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Abstract

A method for the determination of bathymetry from the new and freely available 11-band Landsat-8
multispectral satellite imagery and sample depth measurements has been proposed. The method starts with a
Jfew reference points, where both reflectance and water depths are known. Several preprocessing operations
were done before depth estimation. First, the image was geometrically and atmospherically corrected and
then segmented into land and water. Second, Lansat-8 blue band was converted to reflectance. Third, two
different algorithms were used to assign each pixel to each of the reference points. The algorithms used
include: Naive Bayesian (NB) as a statistical model; and Multilayer Perceptron (MLP) as a neural network
model, which offer complementary information. Outputs are probability images corresponding lo each known
depth. In order to achieve a robust decision about the obtained probabilities, the Fuzzy Majority Voting
(VMV) algorithm was then applied for combining measures of probability from the two algorithms. Finally,
the water depths were derived from the combined probabilities based on an inverse probability weighted
interpolation technigue (IPWI). The proposed method enabled the retrieval of water depths of less than 5 m at
a relatively high level of accuracy, 0.19 m. However, accuracy further decreases for the water depths of more

than 10 m.

1. Introduction

Estimation of water depths plays an important role
in monitoring water level for solving a wide variety
of engineering problems. Currently, bathymetric
data are acquired based on single- or multi-beam
echo-sounding and airborne Light Detection and
Ranging (LiDAR). The field data collection at a site
is cxpensive and time consuming and sometimes
extremely difficult in shallow water regions since
the data tend to be extrapolated (Kao et al., 2009).
Satellite data can be an atiractive method for
determining shallow water depths due to difficulties
using traditional methods (Stumpf et al., 2003). The
digital images acquired by the remote sensing
satellites consist of the solar reflectance from the
carth’s surface which is modified by atmospheric
constituents. The basic concept of using optical
satellite imagery to determine shallow water depths
depends on the ability of visible light to penetrate
water, reach the seafloor and then reflect back to the
sensor. Recently, a variety of optical satellites were
lunched with higher spatial and radiometric
resolution and used for estimating water depths. For
instance: SPOT (Kao et al., 2009 and Mohamed et
al.,, 2015); IRS-1C/1D LISS-MI (Pattanaik et al.,
2015); IKONOS (Stumpf et al., 2003 and Abileah,
2006); WorldView-2 (Loomis, 2009, Puetz et al.,
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2009, Bramante et al, 2010, Lee et al, 2011,
Doxania et al, 2012, Mallick et al,, 2014 and
Yuzugullu and Aksoy, 2014); RapidEye (Monteys
et al,, 2015) and Landsat TM (Mgengel and Spitzer,
1991, Bierwirth et al., 1993, Jiazhu and Yuming,
2002, Fuxing and Qian, 2003 and Hoepffner and
Zibordi, 2009). In Hoepffner and Zibordi, 2009), the
blue band of the Landsat TM has proved to be
invaluable in estimating bathymetry because of its
greater depth penetration. The new and freely
available 11-band Landsat-8 multispectral satellite
imagery has proved to be invaluable in estimating
bathymetry because of its greater depth penetration.
Pacheco et al., (2015) applied a linear transform
algorithm to estimate water depths of the near shore
from Landsat-8 imagery. The algorithm was tuned
with available bathymetric LIDAR data. The results
showed a root mean square etror (RMSE) of 0.89 m
for depths of up to 12 m. Tang and Pradhan (2015)
have applied the ratio transform proposed by
Stumpf et al., (2003) to extract bathymetric
information from Landsat-8 satellite imagery. The
average uncertainties obtained was 1,52 m, with a
highest RMSE of 3.76 m, and lowest RMSE of 0.02
m. The correlation coefficient between the estimated
and endorsed bathymetry depths was 0.9054.

45

45-55

Determination of Shallow Water Depths using Inverse Probability Weighted Interpolation: A Hybrid System-Based Method




Several approaches have been applied for estimating
bathymetry from satellite imagery including: the
Wave Kinematics Bathymetry (WKB) (Piotrowski
and Dugan, 2002); the standard linear transform and
the new ratio transform algorithms (Stumpf et al.,
2003); look-up table and ratio -classifications
{Louchard et al, 2003); Linear Band Model
{Lyzenga et al., 2006); A least-squares-fit (Lee et
al., 2011); local maximum likelihood (ML) (Jay and
Guillaume, 2014). These algorithms perform under
the assumption that water properties such as
attenuation and quality are the same for a given area
{Su et al., 2008); this may lower depth accuracy if
this assumption is not achieved. On the other hand,
linear techniques such as interpolation and least-
squares regression result in poor bathymetry
estimation because of the system’s nonlinear
dynamics (Roehl and Conrads, 2006). In recent
years, artificial neural networks (ANNs) have been
used for water depth estimation. An ANN model is a
flexible mathematical structure capable of
describing complex nonlinear relations between
input and output datasets. While there are mumerous
ANN architectures that have been studied by
researchers (Juanita and Ronald, 1998, Roehl and
Conrads, 2006 and Ceyhun and Yalgin, 2010), the
most commonly used type is the MLP (Rumeclhart et
al,, 1986). It has been applied successfully for
estimating water depths from optical satellite
imagery (Mehdi et al., 2013 and Mohamed et al,,

2015). The objective of this contribution is to
compensate for the major weaknesses of the
majority of existing models which require a
complex estimation for a number of water column
parameters such as bottom type; attenuation
coefficients; and water quality. This can be achieved
by combining measures of probability from the
MLP and NB models, which offer complementary
information, and hence the obtained depths can be
improved. This paper is organized as follows.
Section 2 describes the study area and data sources.
Section 3 describes the experiments while Section 4
presents and evaluates the results. We summarize
our results in Section 5.

2. Study Area and Data Sources

The study site is selected at Al Guna, located 25
kilometers north of Hurghada on the west coast of
the Red Sea as shown in figure 1. Hurghada is
a city in the Red Sea Governorate of Egypt. It is a
major tourist center and the third largest city in
Egypt located on  theRed  Sea coast,
after Suez and Ismailia,. The area was selected
because: 1) it is characterized by shallow and clear
waters; 2) detailed bathymetric data are available; 3)
there is a variation of water depths. The test arca
covers approximately 7 x 7 km and lies between
latitudes 27°21'43" and 27°25'30” N and longitudes
33°39°03" and 33°43'28"E.
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Figure 1: a) Landsat-8 satellite image; b) ESA 1:50,000 underwater topographic map

Table 1: Characteristics of Echo-sounder and RTK-DGPS

Sounding Echotrac CV 100
Frequency 200 kHz
Positioning (RTK-DGPS) Trimble R6/5800
Resclution 25m
Echo-sounding accuracy 0.01 m +0.1% of depth
HL accuracy of RTK positioning 8§ mm + 1 ppm RMS
VL accuracy of RTK positioning 15 mm + 1 ppm RMS
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The characteristics of the available datasets are as
follow:

a) The Landsat image was collected on 21April
2015 as shown in figure 1. Landsat-8 is a new
satellite imaging platform launched in early
2013 acquiring panchromatic images with 15 m
resolution and multispectral images with 30 m
resolution at nadir. The bands include: Band 1 —
coastal aerosol (430 - 450 nm); Band 2 — blue
(450 - 510 nm); Band 3 — green (530- 590 nm);
Band 4 — red (640— 670 nm); Band 5 - Near
Infrared (NIR) (880— 850 nm); Band 6 - Short-
wave Infrared (SWIR) 1(1570- 1650 nm);
Band 7 - Short-wave Infrared (SWIR) 2 (2110-
2290 nm); Band 8 — Panchromatic (500- 680
nm); Band 9 — Cirrus (1360— 1380 nm); Band
10 — TIRS 1 (10600 — 11190 nm); Band 11 —
TIRS 2 (11500— 12510 nm). As can be
observed, the image has been acquired in
optimal conditions, in terms of clear sky and
clear water. The visibility of the bottom
topography is much better with blue band
which allows a penetration of up to 20 m. The
lighter the blue color in the image, the
shallower the water.

b) A 1:50,000 underwater topographic map, as
shown in figure 1b, over the same area was
produced in 1971 from aerial photographs of
scale 1:25,000 and last updated in 1990. The
map is published by the Egyptian Survey
Authority (ESA), projected on the WGS 84 /
UTM =zone 36N. The depth in this area
according to the maps is ranging from 2 m to 25
m; the average water depth is 5.5 m.

The echo-sounding bathymetries in the study area
were measured in November 2011, with survey
positions being referenced to the UTM/WGS84
zone 36N and already reduced to tidal datum. The
total number of depth observations taken was 1158.
Table 1 summarizes the characteristics of the used
Echo-sounder and RTK-DGPS. It is worth noting
that for the test area, the water bottom is stable and
there are no major currents that can affect the water
depths. Because of that, the comparison assumes
that there had been no significant change in the
bathymetry in the four-year interval between field
surveying and image acquisition dates.

3. Methodology

The proposed methed is composed of several key
steps as shown in figure 2. The main procedures are
fully discussed in the following sections.
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Figure 2: Determination of shallow water depths
using IPWI

3.1 Atmospheric Correction of Landsat-8 Data
Atmospheric corrections accounted for surface
reflection and sky radiance. The atmospheric
absorption and scattering can weaken the solar
radiation energy during the satellitec imaging, which
greatly influences the information extraction
process, so the remote sensing imagery must be
atmospherically corrected. For Landsat-8, the
number of steps necessary in the atmospheric
correction process can be reduced when compared
with previous Landsat missions because terms have
been embedded in Landsat-8 DN values (Keith et
al., 2014):

3.1.1 Conversion to radiance

Landsat-8 data are provided as digital number (DN)
images, the first step is to calibrate to radiance,
which is the amount of energy received by the
sensor per second (W) per steradian (s¥) per cubic
meter (m®). This is written as Wsr'm™ or Wsr'm
Inm! for a given wavelength (mm) (NASA, 2011).
For Landsat-8, a linear equation is used to convert
from DN to radiance (L):

L=(DN*G)+1
Equation 1

The gain (&) and intercept (7) are different for each
band and are provided in the Landsat-8 header file.

3.1.2 Top of atmosphere (TOA) reflectance

For relatively clear Landsat-8 scenes, a reduction in
between-scene variability can be achieved by
converting spectral radiance, as calculated above, to
at sensor reflectance or albedo.
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This eliminates the effect of different solar zenith
angles at the time of image acquisition. The
combined surface and atmosphetic reflectance of the
Earth is achieved using the following formula
(NASA, 2011):

_ Ly d?
ESUN  cos(8s)

Pa
Equation 2

Where A is the wavelength, p; is the spectral (TOA)
reflectance for wavelength A, L;is the spectral
radiance, d is the Earth-Sun distance in astronomical
units (provided with Landsat-8 metafile), ESUN, is
the mean solar exoatmospheric irradiance and &, is
the solar zenith angle in degrees, &,= 90°-
8. where @, is the Sun elevation. Landsat-8 images
are provided with band-specific rescaling factors
that allow for the direct conversion from DN to
TOA reflectance. It is worth mentioning that the
output reflectance, which has values 0 — 1, is
multiplied by a scaling factor of 1000 so the results
can be stored as a 16 bit integer.

3.1.3 Surface reflectance

TOA reflectance does not take into account the
effects of scattering and absorption in the
atmosphere and is simply a ratio of the at-sensor
radiance with the incoming radiance from the sun,
The effects of the atmosphere, the disturbance on
the reflectance that varies with the wavelength,
should be considered in order to measure the
reflectance at the ground. As described by Moran et
al., (1992), the land surface reflectance (p) is:

p=[r * (Li—L,) * &] /[T, * ((ESUN, *cost; *T;)
+ Edomn)]
Equation 3
Where:
L,: the path radiance.
Ty: the atmospheric transmittance in the viewing
direction.
T: the atmospheric transmittance in the illumination
direction.
Ejoum: the down welling diffuse irradiance.

The Dark Object Subtraction (DOS) (Chavez, 1996)
is a family of image-based atmospheric corrections
which have proved to be preferable for precise
atmospheric corrections of Landsat imagery over
coastal arcas (Nazeer et al., 2014).

The following assumptions are made: I, =1; I; = 1;
and Egpn= 0 (Moran et al., 1992). On the other
hand, the path radiance is:

Lpy=Mi %DNpin+Ar—0.01 ¥*ESUN, ¥cos6,/ (n *d*)
Equation 4

Where:

M;: band-specific multiplicative rescaling factor
from Landsat metadata.

Ap: band-specific additive rescaling factor from
Landsat metadata

DNpin: a digital count value for which the sum of all
the pixels with digital counts lower or equal to this
value is equal to the 0.01% of all the pixels from the
image considered (Sobrino et al., 2004).

3.2 Geometric Correction

The process involved georeferencing the Landsat-8
image, echo-sounding bathymetries and the
topographic map to the UTM/WGS84/36N. Ten
ground control points evenly distributed through the
area of study and well defined on the image, map
and ground were collected using GPS field
measurement. The ERDAS IMAGINE software has
been used (Erdas, 2014), where the projection
information is (Table 2):

Table 2: Projection information

UTM Projection
Zone 36
Spheroid/Datum WGS84
Scale factor at central meridian 0.9996
Longitude of central meridian 33°
Latitude of central meridian o
False easting 500,000 m
False northing 0m

After geo-referencing (following the
transformation), all data were resampled to 30 m
pixel size In order to achieve a one-to-one
correspondence of the water depths in the map and
pixel reflectance in the image. A bilinear
interpolation was used for resampling, which results
in a better quality image than nearest neighborhood
resampling and requires less processing than cubic
convolution (Lillesand et al.,, 2004). The RMSE
achieved for georeferencing the image and the map
were 0.6 and 0.9 pixel respectively.

3.3 Ground and Water Separation

In order to estimate water depths accurately, water
and ground in the image were separated. Since the
near infrared bands are intensively absorbed by
water and the pixels with the reflectance higher than
5% are likely to represent ground (Yanjiao et al.,
2007), the masked image was built using the near
infrared bands and superimposed on the Landsat-8
bands to define the ground as shown in figure 3.
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Figure 3: Reflectance variation from land to water (left); the masked pixels of land (right)

3.4 MLP-Based Probability

MLP is the most widely used type of ANN. A MLP
is a feed-forward ANN model that maps sets of
input data onto a set of appropriate outputs
(Rumelhart et al., 1986). A MLP consists of
multiple layers of nodes in a directed graph, with
each layer fully connected to the next one. Except
for the input nodes, each node is a neuron (or
processing element) with a nonlinear activation
function. MLP utilizes asupervised learning
technique called back-propagation for training the
network. Mathematically this can be written as:

y = @(Zr,w;x, + b) = ¢(wx + b)

Equation 5

Where w denotes the vector of weights, xis the
vector of inputs, & is the bias and ¢ is the activation
function. The activation function is chosen to be the
sigmoid I/ (I+e*}. This function allows MLP
networks to model nonlinear mappings well
(Cybenko, 1989).

3.5 NB-based Probability

NB is a supervised classification method derived
from the Bayes theorem. It requires no complicated
iterative parameter estimation. On the other hand, it
requires a small amount of training data to estimate
the parameters necessary for classification. Despite
its simplicity, the NB often outperforms more
sophisticated classification methods
including support vector machines (Rennie et al.,
2003). This makes it particularly useful for
estimating water depths from optical satellite
imagery (Jay and Guillaume, 2014). For training
data with a continuous attribute x, the data is first
segmented by class ¢, and then the mean

4 jand variance t’.I‘,2 of x in each class is computed.

Then, the probability distribution of some value
given a class, P(x=v|c), can be computed as follows:

2
e o
e ¢

2:'4%

P(x=v|c) =

Equation 6

A value of P(x=v|c} greater than 1 is acceptable
since it is a probability density rather than a
probability, and hence the posterior probability is
given by:

2(p(x = vylc)p(x = vy|C)..p(x=vplc)
evidence

Posterior(c) =
Equation 7

Where:

evidence = p(c)p(x = v,le)p(x = v,ley) ... o(x = v, lcy) +
p(c.) plx = vlc,)p(x = wlc,) ..p(x = v,lc) + ...

Equation 8

3.6 FMV-Based Combination of NB and MLP
Probability

In this research, FMV has been proposed to combine
the probabilitics obtained for NB and MLP and
hence the individual advantages of each algorithm
can be combined. The combined probability based
on FMV can be calculated as (Zadeh, 1983):

N
m-ngelie )
Equation 9
Where pp;is the class probability of pixel i, & is the
number of classes and w, is the weight based on
the linguistic quantifier defined as (Yager, 1998):
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wp =0p

Equation 10

th is the membership functions of relative

quantifiers, / is the order of the algorithm after
ranking (J,, for both algorithms in a descending

order and N is the total number of algorithms. With
parameters a, be [0, 1], O p can be defined as

(Herrera and Verdegay, 1996):

0 :
P ¥pp<a
QPi_ : fa<pp; <b
b- .
. if pp; > b
Equation 11

3.7 IPWI-Based Water Depths

The proposed IPWI technique is a modification of
the simplest and most widely used inverse distance
weighted technique. The IPWT estimates the value Z
of a pixel P as a function of the FMV probabilities
of the known £ points in the training dataset.

40%, 12

In this regard, it is assumed that estimated
elevations are more likely to be similar to elevations
with higher probabilities than to elevations with
lower ones. The lower probability a point, the less it
influences the estimate, and hence the depth at
unknown points can be determined as follows:

vk (Fi
P 1-Pemy;
2. =
Poyk (—2
1=1\1-Prpmv;

Equation 12

For clarity, figure 4 shows an illustration of depth
estimation of pixel p using its combination of FMV
probabilities (40%, 30%, 5%, 5%, 10%, 5% and
5%) of seven known depths (11,12, 4,2,7,3 and 5
m) in a training dataset.

4. Results and Analysis

First, raw satellite DN values of Lansat-8 blue band
were converted to radiances, figure 5. The radiances
were then converted to surface reflectance, figure
5b. Seven image pixels with known depths have
been used as training data that represent a variety of
water depths over different bottom types as shown

in figure 6.
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Figure 6: (a) The seven image pixels used as training data; (b) through (h) the corresponding Pryv probability

values

Figure 7: The water depths interpolated by: a) IPWI; b) MLP

All data points in this set were acquired using echo-
sounder and multi-beam sonar platforms in
November 2011. Beginning with the training
dataset, Both MLP and NB algorithms were run with
features of the reflectance from blue band. The
structure of the MLP model was as follows: the
numbers of input, hidden and output layer neurons
were 7, 1 and 7 respectively; learning rate was 0.01;
momentum factor was 0.5; sigmoid constant was 1;
and number of iterations was 10000. For both MLP
and NB algorithms, each pixel was classified into a
combination of probability of 7 clusters. The FMV
was then run to combine the probabilities from both
clagsifiers with the parameter pair (0, 0.5) in
equation 11. As a result, seven combined probability
values have been obtained for each pixel as shown

in figures 6(b) through 6(h).

The Pryy values represent true probabilities in the
range of 0 to 1, where 0.0 expresses absolute
improbability and 1.0 expresses a complete
assignment to a known depth. In order to estimate
the water depths, the Pryy values (images) were
then presented as input data for the IPWI The
application of the IPWI resulted in a grey scale
depth image as shown in figure 7(a). For
comparison purposes, the traditional MLP were run
with the same structure as above and the result is
displayed in Figures 7(b). In order to evaluate the
performance of the proposed method, the minimum,
maximum, mean, standard deviation (SD) and the
coefficient of determination (R?) of the differences
between estimated and observed water depths were
determined for both ITPWT and MLP and presented in
table 3.
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Table 3: The results of the IPWI method compared with MLP

Model Min. Max, | Mean SD R?
MLP 1.23 6.64 1.68 0.87 (.965
IPWI 0.98 4.67 143 0.58 0.996
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Figure 8: the graphical representation of linear correlation between measured depths with estimated depths
for: (a) the /PWT, (b) MLP methods

Figure 9: The results of the /PWI method divided as five ranges

The coefficient of determination, 0<RZ<1,
accounts for how much information is shared by the
reference and estimated depths (Roehl and Conrads,
2006). In the case of IPWI, the mean error was 1.43
m. The low standard deviation of 0.58 m indicates
that the differences between estimates depths and
echo sounding data are small. On the other hand, R?
of 0.996 indicates that 99.6% of the total variation
in water depths can be explained by the relationship
between the reference and estimated depths. The
other 0.4% of the total wvariation in water
depths remains unexplained. Results were slightly
less accurate with the MLP, giving a mean error of
1.68 m, SD of 0.87 m and R? = 0.995, Figure 8
shows the graphical representation of linear
correlation coefficient between measured depths

with estimated ones. In depths <5 m, J/PWI method
provides depth information 1-3 m deeper than the
MLP method. Depth retrievals are possible to nearly
25 m with IPWI method, whereas the MLP fails at
23-24 m. In order to evaluate the performance of
the proposed method further, the estimated depths
were compared with measured depths by
segmenting the depths into five Sm ranges as shown
in figure 9. The results of the IPWI method are
shown on a color scale, from red (0-5 m) to dark
blue (20-25 m) with black color representing the
masked land. As can be observed, figure 9 shows
smooth transitions from shallow to deep water with
less speckle error, Table 4 summaries an analysis of
the depths obtained in the five ranges.
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Table 4: analysis of the depths obtained in the five ranges

Class Range Counts Min Max Mean SD
Very Shallow 0-5 97 0.11 0.52 0.25 0.19
Shallow 5-10 37 0.13 0.97 0.58 0.21
Moderate 10-15 39 0.57 1.24 0.97 0.39
Deep 15-20 41 1.34 2.31 1.88 0.63
Very Deep 20-25 31 242 3.92 2.54 0.67

The analysis shows that the JPWT method enabled
the water depths of less than 5 m to be estimated
accurately with mean error of 0.25 m and SD of
0.19 m. Errors are slightly greater for the depths of
more than 10 m. These relatively large errors could
be cause by the reduction of the penetration of the
solar radiation hardly in the deeper water. However,
it is clear that the proposed method is able to
represent the full range of the depths to 25 m. Once
again, table 4 shows smooth transitions from
shallow to deep water with less sensitivity to bottom
type. Similar results have been reported in Pacheco
(2015) from Landsat-8 imagery, at 30 m resolution.
They used the water radiance of three bands: coastal
aerosol; blue; and green. The results demonstrate
that the linear algorithm is efficient for estimation of
water depths of up to 12 m, showing a root mean
square error of 0.89 m. The bathymetry obtained is
more accurate for shallow depths (0 to 8 m) than for
greater depths (8-12 m). Whereas the linear
transform fails at 12-15 m, bathymetry retrievals are
possible to almost 30 m with the ratio algorithm, but
with a greater amount of noise. Finally, the
comparison of the estimated depths with contours in
the ESA topographic map, as shown in figure 10, is
a further indication that the /PW1 method is accurate
especially at shallow depths, taking into account the
data in the map is over 25 years.

5. Conclusions

In this paper, a method has been proposed to
estimate water depths from Landsat-8 satellite
imagery for the north part of the Red Sea in Egypt.
The proposed method has no assumptions about
water column parameters, which makes the method
easier to use and more robust over variable bottom
types. The proposed method has outperformed the
conversional MLP method with a mean error of 1.43
m and a mean $D of 0.58 m. As well, the proposed
method enabled the water depth of less than 5 m to
be estimated accurately with mean absolute error of
0.25 m and SD of 0.19 m. However, the accuracy
was not ideal for depths of more than 10 m, with the
mean absolute errors ranging from 0.58 to 2.54 m. A
very high coefficient of determination (R?) of 0.996
was achieved between the estimated and measured
depths. In conclusion, the proposed method can be

applied effectively for determining water depth with
less ficld measurements than conventional methods;
and does not require lmowledge of the water
attenuation. In order to achieve better results in the
future, more algoritms can be integrated into the
system.

Acknowledgements

The author is indebted to Professor John Trinder,
UNSW/Sydney/Australia, for helpful comments and
edits.

References

Abileah, R., 2006, Mapping Shallow Water Depth
from Satellite. ASPRS 2006 Annual Conference,
Reno, Nevada, May 1-5, 2006.

Bierwirth, N., Lee, J. and Burne, V., 1993, Shallow
Sea-Floor Reflectance and Water Depth Derived
by  Unmixing  Multispectral  Imagery.
Photogrammetric Engineering and Remote
Sensing, 59:331-338.

Bramante, J.,, Raju, D. And Min, S., 2010,
Derivation of Bathymetry from Multispectral
Imagery in the Highly Turbid Waters of
Singapore’s South Islands: A Comparative
Study. Digitalglobe 8-Band Research Challenge
2010, Available From:
Http://Www.Digitalglobe.Com/Downloads/8bc/
8band Challenge TMSLPdf.

Ceyhun, O. and Andyalgin, A., 2010, Remote
Sensing of Water Depths in Shallow Waters Via
Artificial Neural Networks. Estuarine, Coastal
and Shelf Science. 89(1): Pages 89-96.

Chavez, P. S., 1996, Image-Based Atmospheric
Corrections—Revisited and Improved.
Photogrammetric Engineering and Remote
Sensing, 62(9):1025-1036.

Cybenko, G., 1989, Approximation by
Superpositions of a Sigmoidal Function,
Mathematics of Control, Signals and Systems,
2(4): 303-314.

Doxania, G., Papadopouloua, M., Lafazania, P.,
Pikridasb, C. and Tsakiri-Stratia, M., 2012,
Shallow-Water Bathymetry Over Variable
Bottom Types using Multispectral Worldview-2
Image. International Archives of the

International Journal of Gecinformatics, Vol. 12, No. 1, March, 2016

53

45-55

Determination of Shallow Water Depths using Inverse Probability Weighted Interpolation: A Hybrid System-Based Method




54

Photogrammetry, Remote Sensing and Spatial
Information Sciences, 39(B8), 25 August — 01
September 2012, Melbourne, Australia,

Erdas, 2014, Imagine Essentials Training Reference
Manual, Atlanta, Georgia USA.

Fuxing, D. and Qian, D., 2003, A Technique for
Extracting Water Depth Information From
Multispectral Scanner Data in the South China
Sea. Marine Science Bulleting, 22(3):55-60.

Herrera, F. and Verdegay, J. L., 1996. A Linguistic
Decision Process in Group Decision Making.
Group Decision Negotiation, 5, 165-176.

Hoepffner, N. and Zibordi, G., 2009, Remote
Sensing of Coastal Waters. Encyclopedia of
Ocean Sciences (2nd Ed.): 732-741.

Jay, S. and Guillaume, M., 2014, A Novel
Maximum Likelihood Based Method for
Mapping Depth and Water Quality From
Hyperspectral Remote-Sensing Data. Remote
Sensing of Environment, 147: 121-132.

Jiazhu, H. and Yuming, Y., 2002, Experiment of
Water Depth Surveying in the Nantong Section
of the Yangtze River. Adnances in Water
Science, 13(2): 235-238.

Juanita C. S. and Ronald J. H., 1998, Coastal
Bathymetry from Hyperspectral Observations of
Water Radiance. Remote  Sensing of
Environment, 65:341- 352,

Kao, H., Ren, H., Lee, C., Chang, C., Yen, J. And
Lin, T., 2009, Determination of Shallow Water
Depth using Optical Satellite Images.
International Journal of Remote Sensing,
30(23): 6241-6260.

Kceith, D. J., Shaeffer, B. A., Lunctta, R. 8., Gould,
R. W., Rocha, K. and Cobb, D. J., 2014, Remote
Sensing of Selected Water-Quality Indicators
with the Hyperspectral Imager for the Coastal
Ocean (HICO) Sensor. International Journal of
Remote Sensing, 35(9), 2927-2962.

Lee, K. R, Kim, A. M., Olsen, R. C. and Kruse, F.
A., 2011, Using Worldview-2 to Determine
Bottom-Type and Bathymetry, Proceedings
SPIE Symposium On Defense and Security, 25 -
29 April 2011, Orlando, FL.

Lillesand, T. M., Kiefer, R. W. and Chipman, J. W.,
2004, Remote Sensing and Image Interpretation,
John Wiley and Sons, Hoboken, NJ, USA, 2004.

Loomis, M. J., 2009, Depth Decrivation from the
Worldview-2 Satellite using Hyperspectral
Imagery, Unpublished M.S. Thesis, Naval
Postgraduate School, Monterey, CA, 2009.

Louchard, E. M., Reid, R. P., Stephens, F, C., Davis,
C. Q., Leathers, R. A. and Downes, T. V.,2003,
Optical Remote Sensing of Benthic Habitats and
Bathymetry in Coastal Environments at Lee
Stocking Island, Bahamas: A Comparative

Spectral Classification Approach. Limnology
and Oceanography, 48(1): 511-521.

Lyzenga, D. R., Malinas, N. P. and Tanis, F. J.,
2006, Multispectral Bathymetry using a Simple
Physically Based Algorithm. JEEE Transactions
on Geoscience and Remote Sensing, 44(8):
2251-2259.

Mallick, J., Abul Hasan, M., Alashker, Y, And
Ahmed, M., 2014, Bathymetric and
Geochemical Analysis of Lake Al-Saad, Abha,
Kingdom of Saudi Arabia using Geoinformatics
Technology. Journal of Geographic Information
System, 6, 440-452.

Mehdi, G., Tiit, K., Abbas, E., Ali, A. And Babak,
N., 2013, Remotely Sensed Empirical Modeling
of Bathymetry in the Southeastern Caspian Sea,
Remote Sensing, 5: 2746-2762.

Mgengel, V. and Spitzer, R. J., 1991, Application of
Remote Sensing Data to Mapping of Shallow
Sea-Floor nearby Netherlands. International
Journal of Remote Sensing, 57(5):473 - 479.

Mohamed, H., Negm, A., Zahran, M. and Saavedra,
0., 2015, Bathymetry Determination from High
Resolution Satellite Imagery using Ensemble
Learning Algorithms in Shallow Lakes: Case
Study El-Burullus Lake. Infernational Journal of
Environmental Science and Development. 7(4):
295-301.

Monteys, X., Harris, P., Caloca, S. and Cahalane,
C., 2015, Spatial Prediction of Coastal
Bathymetry Based on Multispectral Satellite
Imagery and Multibeam Data. Remote Sensing,
7: 13782-13806.

Moran, M., Jackson, R., Slater, P. and Teillet, P.,
1992, Evaluation of Simplified Procedures for
Retrieval of Land Surface Reflectance Factors
from Satellite Sensor Qutput, Remote Sensing of
Environment, 41, 169-184

NASA (Ed.), 2011, Landsat 7 Science Data Users
Handbook Landsat Project Science Office At
NASA's Goddard Space Flight Center In
Greenbelt,
Http://Landsathandbook.Gsfc.Nasa.Gov/Pdfs/La
ndsat7 Handbook.Pdf

Nazeer, M., Nichols, J. E. and Yung, Y., 2014,
Evaluation of Atmospheric Correction Models
and Landsat Surface Reflectance Product in an
Urban Coastal Environment. Infernational
Journal of Remote Sensing, 35(16):6271-6291.

Pacheco, A., Horta, J., Loureiro, C. and Ferreira, O.,
2015, Retrieval of Nearshore Bathymetry from
Landsat 8 Images: A Tool for Coastal
Monitoring in Shallow Waters. Remote Sensing
of Environment, 159: 102-116.

Determination of Shallow Water Depths using Inverse Probability Weighted Interpolation: A Hybnd System-Based Method




Pattanaik, A., Sahu, K. And Bhutiyani, M, 2015,
Estimation of Shallow Water Bathymetry using
IRS-Multispectral Imagery of Odisha Coast,
India. Infernational Conference on Water
Resources, Coastal and QOcean Engineering
(ICWRCOE 2013), Aquatic Procedia: 4(2015):
173 — 181.

Piotrowski, C. C. and Dugan, J. P,, 2002, Accuracy
of Bathymetry and Current Retrievals from
Airborne Optical Time-Series Imaging of
Shoaling Waves. IEEE Transactions on
Geoscience and Remote Sensing, 40(12).

Puetz, A. M., Lee, K. and Olsen, R. C., 2009,
Worldview-2 Data Simulation and Analysis
Results, Proceedings of SPIE, Vol. 7334,
73340U.

Rennie, J., Shih, L., Teevan, J. and Karger, D.,
2003, Tackling the Poor Assumptions of Naive
Bayes Classifiers (PDF). ICML.

Roehl, E. and Conrads, P., 2006, Estimating Water
Depths using Artificial Neural Networks. 7tk
International Conference on Hydroinformatics,
HIC 2006, Nice, France.

Rumelhart, D., Geoffrey, E. and Robert, J., 1986,
Learning Internal Representations by Error
Propagation, Rumelhart, D.E. And JL.
Mcclelland  (Eds.), Parallel  Distributed
Processing, 1: 318-362, MIT Press, Cambridge.

Sobrino, J., Jiménez Mufioz, J. C. And Paolini, L.,
2004, Land Surface Temperature Retrieval from
LANDSAT TM 5, Remote Sensing of
Environment, 90: 434440

Stumpf, R. P., Holderied, K. and Sinclair, M., 2003,
Determination of Water Depth with High—
Resolution Satellite Imagery Over Variable
Bottom Types. Limnology and Oceanography,
48: 547-556.

Su, H., Liu, H. and Heyman, W., 2008, Automated
Derivation for Bathymetric Information for
Multispectral Satellite Imagery using A Non-
Linear Inversion Model, Marine Geodesy, 31:
281-298.

Tang, K. and Pradhan, B., 2015, Converting Digital
Number into Bathymetric Depth: A Case Study
over Coastal and Shallow Water of Langkawi
Island, Malaysia. FIG Working Week 2015,
From the Wisdom of the Ages to the Challenges
of the Modern World, Sofia, Bulgaria, 17-21

May 2015.

Yager, R. R., 1988, On Ordered Weighted
Averaging Aggregation Operators in
Multicriteria ~ Decision =~ Making.  IEEE

Transactions on Systems, Man, and Cybernetics,
18, 183-190.

Yanjiao, W., Peiqun, Z, Wenjie, D. And Ying, Z.,
2007, Study on Remote Sensing of Water
Depths Based on BP Artificial Neural Network,
Marine Science Bulletin, 9(1): 26-35.

Yuzugullu, O. And Aksoy, A., 2014, Generation of
the Bathymetry of a Eutrophic Shallow Lake
using Worldview-2 Imagery. Jouwrnal of
Hydroinformatics, 16 (1): 50-59.

Zadeh, L. A., 1983, A Computational Approach to
Fuzzy Quantifiers Ini Natural Languages,
Computers and Mathematics with Applications,
9: 149-184.

International Journal of Gecinformatics, Vol. 12, No. 1, March, 2016

55

45-55

Determination of Shallow Water Depths using Inverse Probability Weighted Interpolation: A Hybrid System-Based Method




	Binder1_Page_01
	Binder1_Page_02
	Binder1_Page_03
	Binder1_Page_04
	Binder1_Page_05
	Binder1_Page_06
	Binder1_Page_07
	Binder1_Page_08
	Binder1_Page_09
	Binder1_Page_10
	Binder1_Page_11

