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Abstract

Information concerning water depth of near shore water region is one of the most basic requirements for coastal
zone management. Depth iv especially important for near coastal lines, in harbors, and near shoals and banks,

where changes can occur rapidly as sedimentation, erosion and scouring of channels alters underwater
topography. Although, the algorithms used to estimate depth from passive Remote Sensing (RS) satellite data

were practicing last two decades, if is necessary to test the algorithms with recently available better quality RS
data archives. In addition to that this paper proposes two methods to estimate water depth from single spectral
band and from multispectral band. The single band algorithm called Radiance Based Estimation (RBE) is a

modification of Stoffle and Halmo, (1991). Here onwards the single band method proposed by Stoffle and
Halmo, (1991) is referred to as SLR (Single-band Linear Regression). A constant aftenuation coefficient of a

particular band is estimated using SLR method with limited in-situ depth; further the RBE is used fo estimate
depth from same band of multi-temporal images even when there is no in-situ depth available. RBE only depends

upon the radiance value of the log-transformed band. The single spectral band from each satellite imagery is

caplured at different time is used to estimate multi-temporal depth from multi-source optical RS data such as
Landsat 7, Landsat 8§ and ASTER. The RBE applied to Landsat 8 data which has high radiometric resolution

provided better accuracy compared io other satellite data in terms of correlation coefficient (R=0.89 and 0.80),

coefficient of determination (R°=0.81 and 0.66} and Root Mean Square Error (RMSE=1.39m and 2.09m) from

images collected on 31 January, 2014 and 4 March, 2014 respectively. The multispectral algorithm originally
proposed by Clark et al., (1987, 1988) used only visible bands to estimate depth. Since the Clark et al,

(1987and1988} were using a linear regression between multispectral bands and in-situ depth, here onwards

depth estimation algorithm using multi-spectral bands from visible region from electromagnetic spectrum is

called as Multiple-band Linear Regression (MLR). Multispectral bands are account for the varying degree of
attenuation coefficient by addressing the heterogeneity of botiom types. This study proposes a new band
combination to include Near Infra Red (NIR) band for depth estimation. The method to estimate depth using
new band combination with visible and NIR band is hereafier called as MLR-NIR. The MLR and MLR-NIR

were tested with the same data sets and observed that the results significantly improved by the proposed MLR-

NIR. The depth estimation results derived from Landsat 8 data collected on 12 November, 2013, 31 January,

2014 and 4 March, 2014 by applying MLR-NIR shown better correlation coefficient (R=0.95, 0.95 and 0.90),

coefficient of determination (R°=0.91, 0.91 and 0.83) and RMSE (1.53m, 0.83 m and 1.23m) as compared with

MLR. The depth estimates derived from Landsat 8 data were used to investigate the reduction in accuracy due
to turbidity has been carried out. The results indicate that NDWI (Normalized Difference Water Index) impacts

the accuracy of depth estimates but not very significantly.

1. Introduction

Determination of water depths in coastal zone is a
common requirement for any coastal engineering
work and research related to coastal zone. The highly
dynamic nature of coastal zone leads to frequent
change in water depths that are required to be
monitored at periodic intervals.

In order to better manage and protect the coastal
zone, it is necessary to comprehend coastal zone
conditions affected by shallow water depth. Mapping
shallow water depth from ships by sonar is a quite an
expensive task. Many shallow water areas are not
accessible by hydrographic ships due to rocks, coral
reefs or simply due to inaccessibility by boats due to
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shallow depth of the water. Airborne Light Detection
and Ranging (LIDaR) can provide complete and
accurate bathymetric measurements in shallow areas,
but availability of this technology is currently limited
and also involves significant cost. Thus, there is a
need for an alternative method to estimate multi-
temporal depth variations. In order to supplement
field based approaches, a number of passive RS
methods have been proposed by many authors
(Brown et al., 1971, Lyzenga, 1978, Tripathi et al.,
2002, Philpot, 1989 and Benny and Dawson, 1983).
Several workers (e.g. Stoffle and Halmo, 1991,
Stumpfet al., 2003, Lyzenga et al., 2006 and Pacheco
et al.,, 2015) successfully demonstrated the use of
satellite RS data for determination of depth in coastal
waters. Multiple band techniques have been
commonly used for depth estimation from shallow
water (e.g. Fonstad and Marcus, 2005 and Ceyhun,
Yalgyn 2010) but these multiple band techniques
depend upon large amounts of ground truth data and
a fine enough resolution to discriminate bottom
types. There are conflicting opinions expressed over
the suitability of spectral wavelength bands for water
depth estimation. Kumar et al, (1997) used 0.77-
0.80 pm wavelength for depth measurements in an
estuary. Wame, (1972) adopted 0.5-0.6 pm range
and Yi and Li (1988) also adopted 0.47-0.54 pm
band for measuring water depth. George (1997)
found 0.746-0.759 pum range to be more suitable
compared to wavelength bands. Manessa et al,
(2014), also observed that NIR band (0.77-0.89 um)
is close to the visible spectrum and still sensitive to
bottom reflectance. Ibrahim et al., (1990), used 0.5-
0.6 um (band 4) of Landsat 3 MSS to estimate depth
by correlating the intensity of pixels and depth for
Peg island in Malaysia. The shallowest areas show
bottom reflectance in 0.77-0.90 pm range but deeper
arcas (grecater than 15 m) show bottom reflectance
only in 0.45-0.52 pm range (Jupp et al,, 1988). In the
last two decades, several researches on optical RS
were focused on formulating shallow water depth
estimation algorithms. Although several algorithms
have already been discussed, main purpose of this
study is to evaluate the efficacy of some of the
algorithms to recently available high radiometric and
spatial resolution RS data. Further, modification and
improvements had made to the methods to obtain
better results. Algorithms dealing with depth
estimation are mainly categorized in to single and
multiple bands in terms of number of spectral band
used. This study aims at evalyating about both single
band and multispectral bands approaches have
proposed by Stoffle and Halmo, (1991) and Clark et
al., (1987 and 1988). This study also proposes the
new RBE method to estimate depth from single band
without the need of in-sire depth and also proposes

improved depth estimation using Clark method with
new band combination. Further, these proposed
methods have been validated various kinds of
radiometric, spatial and temporal resolution data sets
such as Landat 7, Landsat 8 and ASTER.

2. Algorithms for Estimating Water Depth

The SLR method proposed by Stoffle and Halmo,
(1991) and MLR method proposed by Clark et al.,
(1987) discussed below are most commonly used
algorithms for bathymetric estimation from shallow
water region.

2.1 Single-Band Linear Regression (SLR)

The Stoffle and Halmo, (1991) have proposed
algorithm that have been used to estimate depth from
single band. The depth is estimated based on equation
below:

h=—172kX(2); + 1/2k(logV,)
Equation 1

Where, h is estimated is depth; X{3): is corrected
transformed radiance which ig linearly related to the
depth, & is water attenuation coefficient. ¥y is
sensitivity factor related to solar irradiance at the
surface, the bottom reflectance, atmospheric
transmission, and sensor equipment (Gholamalifard
et al.,, 2013). The equation (1) takes the form of depth
= slope X(A): + constant. The line in this equation
describes the best fit of a simple linear regression
using known depth measurements as the dependent
variable and the transformed radiance (X71); as the
independent variable. The slope of this line is related
to the water atienuation coefficient such that slope is
—1/2k, and the constant valie is given by 172k
(TogVy). The SLR method assumes a constant
attenuation coefficient and homogeneous bottom
type in the overall study area and also assumes the
transformed radiance of single band corresponds
directly to water depth. The limitation of this method
is that it needs in-situ depth to compute linear
relationship and estimate depth. In order to address
this problem study proposes the RBE method. The
RBE method directly applied to the transformed
single band without need to consider about the
radiative transfer of light in the sca water. The
attenuation coefficient in a particular single band is
calculated using SLR algorithm to understand the
radiative transfer of light for a particular band. RBE
is suggested to be used as an extension to SLR
method to estimate depth from multi-temporal
satellite imageries. In RBE, a single band is selected
in order to derive better depth estimation and this
particular band of other satellite imageries is used to
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estimate depth. Only one reference data (maximum
depth value) which is estimated by SLR method has
to be used as input for the RBE. The highest value for
depth derived by SLR method is considered as
constant for all multi-temporal images. Apart from
that, the constant maximmum wvalue can also be
assigned arbitrarily in case in-sitw depth is
unavailable to apply RBE. A conversion factor is
calculated by the following equation.

Conversion factor = Dmax/C
Equation 2

Where, Dmax is the maximum depth value derived
by SLR method, which is considered as constant for
other satellite imageries. C is unique cell values in a
single transformed band. The conversion factor is
applied to the transformed band and depth is
estimated.

2.2 Multiple-band Linear Regression (MLR)

Several authors (Clark et al., 1988, Hamilton et al.,
1993, Kanno and Tanaka, 2012) recognized multiple
rcgression analysis would provide good depth
estimation using multiple bands over shallow water
region. Originally, Clark et al., (1987) proposed a
multiple regression analysis between in-sifu depth
and multispectral bands to estimate coefficients.
Further, these coefficients have been used to estimate
the depth. This method addresses the heterogeneity
of the bottom type by utilizing all the visible bands.
This algorithm attempts to isolate water atignuation
and hence depth using a combinations of spectral
bands. MLR utilizes multispectral band, so that it
accounts for varying attenuation coefficients for
different bottom types as it calculates water depth
(Van Hengel and Spitzer, 1991). The equation to
estimate depth is following:

h=8g+ B1X(A)1 + Bz X(A)g + - + B X (),
Equation 3

Where % is the estimated depth, fo, f1, f2.. B are
derived constants and X{4); X(4);. X(3); are the log
transformed atmospheric, water surface and water
column corrected radiance values of multiple bands.
The band combination using in the multispectral
mcthods have significant impact of the accuracy of
the results.

There is a lack of agreement amongst researchers
about the right band combination for better depth
estimation. Many authors (Lyzenga et al., 2006 and
Kanno and Tanaka, 2012), used NIR band for
atmospheric and water column corrections. However,
this leads to significant errors in the shallow depth
region due to reflectance from the bottom in NIR
band (Manessa et al., 2014). Therefore, this study
proposes a new band combination that includes
visiblg NIR band for depth cstimation,

3. Materials and Methods

3.1. Study Area

The study area shown in Figure 1 is located off
Ratnagiri along the Arabian Sea coast with maximum
depth of 11m. Geographically it stretches 73°16"30"E
- 73°18'00"E 16°57°00"N - 16°59"30"N with 5 Km
long coastal zone, that includes 70% of sandy beach
and an estuary of Kajali River. Along the study area,
the coast is exposed to seasonally reversing monsoon
winds, with winds from the southwest (SW) direction
during the SW (summer) monsoon period (June to
September) and from the northeast (NE) during the
NE (winter) monsoon period (October to January).
Tides in the region are mixed and are predominately
semi-diurnal and the annual rainfall of the region is
around 3m. The near-shore depth is highly dynamic
due to sediment discharge from the Kajali River and
seasonal climate changes. The relative sea level rise
of the area is 0.9mm/year (Chouhan et al., 2003) is
comparatively very less than global average of sea
level rising 3mm/year (Holgate and Woodworth,
2004).

3.2 Data used

Several satellite images were used from multi-
sources with various radiomefric and spatial
resolutions. Landsat 7 data available at 30 meter
spatial resolution and radiometric quantization at 8
bit dynamic range. Recently, Landsat 8 data are
freely available which has higher radiometric
resolution quantized over a 12-bit dynamic range
(This translates into 4096 potential DN value range
in an image compared with only 256 DN value range
in previous 8-bit instruments.}. Even though ASTER
data has the radiometric resolution of 8 bit, it
provides the spatial resolution of 15 meter. Two field
surveys were carried out to collect depth data from
the study area. These in-situ depths were used for
calibration and evaluation of the depth estimation.
Detailed description of the characteristics of data
used is shown in the Table 1.
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Figure 1: Study area

Table 1: Characteristics of data used for this study

Date Source Tide (m) Resolution (m)
09-05-2012 Landsat ETM 1.15 30
27 May, 2012 In-situ depth 1.53-2.3 10
30 March, 2003 Landsat ETM 2 30
2003 NHO chart {1:60,000) 23 30
08 May, 2000 Landsat (ETM) 136 30
12 November, 2013 Landsat 8 1.25 30
31 January, 2014 Landsat 8 240 30
04 March, 2014 Landsat 8 1.66 30
17 November, 2013 In-situ depth 2.24-2.35-2.16 7
10 December, 2012 ASTER 1.03 15
16 January, 2003 ASTER 1.8 15

3.3 Pre-Processing 3.3.1 Tide correction of in-situ depth

Several pre-processing procedure have been carried
out prior to the depth estimation. Pre-processing
procedures are same for SLR method, RBE and
MLR-NIR.

Since the satellite images and in-situ depth were
collected at different time and tide conditions, tide
correction need be applied to the in-situ depth to tide
at the time of the corresponding image capture.
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Tide data collected by tide gamges operated by
National Institute of Oceanography (NIO) were used
for applying corrections. The tide at the time of
satellite image capturing is unigue but in case of field
surveys, start at a time with one tide and ends at other
time with different tide. Therefore, the variation in
the tide height of in-situ depth is also addressed by
tide correction. For instance, The tide of in-situ depth
collected on 27 May, 2012 is vary from 1.53m to
2.3m, therefore the tide of the in-sifu depth is
corrected to the tide of the image (1.15m}) collected
on 9 May, 2012 (Landsat 7). All the in-situ depths
collected are tide corrected according to the tide of
the time of satellite image is used to estimate depth.

3.3.2 Radiance conversion

All the satellite data were already geometrically and
radiometrically calibrated. Digital Numbers (DN)
were converted to physical units of band averaged
spectral units (Watts/(m?2 xsradxum)). Equations for
radiance (LA) conversion for Landsat 7, Landsat 8
and ASTER are explained below. For Landsat 7
image,

L(A) = (Lypax — Lymin/255) X DN + Ly,
Equation 4

‘Where, Ly, is the minimum radiance, Ly is the
maximum radiance and DN is the digital number of a
particular band. For Landsat 8 the equation used to
convert to radiance is:

L{(A) = ML x Qcal + AL
Equation 5

Where, ML is Band-specific multiplicative rescaling
factor (RADIANCE_MULT BAND x, where x is
the band number), AL is Band-specific additive
rescaling factor (RADIANCE ADD BAND x,
where x is the band number), Qcal is Quantized and
calibrated standard product pixel values (DN). In
case of ASTER, Radiance is calculated as shown in
the equation (Lillesand et al., 2004) below:

L({A) = (DN - 1) X Unit conversion coef ficient
Equation 6

3.3.3 Lyzenga’s correction

The radiance observed by a satellite sensor on

shallow water basically consist of four components,
namely, atmospheric scattering component, surface

reflection component, in-water volume scattering
component, and bottom reflection component
(Kanno and Tanaka, 2012). Many authors (Baban,
1993, Muslim and Foody, 2008) have also suggested
a component of bottom reflectance in shallow water
images. Bottom reflectance is transformed to depth
values after removing other three components
(atmospheric  scattering component, surface
reflection component, in-water volume scattering
component) successfully. There are two very
important procedures that must be undertaken prior
to Lyzenga’s correction (Lyzenga, 1981), The first
step is to distinguish water from the land. The ratio
of green and short wave infrared bands was computed
and ratio of greater than 1 was classified as water and
less than 1 as land. Water region separated by
masking land area has been used for further analysis.
The second pre-processing procedure involves
correction of the imagery to remove random noise
and stripping. Since the methods are sensitive to
random noise and striping, image smoothing with a
low-pass 3x3 filter has been carried out. In Lyzenga's
correction method sea-surface scattering or
atmospheric scattering arc implicitly assumed to be
homogeneous over the target area. In case of deep
water, the observed spectral radiance (L(A)) at
infinite depth (&), (L(Ac) is assumed not to include
bottom reflectance, such that the water depth only
consists of information related to external reflection
from the water surface and atmospheric scattering.
Subsequently, the effects of atmospheric scattering,
surface reflection and in-water volume scattering can
be eliminated by subtracting the average radiance of
the deep water L1 o).

(L (A); — L (Ax);)

Equation 7

() =

Where, C(d); is the corrected radiance, L{Awx);
represents the averaged radiance of deep water and
subtracted standard deviation of radiance for ;© band.
‘Whereas pixels corresponding to shallow waters are
of current interest, deep water pixels can be
considered to corresponding to an infinite depth and
discarded. The deep water pixels have a low overall
reflectance than the shallow water pixels, and hence
easy to separate. Subsequently the corrected radiance
values (C(4)) were calculated from blue, green, red
and NIR bands separately as mentioned in equation
(7). The steps for Lyzenga’s correction were shown
in the Figure 2.
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3.4 Depth Estimation how light is transmitted in water (Gao, 2009). To

After atmosphere, water surface and water column
correction applicd to the bands, the radiance is
logarithmically  transformed to  investigate
relationship between radiance and depth. The
equation for the log transformed radiance can be
denoted as:

X(A), = log(C(A))
Equation 8

Where, X{4); is log transformed radiance values of
band.

3.4.1 Single Linear Regression (SLR) and Radiance
Based Estimation (RBE)

A single band was selected from particular satellite
imagery to apply SLR method and RBE. In empirical
modeling, the relationship between the remotely
sensed radiance of a water body and the depth at
sampled locations is established without considering

select a single band for applying algorithms,
correlation coefficient is calculated by simple linear
regression between the transformed bands and in-sifu
depth measurement value. The transformed band is
considered as independent variable (X¢A);) and depth
() as a dependent variable as shown in equation
below:

y=a+bX (1),
Equation 9

Any gingle band that provides better cormrelation
cocfficient as compared to other bands is sclected for
depth estimation. The maximum depth value derived
from the SLR method over the study area is
arbitrarily chosen as an input value for the RBE
method to estimate depth when there is no
corresponding in-situ depth available. It has been
observed that in all the multi-temporal data, NIR
(0.77-090 pm) band provides better correlation
compare to other bands in the sindy area.
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In lighted the above observations, NIR band was
chosen to apply SLR method and RBE for all the
satellite imageries. The workflow of RBE method is
explained in detail below with an example of Landsat
7 data. First of all, RBE is applied to Landsat 7 image
30 March, 2003 and, subsequently, reliability of the
method was tested with other data set too. In addition
to SLR method assumptions, RBE method also
assumes that the maximum depth value for all
temporal data set is assigned as constant. To apply
RBE method to an imagery only one in-situ depth
valuc as maximum value is necessary. Here,
maximum depth value is derived from 9 May, 2012
image (1 1m) by applying SLR is assigned as constant
for all images of other dates in crder to apply RBE.

e N rat iray

Tide correction will be applied to the single
maximum depth value with respect to the tide of
image capture. The tide height during Landsat 7
image acquisition (30 March, 2003) was 2.01lm.
Since the tide height of image collected from 9 May
2012 depth is 1.15m, the maximum depth value will
be changed to 11.86m afler adding 0.86m to the
constant maximum depth (11m) in order to correct
the tide rise and fall. So the maximum depth value in
case of 30 March, 2003 image is changed to 11.86m.
The transformed radiance (Figure 3B) has 68 unique
cell values; hence the maximum depth 11.86m is
divided by 68 to derive conversion factor
(0.174411765). The maximum value in the
transformed radiance (Figure 3B) is 2.36.
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Figure 3. Depth map by SLR method from Landsat 7, (A) depth for 09 May, 2012, (B) Transformed radiance
of NIR band of 30 March, 2003, (C) depth for 30 March, 2003 and (D) depth for 08 May, 2000
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The cells are having unique value as 2.36 in the
transformed radiance are changed to 0.174411765m
depth. Subsequently all the cell wvalues are
transformed to depth by adding conversion factor
incrementally to the transformed radiance.
Eventually, the cells having unique value as 0.54 in
the transformed radiance has changed to 11.86m
depth. Hence, 68 classes of unique depth values are
derived by the RBE method (Figure 3C). The same
way, depth was estimated from other data sets such
as Landsat 8 and ASTER. The count of different cell
values (denoted by C in cquation 2) will vary
according to the DN value ranges of the data,

3.4.2 Multiple-band linear regression with new
band combination (MLR-NIR)

Scveral authors have been used different band
combinations to estimate depth. But in this study we
propose a new combination including both visible
and NIR spectral bands. As described in the equation
(3) multiple linear regressions were carried out
between the log fransformed visible and NIR bands
and in-situ depth. Where, log transformed bands
(X(4)1, X(3)5,..X(4);) arc taken as independent variable
and in-situ depth has taken as dependant variable.
The coefficients (g, 81, f2.. B} derived from multiple
linear regressions have been used to estimate the
depth for all pixels. The workflow is explained in
Figure 2. The new combination of bands was tested
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with all available data sets with corresponding én-situ
depth. If the corresponding in-sifu depth was not
available, in-situ depth collected close to the image
capture date was used for multiple regression and
calibration, The details of the ir-sifu depth and
satellite imageries are shown in Table 1. From 2000
to 2014, various multi-temporal and multi source data
sets were used to estimate the depth along Ratnagiri
coast. Landsat 7, Landsat 8 and ASTER data were
used to estimate depth and used to compare the
behavior of the algorithms in various spatial and
radiometric resolutions, The water over the study
area is not very clear, and also slightly turbid due to
the sedimentation from the Kajali River. Therefore,
in this study we evaluated different methods which
utilize single band as well as the multi-spectral bands
for estimating depth. The comparative evaluation
mainly focused on two objectives, namely multi-
temporal depth estimation from single band even
without in-situ depth and, secondly, on investigating
appropriate band combination of multi-spectral
bands to estimate depth with better accuracy. Since
the single band algorithms and multispectral band
algorithms treated scparaiely in this study, the
accuracy, and error related to the results obtained by
these methods are also discussed separately.
Implementation of all the algorithms for atmospheric
correction and depth estimation carried out in Open
Source GRASS GIS (http://grass.osgeo.org/).

12

Estimated depth (04 March, 2014) m

Figure 4: Bivariate scatter plots between depth estimated by single band of Landsat 8 and in-situ
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4. Results

SLR method was applied to 9 May, 2012 (Landsat 7)
image, 12 November, 2013 image (Landsat 8) and 10
December, 2012 (ASTER) are calibrated and
evaluated using in-sif depth collected on 27 May,
2012, 17 November, 2013 and 17 November, 2013
respectively. The evaluation of the results derived by
RBE is carried out with in-sifu depth collected closer
to the image acquisition date. In the case of 8 May,
2000 and 30 March, 2003 (Landsat 7) and 16
January, 2003 (ASTER) images, NHO chart data
surveyed on 2003 was used, In case of 31 January,
2014, 4 March, 2014 (Landsat 8) and 10 December,
2012 (ASTER) in-situ data collected on 17
November, 2013 was used. The comparison of
estimation results of all the satellite imageries used in
this study carried out by correlation coefficient (R),
coefficient of determination (R?) and RMSE. All
these parameters used to evaluate the accuracy of
results shows that depth estimation derived from
Landsat 8 data was providing better accuracy than
other satellite imageries (Table 2). Landsat 8 data was
collected on 31 January, 2014 and 04 March, 2014
were providing correlation coefficient (R=0.89,
0.80), coefficient of determination (R>=0.81, 0.66)
and RMSE (1.39m, 2.09m) respectively. High
radiometric resolution of Landsat 8 data provides

better depth estimation as compared to other data
sets. Even though ASTER data has high spatial
resolution than Landsat 8, it was not effective in
providing comparable results of Landsat 8 data. More
significantly, RBE proposed in this study shows a
unique estimation capability for all the data sets.
Since RBE directly converts transformed radiance to
depth, it is very sensitive to correction methods. If the
correction method is able to remove all the noises
obtained from the atmosphere, water surface and
water column reflectance, then the RBE could
provide far better results than occurred.
Unfortunately, till now there is ne algorithm could
remove completely the noises from satellite
imageries. The second method (MLLR-NIR) was used
to estimate depth from all available satellite
imageries. In case of Landsat 7 four bands (0.45-
090um}, in case of Landsat 8 five bands (0.43-
0.88um} and in case of ASTER three bands (0.52-
0.86pum) were used. The results derived by MLR-
NIR were compared and evaluated with the results
derived from MLR. Evaluation carried out in terms
of comelation coefficient, coefficient of
determination and RMSE. The results show that
depth estimation by MLR-NIR has provided better
accuracy than the MLR (Table 3).

Table 2: The estimated multi-temporal depth from various data sets by the proposed single band method

Data source Date Method R R? RMSE(m)
(19 May, 2012 SLR 0.67 | 0.46 2.14
Landsat 7 30 March, 2003 RBE 0.63 | 0.41 2.83
8 May, 2000 RBE 0.74 | 0.56 2.88
12 November, 2013 SLR 0.85 | 0.74 1.46
Landsat 8 31 January, 2014 RBE 0.89 | 0.81 1.39
04 March, 2014 RBE 0.80 | 0.66 2.09
ASTER 10 December, 2012 SLR 0.70 | 0.50 2,10
16 January, 2003 RBE 0.57 | 0.34 238
Table 3: Comparison of accuracy of depth estimated from different combinations of multispectral bands
(MLR and MLR-NIR)
Date MLR MLR-NIR
R R°E [RMSE(m)| R | R? [RMSE (m)
8 May, 2000 080 | 0.66 1.64 0.82 | 0.69 1.57
Landsat 7 30 March, 2003 065 | 044 244 0.77 | 0.61 2.07
09 May, 2012 053 | 030 1.77 0.68 | 048 1.53
12 November, 2013 0.91 0.84 1.77 095 | 091 1.53
Landsat 8 31 January, 2014 0.91 0.84 1.12 095 | 091 0.83
04 March, 2014 085 | 0.74 1.43 0.90 | 0.83 1.23
ASTER 16 January, 2003 076 | 0.59 1.90 0.78 | 0.62 1.86
10 December, 2012 069 | 050 1.75 0.76 | 0.60 1.56
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Figure 5: Bivariate scatter plot between depths estimated from Landsat 8 and in-sitz: depth. The MLR-NIR {A,
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Figure 6: Bivariate scatter plot between estimated depth using Landsat 8 and in-situ depth at high turbid (A)

and low turbid (B) region

Especially, in Landsat 8 data (12 November, 2013,
31 January, 2014 and 04 March, 2014) provides
better accuracy results in terms of correlation
coefficient (R=0.95, 0.95, 0.90), coefficient of

determination (R>=0.91, 0.91, 0.83) and RMSE
(0.83m, 1.23m) respectively. The Figure 5 shows the
bivariate scatter plot between depth estimates and in-
sity depth derived from Landsat 8.
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Table 4; Comparison of accuracy of depth estimated from Landsat 8 data in terms of turbidity

Date of data Methods NDWI R [ R?* [ RMSE (m)
—_— Low turbid | 0.88 | 0.78 121
12 November, 2013 Highturb_id 0.82 [ 0.67 1.50
N Lt-)wturbl.d 0.97 | 0.94 0.85
High turbid | 0.90 | 0.81 0.90
Low turbid | 0.82 | 0.68 127
RBE - :
31 Jamsary, 2014 High turbid | 0.77 | 0.60 1.36
MIRNR | oY tubid | 095 | 091 0.97
High turbid | 0.84 | 0.71 1.65
_— Low turbid | 0.77 | 0.59 2.70
High turbid | 0.65 | 0.43 2.82
04:Mareh;. 2014 Tow trbid | 0.93 | 0.86 | 1.48
MLRIIR High turbid | 0.85 | 0.72 1.85
In Figure 5 A, C and E show the bivariate scatter plot discharge near estnary potential to reduce the

of depth estimates derived from MLR-NIR and B, D
and F are from MLR. Bivariate scatter plots clearly
demonstrate that the proposed new band combination
MLR-NIR is better than the other. The new modified
band combination shows significant increase in the
accuracy irrespective the satellite imageries are used.
Observed good accuracy in Landsat 8 was due to the
availability of new coastal aerosol (0.43-0.45um)
band. The accuracy and error evaluation tests were
also carried out to estimate accuracy and error
obtained duc to turbidity in depth estimate derived by
both single band and multi-band methods from
Landsat 8 data. The study area was divided into two
sections based on Normalized Difference Water
Index (NDWT). The NDWI originally introduced by
Rogers and Keamey (2004) to envisage coastal
marsh, where, lower NDWI value denote high
turbidity and higher NDWI values indicate relatively
low turbidity. The evaluation tests confirm that the
accuracy of the depth estimates at low turbid area is
higher than the high turbid region. Table 4
summarizes the evaluation results carried out by
using R, R? and RMSE. The RMSE valugs indicate
that error associated the depth estimates increases in
high turbid region. The estimated depth results at
high turbid region and low turbid region are
compared using bivariate scatter plot in Figure 6.
Low turbid region shows stronger linear relationship
between estimated depth and in-situ depth than high
turbid region. Figure 6 demonstrate the scatter plot of
estimated depth derived from Landsat 8 data (31
January, 2014) by MLR-NIR method and in-situ
depth. Other data summarized in the Table 4 are also
showing the similar trend. However, the turbidity due
to wave action along the coast or dynamic sediment

accuracy of the depth estimation.

5. Discussion and Conclusions

The two different methods RBE and MLR-NIR
proposed in this study were capable to estimate water
depth in different situations. The RBE single band
method is an extension o the SLR method. In the
single band method, attenuation coefficient assumed
to be constant in the study area, to consider otherwise
would have required more ground truth knowledge
about bottom typc that arc oficn not available. The
attenuation of light in a particular band is estimated
by using SLR method and multi-temporal images of
same band was used for investigating bathymetric
changes. RBE method depends only on radiance
value of transformed band. The limitation of single
band method is that, it does not address the issues of
heterogeneity occurred due to difference in bottom
type and water quality. However, the advantage of
this method is that it is feasible even in situations
where in-situ data is lacking. Results derived by RBE
from various data sets with different spatial and
radiometric resolution were evaluated by in-sifu
depth and observed good accuracy in quantitative
terms. Landsat 8 data with high radiometric
resolution was provides better results using RBE.
Further, an attempt has also been carried out to
comprehend the reduced accuracy of the RBE due to
turbidity. Results show that turbidity affects the
attenuation of the light and affects accuracy of
derived depth but does not significantly degrade the
estimation. The MLR-NIR is the second method
proposed by this study is a modification of multi-
spectral band combination. The multispectral band
method accounts for variations in attenuation
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coefficients depending on wavelength used, sea
bottom types, and water column properties. Since
NIR wave length is capable of capturing the bottom
reflectance in shallow water, a new multispectral
band combination including NIR band has been
proposed and evaluated. Limitation of this method is
that a good amount of in-situ depth is needed in order
to estimate the coefficients for calibration. However,
MLR-NIR provides good estimates of depth in all the
available satellite imageries. A comparative study
was carried out between MLR and MLR-NIR. The
results show that the MLLR-NIR provides better depth
estimates as evident from improved correlation
coefficient, coefficient of determination and RMSE.
The resulis indicate that the newly proposed method
(RBE) can be applied to any other optical RS imagery
band which contains the bottom reflectance to
estimate depth. It is also observed that the inclusion
of NIR band for the depth estimation from
multispectral bands potentially increases the
accuracy of the results. The accuracy of the result
could be increased by establishing an algorithm to
focus on better atmospheric correction, without
losing the depth information. The complexity of
coastal waters, as well as the atmosphere above,
requires morg robust algorithms capable of handling
bathymetric modeling. Further investigation is
necessary for better discrimination of bottom
reflectance from top-of-atmosphere radiance and
signal carrying information of materials suspended in
seawater. The algorithm could be refined by new
correction method using short-wave Infrared band
(1.57-1.65 pm) of Landsat 8.
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