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Abstract

High diversity of tree species in tropical forest is a constraint to achieve satisfactory accuracy in tree species
classification, as accuracy reduces with the increasing of target tree species. A new multi-level adaptive
classification procedure is introduced in the present study employing Support Vector Machine (SVM). The
experiment handled 20 tropical tree species classification using in-situ hyperspectral data. Three levels of
classification were carried out and the final overall classification accuracy was improved to 74.56% from the
beginning accuracy produced by SVM itself. Result of SVM also has proven its better capability than
Maximum Likelihood Classification (MLC} in tropical tree species classification.

1. Introduction

Classification is a process which divides entities or
events into groups based on their distinguishable
characteristics. In remote sensing classification,
distinguishable characteristics of objects are
presented by spatial or spectral information
extracted from remote sensing data. In this context,
remote sensing data with fine spatial resolution or
high spectral resolution in large number of spectral
bands have widely been used in various
classification tasks as well as tree species
classification. Hyperspectral remote sensing data in
narrow spectral bands across visible, near infrared
and short-wave infrared bands could describe the
chemical and physical properties of vegetation that
can distinguish among different tree species. Thus,
in recent years, hyperspectral remote sensing has
become important to classify different tree species.
Airborne hyperspectral data from various sensors
such as Carnegie Airborne Observatory-Alpha
system (CAQ), Hyperspectral Digital Imagery
Collection Experiment (HYDICE) and Airborne
Imaging Spectrometer for Applications (AISA) and
also in-situ hyperspectral data which is collected
using portable ground based spectroscopy sensors
have been used for tree species classification at
different tropical forests. However, research on tree
species classification using hyperspectral remote
sensing for the tropical environment is not so
widespread. Clark et al.,, (2005) have applied
reflectance of narrow bands of hyperspectral data to
classify seven tropical tree species at leaf, pixel, and
tree crown levels respectively. Their results showed
a 100% classification accuracy at leaf scale using in-
situ hyperspectral data.
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Meanwhile, the overall accuracy was reduced at
pixel and tree crown levels when airborne
hyperspectral imagery was used. Later, research
team of Clark et al., (2005) studied the potential of
vegetation indices, absorption based metrics, and
spectral  derivative metrics in improving
classification accuracy of their previous study
(Clark and Roberts, 2012). Other studies in tropical
forests were spectral variability analysis and species
classification using in-situ hyperspectral data (Féret
and Asner, 2011) and tree species classification with
different classifiers using airborne hyperspectral and
resulted overall accuracy of all classifiers were
reducing gradually from a low to higher number of
tree species in classification (Féret and Asner,
2013). Also, airborne hyperspectral data has been
tested on tree species classification of tropical forest
in Panama using binary SVM and biased SVM
(Baldeck et al.,, 2015). In the study, biased SVM
outperformed binary SVM in ftree species
classification. The recent tree species classification
studies in Malaysia also focused on the usage of
hyperspectral remote sensing data where AISA
airborne hyperspectral data has been applied to
different tropical rainforests in this nation. However,
there is still big gap in understanding hyperspectral
remote sensing capabilities and its potentials to cope
with different challenges in Malaysia tropical
rainforest tree species classification. Interestingly,
conclusions from those studies agreed that high
diversity of tree species has posed a great challenge
to species classification of forests in Malaysia
(Jusoff, 2007, Hasmadi et al., 2010 and Shafti et al,,
2007).
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Previous studies has shown that the classification
accuracy of tropical tree species decreased when the
number of species were high (Féret and Asner,
2013). The situation could be explained as a high
number of tree species shortened the distance of
data clusters among tree species (due to reduced
data separability among species) in a n-dimensional
data space and eventually increased the
classification errors (Féret and Asner, 2011). In
regular tree species classification procedure, single
classification level was carried out by a classifier
with input spectral bands that are selected by a
rigorous spectral feature selection method. The
selection of input spectral bands was expected to
produce an optimal overall accuracy in the
classification where no any further improvement on
that accuracy should be needed. However, some
previous studies have shown that selected spectral
bands or spectral metrics might not always have
optimum discriminatory power to successfully
classify all the targeted tree species (Jones et al,,
2010 and Wang and Sousa, 2009). Thus, we need an
effective classification procedure with the aid of
spectral feature selection method to cope with the
issue of high diversity of tropical forest tree species.
A spectrum with hundreds or thousands of
continuous narrow spectral bands in hyperspectral
remote sensing data has high correlated adjacent
bands which provided redundant spectral
information in tree species classification. In order to
input informative bands, studies have applied
feature selection methods such as Stepwise
Discriminant Analysis (SDA) (Vyas et al., 2011),
sequential forward floating selection (SFFS)
(Dalponte et al., 2013), and ANOVA analysis (Pu,
2009, Adam and Mutanga, 2009 and Prospere et al.,
2014} to choose important spectral bands in species
classification). Feature selection searches on
spectral bands that could describe distribution of
data clusters at maximum distances among tree
species in an n-dimensional data space during
classification process (Wang and Sousa, 2009). By
adopting this procedure, redundancy of spectral
information among input bands could be minimized
and less training samples are required to achieve a
satisfactory classification result (Vyas et al., 2011).
To our best knowledge, there is no tree species
classification procedure which improves the output
accuracy in a hierarchical structure. Multi-level
adaptive classification procedure was newly
introduced in this study to handle tropical tree
species classification. In contrast to regular tree
species classification, the multi-level adaptive
classification procedure allows the overall accuracy
of tree specics classification to be improved after
scveral times of continuous classification processes.

The objective of this study was to examine the
effectiveness of this classification procedure in
tropical environment of Malaysia where high
diversity of tree species could be a constraint to
achieve a satisfactory classification result. Support
Vector Machine has been shown to outperform
other classification techniques in some tree species
classification studies (Dalponte et al., 2013 and
Féret and Asner, 2013). Thus, in this study we tested
the use of SVM with the multi-level adaptive
classification procedure to classify various tropical
tree species and compared the results of SVM with
that of Maximum Likelihood Classifier.

2. Methodology

2.1 Data Collection

The study area is a well-managed urban forest
(Hutan Bandar Mutiara Rini) which is located at
Skudai, Johor Bahru, Malaysia. There are more than
thirty tree species planted in this patch of forest and
20 dominant species were selected in this study to
be discriminated using hyperspectral remote sensing
data. In July of 2014, field data collection process
was conducted where in-situ hyperspectral data of
the selected 20 tree species were collected. During
samples collection, random selection of 6-9 trees in
the forest was chosen for each target tree species.
From each selected tree, three branches were cut-off
from different parts of the tree crown and all leaves
samples were sent to laboratory for in-situ
hyperspectral data measuring. /n-situ hyperspectral
data was suggested to be used in testing and
evaluating new methods for ftree species
classification. Its ground-based acquired data has
higher quality compared to that of airborne
hyperspectral data (Jones et al, 2010). In
laboratory, in-situ hyperspectral data of leaves
samples were measured by setting up a full range
spectroradiometer (350 nm until 2500 nm in spectral
range with 3nm VNIR and 8nm SWIR spectral
resolution) with a pair of tungsten lamps as artificial
light source. Calibration was done on dark current to
minimize the instrument’s internal noise, and white
reference (a perfect light source reflector) reading
was taken by the spectroradiometer before spectral
measurements. Throughout the process, white
reference reading was checked frequently to ensure
an accurate spectral measurement has been made. In
this study, three sets of spectral measurements were
taken for each leaves sample, i.e. measurements of
1} tree branch, 2) all leaves with upper side faced
towards spectroradiometer, and 3) mixed of leaves
with upper side and down side faced towards
spectroradiometer. A total of 1203 tree species
samples spectra were collected for tree species
classification in this study (Table 1).
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Table 1: Collected spectra samples from 20 tree species in the study

Species Name Code No. of No. of spectral sample Total
tree Branch(B) Front(F) Mixture (M)
1 |Alstonia Angostiloba AA 7 21 21 21 63
2 | Aquilaria Malaccensis AM 7 20 20 20 60
3 | Bucida Molineti BM 6 18 - 18 36
4 | Calophyllum Spp. CA 6 17 17 17 51
5 | Cinnamomum Iners ClI 8 23 23 22 68
6 |Dyera Costulata DC 6 17 17 17 51
7 | Drybalanops Oblongifolia DO 8 14 14 14 42
8 |Eugenia Oleina EO 7 21 21 21 63
9 | Palouium Gutta FF 8 24 23 24 71
10 |Hopea Odorata HO 9 27 27 27 81
11 |Kayea Ferrea KF 8 24 24 23 71
12 | Maniltoa Browneoides MB 8 23 23 23 69
13 |Pterygota Alata PA 6 12 12 12 36
14 | Palouium Gutta PG 8 24 24 24 72
15 | Peltophorum Pterocarpum PP 8 2 2 24 72
16 |Syzygium Grande SG 7 21 21 21 63
17 | Shoreaspp. SH 6 16 16 16 48
18 | Shorea Roxburghii SR 9 27 27 27 81
19 |Samanea Saman SS 7 21 - 21 42
20 |Shorea Singkawang SSI 8 21 21 21 63
147 1203

2.2 Spectral Features

In this study, vegetation indices and absorption-
based metrics were used as two different groups of
input spectral features in the species classification.
Vegetation indices are derivative information from
optical remote sensing data which involves
reflectance of two or more bands in a simple
mathematical calculation, Commonly, vegetation
indices are applied to describe the vegetation status
such as water content, chlorophyll, nitrogen and
other chemical pigment level of leaves, and also
physical structure of leaves or canopy. Pu et al,,
(2003) introduced absorption-based metric to assess
the water content of oak trees. Absorption based
metric extracts spectral information from spectral
absorption curves along hyperspectral spectrum
such as red, near infrared and shortwave infrared
wavelengths. The extracted information were the
width, depth, area size and asymmetry of absorption
curve. Previous study believed that these metrics
could describe chlorophyll and water content of a
vegetation (Pu et al, 2003). In order to magnify
spectral absorption curve, continuum removal
technique was applied on hyperspectral data before
metric extraction (Manevski et al.,, 2011). A total of
20 vegetation indices and 12 absorption-based
metrics were used in this study as shown in Tables
2a and 2b respectively. Out of all data samples, one-
third of the samples were randomly selected from
each tree species for spectral features selection
procedure and also for classification (training)

process. On the other hand, the remaining samples
were reserved for accuracy assessment of tree
species classification.

2.3 Spectral Features Selection

Stepwise Discriminant Analysis (SDA) was applied
to choose the most useful spectral features from the
20 vegetation indices and 12 absorption based
metrics as input in classification. This stepwise
analysis was commented as an effective spectral
feature selection method (Vyas et al., 2011). In the
discriminant analysis, multivariate significant test
was carried out by Wilk’s lambda to assess
discriminatory power of the 32 spectral features in
tropical tree species classification of the current
study. As a stepwise process, spectral feature with
the highest discriminatory power was the first to be
selected and followed by the second highest one.
The procedure stopped when there was no more
significant decrease in the resultant value of Wilk’s
lambda. All the selected spectral features were used
as input parameters in the classification procedure.

2.4 Multi-level Adaptive Classification

Support Vector Machine (SVM) and Maximum
Likelihood Classifier (MLC) were adopted in this
study as multi-level adaptive classification
procedure for tropical tree species classification

(Figure 1).
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Table 2a: List of vegetation indices used in the tree species classification

Vegetation Indices

Normalized Difference Vegetation

(R798 - R679) / (R798 + R679)

Structural Independent

(R445 - R800) / (R680 + R800)

Indices (NDVI) Pigment Index (SIPI)
Red Edge NDVI (RE NDVI) (R750 - R708) / (R750 + R70S) Leaf Chlorophyll Index (R850 - R710 )/ (R850 + R680)
(LCT)

Soil-Adjusted Vegetation Indices
(SAVID)

1.5* (R798 - R679) / (R798 + R679 + R0.5)

Normalized Difference
Water Index (NDWT)

(R862 - R1239) / (R862 + R1239)

Ammospherically Resistant
Vegetation Index (ARVI)

[R798 - 2 (R679) + R482] / [R798 + 2 (R679)
+ R482)

Water Band Index (WBI)

R902 / R972

Anthocyanin Reflectance Index 2
(ARI 2)

R798 * [(1/RS50) - (1 / R699)]

3-Band Ratio at 975nm
(RATIONTS)

(2 * R960 - 990) / (R920 — 940 +
R1090 - 1110)

Carotenoid Reflectance Index (CRI)

R800 * [(1/R520) - (1 / R$50))

3-Band Ratio at 1200nm

(2 * R1180 -1220) / (R1090 - 1110 +

Index (NDNT)

R1507) + Log (1/R1675)]

Phacophytinization Index

(NPQI)

(RATION200) R1265 - 1285)
Carotenoid Reflectance Index | (CRI |(1/RS11) - (1 /RS50) Photochemical Reflectance  [(RS32 - RS68) / (RS32 + R568)
1) Index (PRI)
Carotenoid Reflectance Index 2 (CRI |(1/RS11) - (1 / R699) Red-Edge Vegetation Stress [(R719 + R752) /(2 - R733)
2) Index (RVSI)
Normalized Difference Lignin Index |[Log (1/R1748) - Log (1/R1675)] / [Log (1 Normalized Total Pigment | (R680 - R430) / (R680 + R430)
(NDLI) R1748) + Log (1/R1675)) to Chlorophyll Index
(NPCI)
Normalized Difference Nitrogen [Log (1 /R1507) - Log (1 / R1675)] / [Log (1 Normalized (R415 - R435) / (R415 + R435)

** Ri refers to reflectance value at band i of a tree species spectrum,

Table 2b: List of absorption based metrics used in the tree species classification

Absorption Based Metrics

Red Absorption Near Infrared Absorption Short-wave Infrared Absorption
(500nm-750nm) (1145nm-1270nm) (1376-1600nm)

RED D NIR D SWIR_D

RED W NIR W SWIR W

RED_A NIR A SWIR A

RED_AS NIR_AS SWIR_AS

#* Absorption Depth (D) = The lowest continuum removed value within a spectral absorption region.

** Absorption Width (W) = The length of straight line across half of the absorption depth within a spectral absorption region.

** Absorption Area (A) = The absorption depth times absorption width (D x W) of a spectral absorption region.

** Asymmetry (As) = The ratio of left area (A) to the right area (B) from the absorption center within a spectral absorption region.

¥
Spectral Features Selection with
Stepwise Discriminant Analysis (SDA)
- ' Proceed o the
I Classification Process | Next level
| Accuracy Assessment I
Tree Species Grouping

Figure 1: Work flow of multi-level adaptive classification procedure
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At the beginning of the process, selected spectral
features using Stepwise Discriminant Analysis
(SDA) were used as input in running the
classification with both SVM and MLC for 20 tree
species. Accuracy assessment was carried out on
both SVM and MLC classification results. Any tree
species with individual accuracy greater or equal to
80% was considered as satisfactory classification
and was excluded from further classification
process. The remaining species were grouped into
several smaller tree species groups based on the
confusion matrix. In this context, any two or more
species which have significant classification errors
(commission and omission) among each other were
assigned into a group. Prior to the second level
classification, adaptive features selection procedure
using SDA scarched on discriminative spectral
features from all vegetation indices and absorption-
based metrics for each smaller species group. Since
species and number of species were different among
smaller trec species groups, selection of spectral
features given by SDA were not identical. It is
called adaptive features selection where searching is
based on spectral information needs of individual
species group in classification. Then, classification
at the second level was carried out for each tree
species group with their dedicated spectral features
selection. Merging the classification results for all
species groups as well as the outperformed tree
species at the previous level was done with both
SVM and MLC. Overall accuracy assessment was
performed for all tree species at this level of
classification. The process was repeated as shown in
Figure 1 to further improvement of tree species
classification at the next classification level.

Any tree species with ~80% individual accuracy at
the first and second classification levels were
excluded from further classification and its
satisfactory accuracy remained.

3. Results and Discussions

Multi-level adaptive classification procedure
adopted Support Vector Machine (SVM) and then
Maximum Likelihood Classifier (MLC) to classify
20 tropical tree species. The comparison of two
results is as shown in Tables 3a and 3b. SVM
improved the accuracy of classification from
69.41% to 74.56% at the third level of classification.
Meanwhile, MLC produced classification accuracy
of 64.98% and 69.53% at the first and third levels of
classification, respectively. In the current study,
SVM and MLC have proven that multi-level
adaptive classification could improve tree species
classification accuracy although the improvement
was recorded about 5% for both classifiers. The
improvement of overall accuracy could be noticed
after each level classification. In the present study,
SVM was found to perform better than MLC in
classifying all the 20 tropical tree species with
selected vegetation indices and absorption-based
metrics. The overall accuracy at the third level
clagsification was recorded as 74.56% and 69.53%
for SVM and MLC, respectively. Besides,
performance of SVM also better than MLC at all
levels of classification. In this multi-level adaptive
clagsification study, any tree species has individual
classification accuracy more than or equal to 80%
was considered as satisfactory result and was
excluded from further classification.

Table 3a: The classification result of Support Vector Machine (SVM)

SVM Tree Species Group Spectral Metrics Selection Overall Kappa
Classification Accuracy (%) Statistic
First Level 20 species ARV, NDLI, LCI, WBI, RATIO975, RATION200, NPQI, 69.41 0.68
RED W, RED_AS, NIR_A, NIR_AS, SWIR_D, SWIR_A
Excluded tree species in the next classification were AM, CA, MB, S§§
Second Level 7 species (BM., EO, FF, ARI2, CRI, NDLI, NDNI, RATIO?75, RATIO1200, PRI, NPCI,
HO, PP, SG, SR) NPQI, RED_AS, NIR_D, NIR_W, SWIR_A
7 species ARVI, ARI2, NDLI, SIPL, NDWI, RATIO1200, RVSI, NPCI,
(AA, DO, KF, PA, PG, SH, [NPQI, RED_W, RED A, NIR_ W, SWIR D, SWIR_A
SSI)
2 species (C1, DC) WBI, NPQI, NIR_A
20 species 74.18 0.73
Excluded tree species in the next classification were AM, CA, CI, DC, EO, HO, KF, MB, PG, SR, SS
Third Level i species (BM, FF, PP, SG) |RE_NDVI, CRI, ARVI, NDLI. RATIO975, RATIO1200. NPQI
RED_W, RED_AS, NIR_W, NIR_AS, SWIR_D, SWIR_A
S species (AA, DO, PA, ARVI, ARI2, NDLI, NDNI, RATIO975, RVSI, NPQI, RED_D,
SH. SSI) RED_W, NIR_W, SWIR_D, SWIR_A, SWIR_AS
20 species 74.56 0.73
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Table 3b: The classification result of Maximum Likelihood Classifier (MLC)
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MLC Tree Species Group Spectral Metrics Selection Overall Kappa
Classification Accuracy (%) | Statistic
First Level 20 species ARVI, NDLI, LCI, WBI, RATIO975, RATIO1200, NPQI, 64.98 0.63
RED W, RED_AS, NIR_A, NIR_AS, SWIR_D, SWIR_A
Excluded tree species in the next classification were AM, CA
Second Level 4 species (BM, CL. DC, ARI2, RVSI, NPQI. NIR_AS, SWIR_AS,
SR)
14 species (AA, DO, EO, |ARVI, NDLI, LCI, RATIO975, RATIO1200, NPCI, NPQI,
FF, HO, KF, MB, PA, RED W, RED_AS, NIR_A, SWIR_D, SWIR_A, SWIR_AS
PG, PP, SG. SH, S8, S8I)
20 species 66.12 0.64
Excluded tree species in the next classification were AM, CA, EO, HO
Third Level 9 species (DO, FF, KF, RE_NDVI, ARVI, NDLI, RATIO975, RATIO1200, NPQI,
MB. PA, PP, SG, SH, SS) [RED_A. NIR D, NIR_A, NIR_AS, SWIR_D, SWIR_W,
SWIR AS
3 species (AA, PG, SSI)  |NDLI, RVSI, RED W, NIR_W, SWIR_AS
2 species (CI, DC) WBI NPQIL NIR_A
2 species (BM, SR) RE_NDVI, NDLI, NIR_W, NIR_A, SWIR_W
20 species 69.53 0.68

As shown in tables 3a and 3b, SVM has successfully
discriminated four tree species (AM, CA, MB, S8)
but only two species (AM, CA) were classified by
MLC although both classifiers used the same
selection of spectral features at the first level of
classification. After the second level classification,
SVM produced another seven tree species; CI, DC,
EO, HO, KF, PG and SR (refer to tree species
scientific name in Table 1) while only other two
species have high individual accuracy in MLC
classification. In other words, SVM successfully
discriminate three times better than that of MLC in
terms of number of species at second level
classification. The finding coincides with a boreal
forest species classification study where SVM
performed better than MLC to classify pine, spruce,
birch, and other tree species using hyperspectral
data (Dalponte et al, 2013). Another study in
tropical tree species classification also commented
that SVM is an outperformed classifier (Féret and
Asner, 2013). Table 4 shows the effectiveness of
SVM in multi-level adaptive classification
procedure via presenting the difference in
commission and omission errors between the first
and third levels of classification for 20 tree species.
The highlighted species (i.e. AM, CA, MB and SS)
have no difference in errors as these species have
achieved 80% individual accuracy in the first level
and were excluded in the next classification level. In
general, the classification result shows a good
improvement in the third level classification where
most of the tree species reduced commission and
omigsion errors and some species have reduced

between 20% to 50% of errors (in bold). The
discriminatory power of the 32 spectral features
(vegetation indices and absorption based metrics) in
species classification was tree species oriented.

Table 4: Commission and omission errors produced

by SVM for the first and third levels of
classification
Tree Commission Error Omission Error
Species (%) (%)
1%Level 3%Level 1%Level 3%Level
AA 36.0 —>» 23.7 238 €<— 310
AM 103 €<=> 103 103 <> 103
BM 46.2 —> 20.0 68.2 —> 455
CA 31 <> 31 6.1 <> 6.1
Cl 244 —> 1211 296 €<— 318
DC 28.1 «— 343 303 <> 303
DO 50.0 €&— 563 88.9 —> 48.2
EO 300 —> 146 333 — 16.7
FF 13.6 €— 293 192 —> 128
HO 43.2 —> 20.7 222 —> 148
KF 225 —> 174 192 <> 192
MB 156 €> 156 156 €> 156
PA 333 & 444 429 —> 286
PG 273 —> 186 16.7 «— 27.1
PP 354 —> 255 354 —» 271
SG 31.0 —> 293 31.0 <> 310
SH 455 —> 421 81.8 —> 66.7
SR 51.6 —> 344 426 —> 222
SS 7.7 <> 137 143 €> 143
SSI 516 — 435 286 «— 366
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Figure 2: Frequency of spectral feature selected by Stepwise Discriminant Analysis (SDA)

Since the spectral features in selection depend on
members of free species group, there was no
identical set of spectral features given by Stepwise
Discriminant Analysis (SDA) in this study (Tables
3a and 3b). This situation indicated that spectral
features selection was highly correlated with tree
species. Some previous studies have commented
that a selection of spectral metrics or spectral
reflectance bands might not sensitive towards all
tree species (Jones et al., 2010 and Wang and Sousa,
2009). In this study, both vegetation indices and
absorption-based metrics were equally important as
input spectral features in tropical tree species
classification. Frequency of each spectral feature
selected by SDA in the SVM and MLC
classifications has been counted and shown in
Figure 2. As both classifiers have a total of 13
spectral features selections (tables 3a and 3b) in
multi-level adaptive classification, the highest
frequency of a spectral feature should not be more
than 13. Five vegetation indices and five spectral-
based metrics were selected by SDA for at least six
times. Normalized Phaecophytinization Index
(NPQI) was the most important spectral feature in
current study and followed by Normalized
Difference Lignin Index (NDLI). Both are
vegetation indices that describe chemical properties
of leaves at blue and shortwave infrared
wavelengths, respectively. Pu (2009) also found
NPQI as one of the important spectral features in
tree species classification study. Among absorption-
based metrics, RED_W, NIR_A, SWIR_D and
SWIR_A have the highest frequencies. Previous
studies identified that NIR A extracted from
absorption wavelengths at around 1200nm was an
important metric in tree species classification (Pu,
2009; Clark and Roberts, 2012). NIR_A could be
useful to describe water content of leaves while
SWIR D and SWIR A are indicators for chemical

pigments of leaves at shortwave infrared region. In-
situ hyperspectral remote sensing data was found
very useful in current tree species classification as
the ten most important spectral features (in Figure 2)
were extracted from different spectral regions along
the hyperspectral spectrum.

4. Conclusion

Tree species classification is always a challenging
task in the tropical environment due to high species
diversity. The present study has deployed multi-
level adaptive classification procedure with Support
Vector Machine (SVM) and Maximum Likelihood
Classifier (MLC) in classifying 20 tropical tree
species using in-situ hyperspectral data. The results
of the study have proven the potential of multi-level
adaptive SVM classification for tropical tree species
classification where the final overall accuracy was
recorded as 74.56%. Moreover, the study also
proved that discriminatory power of the 32 spectral
features (vegetation indices and absorption based
metrics) were tree species oriented where spectral
features selections produced by Stepwise
Discriminant Analysis (SDA) depends on members
of tree species group. Both vegetation indices and
absorption-based metrics extracted from different
spectral regions along hyperspectral spectrum were
equally important in ftropical tree species
classification. Five vegetation indices and five
absorption-based metrics have been identified as
important spectral features in this study. Multi-level
adaptive classification procedure has an advantage
in its hierarchical structure where classifications of
species groups are independent to each other after
the first classification level in process. Pervious
study commented that the number of input spectral
bands and spectral differences among tree species
were highly correlated to performance of classifiers
due to intrinsic properties and complexity of
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classifier itself (Dalponte et al., 2009). In future
works, different classifiers could be applied to a
multi-level adaptive classification procedure
expecting more significant improvement of overall
accuracy in tropical tree species classification.
Classifiers could be used in different tree species
group classifications which were parallel at any
level of the multi-level adaptive classification
procedure. Besides, other spectral information
extracted from hyperspectral remote sensing data
like derivative based metrics (Pu, 2009, Jones et al.,
2010, Clark and Roberts, 2012 and Ghiyamat et al.,
2013) and discrete wavelet transform (Ghiyamat et
al., 2015 and Banskota et al., 2011) used in other
tree species classification studies could be tested as
new input spectral bands in multi-level adaptive
classification procedure. Input of new spectral
information are expected to enhance the spectral
differences among tree species so that the
classification result will be improved noticeably
compared to that given by the current study.
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