr unit express suddenly
high ratio or more sensitive compared to other units.

International Journal of Gecinformatics, Vol. 13, No. 1, March, 2017
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Figure 6: The ratios between scar cells and cells of classes of the study area
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5. Conclusion

The study result reveals that utilization of PDF for
PLO mapping can provide more valid result than
applying LSI alone. The scar-class area ratios of
PLO classes show the positively linear relationship
with PFI while no such relationship appeared when
LSI alone was directly applied. The spatial
relationship of landslide scars and LSI is random.
This confirms that PDF operating on LSIs derived
from existing ranges of rock properties expressed
more relationship to the scars than LSIs derived
from merely the mean rock properties. Particularly,
when the rock properties in ranges of each unit were
input in the process to cobtain local PFI layer derived
from critical LSI of the unit. These local PFI layers
can provide the spatial distribution of probability of
landslide occurrence better than global PFI layer
derived from properties representing the whole
study area. Theoretically, critical LSIs of certain
rock units should be applicable in potential landslide
mapping of any other areas characterized by the
same rock units. This concept can be assured when
the results from the same approach of other events
and study areas are consistent with results from this
study. Basically, the findings of the study could be
useful for the risk assessment and mitigation
measure to reduce the risk of the landslide prone
areas in general, wherever people and their activities
are involved.
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